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Abstract

This introduction to the R package systemfit is a slightly modified version of Hen-
ningsen and Hamann (2007), published in the Journal of Statistical Software.

Many statistical analyses (e.g., in econometrics, biostatistics and experimental design)
are based on models containing systems of structurally related equations. The systemfit
package provides the capability to estimate systems of linear equations within the R pro-
gramming environment. For instance, this package can be used for“ordinary least squares”
(OLS), “seemingly unrelated regression” (SUR), and the instrumental variable (IV) meth-
ods “two-stage least squares” (2SLS) and “three-stage least squares” (3SLS), where SUR
and 3SLS estimations can optionally be iterated. Furthermore, the systemfit package
provides tools for several statistical tests. It has been tested on a variety of datasets and
its reliability is demonstrated.

Keywords:˜R, system of simultaneous equations, seemingly unrelated regression, two-stage
least squares, three-stage least squares, instrumental variables.

1. Introduction

Many theoretical models that are econometrically estimated consist of more than one equa-
tion. The disturbance terms of these equations are likely to be contemporaneously correlated,
because unconsidered factors that influence the disturbance term in one equation proba-
bly influence the disturbance terms in other equations, too. Ignoring this contemporaneous
correlation and estimating these equations separately leads to inefficient estimates of the co-
efficients. However, estimating all equations simultaneously with a “generalized least squares”
(GLS) estimator, which takes the covariance structure of the residuals into account, leads
to efficient estimates. This estimation procedure is generally called “seemingly unrelated
regression” (SUR, Zellner 1962). Another reason to estimate a system of equations simulta-
neously are cross-equation restrictions on the coefficients.1 Estimating the coefficients under
cross-equation restrictions and testing these restrictions requires a simultaneous estimation
approach.

Furthermore, these models can contain variables that appear on the left-hand side in one
equation and on the right-hand side of another equation. Ignoring the endogeneity of these
variables can lead to inconsistent estimates. This simultaneity bias can be corrected for by

1 Especially the economic theory suggests many cross-equation restrictions on the coefficients (e.g., the
symmetry restriction in demand models).
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applying a “two-stage least squares” (2SLS) estimation to each equation. Combining this
estimation method with the SUR method results in a simultaneous estimation of the system
of equations by the “three-stage least squares” (3SLS) method (Zellner and Theil 1962).

The systemfit package provides the capability to estimate systems of linear equations in
R (R˜Development Core Team 2007). Currently, the estimation methods “ordinary least
squares” (OLS), “weighted least squares” (WLS), “seemingly unrelated regression” (SUR),
“two-stage least squares” (2SLS), “weighted two-stage least squares” (W2SLS), and “three-
stage least squares” (3SLS) are implemented.2 The WLS, SUR, W2SLS, and 3SLS estimates
can be based either on one-step (OLS or 2SLS) (co)variances or these estimations can be
iterated, where the (co)variances are calculated from the estimates of the previous step.
Furthermore, the systemfit package provides statistical tests for restrictions on the coefficients
and for testing the consistency of the 3SLS estimation.

Although systems of linear equations can be estimated with several other statistical and econo-
metric software packages (e.g., SAS, EViews, TSP), systemfit has several advantages. First,
all estimation procedures are publicly available in the source code. Second, the estimation
algorithms can be easily modified to meet specific requirements. Third, the (advanced) user
can control estimation details generally not available in other software packages by overriding
reasonable defaults.

In Section˜2 we introduce the statistical background of estimating equation systems. The
implementation of the statistical procedures in R is briefly explained in Section˜3. Section˜4
demonstrates how to run systemfit and how some of the features presented in the second
section can be used. In Section˜5 we replicate several textbook results with the systemfit
package. Finally, a summary and outlook are presented in Section˜6.

2. Statistical background

In this section we give a short overview of the statistical background that the systemfit package
is based on. More detailed descriptions of simultaneous equations systems are available for
instance in Theil (1971, Chapter˜7), Judge, Hill, Griffiths, Lütkepohl, and Lee (1982, Part˜4),
Judge, Griffiths, Hill, Lütkepohl, and Lee (1985, Part˜5), Srivastava and Giles (1987), Greene
(2003, Chapters 14–15), and Zivot and Wang (2006, Chapter˜10).

After introducing notations and assumptions, we provide the formulas to estimate systems of
linear equations. We then demonstrate how to estimate coefficients under linear restrictions.
Finally, we present additional relevant issues about estimation of equation systems.

Consider a system of G equations, where the ith equation is of the form

yi = Xiβi + ui, i = 1, 2, . . . , G, (1)

where yi is a vector of the dependent variable, Xi is a matrix of the exogenous variables, βi
is the coefficient vector and ui is a vector of the disturbance terms of the ith equation.

2 In this context, the term “weighted” in “weighted least squares” (WLS) and “weighted two-stage least
squares” (W2SLS) means that the equations might have different weights and not that the observations have
different weights.
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We can write the “stacked” system as
y1
y2
...
yG

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XG



β1
β2
...
βG

+


u1
u2
...
uG

 (2)

or more simply as
y = Xβ + u. (3)

We assume that there is no correlation of the disturbance terms across observations, so that

E [uit ujs] = 0 ∀ t 6= s, (4)

where i and j indicate the equation number and t and s denote the observation number,
where the number of observations is the same for all equations.

However, we explicitly allow for contemporaneous correlation, i.e.,

E [uit ujt] = σij . (5)

Thus, the covariance matrix of all disturbances is

E
[
uu>

]
= Ω = Σ⊗ IT , (6)

where Σ = [σij ] is the (contemporaneous) disturbance covariance matrix, ⊗ is the Kronecker
product, IT is an identity matrix of dimension T , and T is the number of observations in each
equation.

2.1. Estimation with only exogenous regressors

If all regressors are exogenous, the system of equations (Equation˜1) can be consistently
estimated by ordinary least squares (OLS), weighted least squares (WLS), and seemingly
unrelated regression (SUR). These estimators can be obtained by

β̂ =
(
X>Ω̂−1X

)−1
X>Ω̂−1y. (7)

The covariance matrix of these estimators can be estimated by

ĈOV
[
β̂
]

=
(
X>Ω̂−1X

)−1
. (8)

Ordinary least squares (OLS)

The ordinary least squares (OLS) estimator is based on the assumption that the disturbance
terms are not contemporaneously correlated (σij = 0 ∀ i 6= j) and have the same variance in

each equation (σ2i = σ2j ∀ i, j). In this case, Ω̂ in Equation˜7 is equal to IG·T and thus, cancels
out. The OLS estimator is efficient, as long as the disturbances are not contemporaneously
correlated.
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If the whole system is treated as one single equation, Ω̂ in Equation˜8 is σ̂2IG·T , where σ̂2

is an estimator for the variance of all disturbances (σ2 = E[u2it]). If the disturbance terms of

the individual equations are allowed to have different variances, Ω̂ in Equation˜8 is Σ̂ ⊗ IT ,
where σ̂ij = 0 ∀ i 6= j and σ̂ii = σ̂2i is the estimated variance of the disturbance term in the
ith equation.

If the estimated coefficients are not constrained by cross-equation restrictions, the simultane-
ous OLS estimation of the system leads to the same estimated coefficients as an equation-wise
OLS estimation. The covariance matrix of the coefficients from an equation-wise OLS esti-
mation is equal to the covariance matrix obtained by Equation˜8 with Ω̂ equal to Σ̂⊗ IT .

Weighted least squares (WLS)

The weighted least squares (WLS) estimator allows for different variances of the disturbance
terms in the different equations (σ2i 6= σ2j ∀ i 6= j), but assumes that the disturbance terms

are not contemporaneously correlated. In this case, Ω̂ in Equations˜7 and˜8 is Σ̂⊗ IT , where
σ̂ij = 0 ∀ i 6= j and σ̂ii = σ̂2i is the estimated variance of the disturbance terms in the ith
equation. Theoretically, σ̂ii should be the variance of the (true) disturbances (σii). However,
they are not known in most empirical applications. Therefore, true variances are generally
replaced by estimated variances (σ̂ii) that are calculated from the residuals of a first-step OLS
estimation (see Section˜2.4).3

The WLS estimator is (asymptotically) efficient only if the disturbance terms are not con-
temporaneously correlated. If the estimated coefficients are not constrained by cross-equation
restrictions, they are equal to OLS estimates.

Seemingly unrelated regression (SUR)

If the disturbances are contemporaneously correlated, a generalized least squares (GLS) esti-
mation leads to an efficient estimator for the coefficients. In this case, the GLS estimator is
generally called “seemingly unrelated regression” (SUR) estimator (Zellner 1962). However,
the true covariance matrix of the disturbance terms is generally unknown. The textbook
solution for this problem is a feasible generalized least squares (FGLS) estimation. As the
FGLS estimator is based on an estimated covariance matrix of the disturbance terms, it is
only asymptotically efficient. In case of a SUR estimator, Ω̂ in Equations˜7 and˜8 is Σ̂⊗ IT ,
where Σ̂ is the estimated covariance matrix of the disturbance terms.

It should be noted that while an unbiased OLS or WLS estimation requires only that the
regressors and the disturbance terms of each single equation are uncorrelated (E

[
u>i Xi

]
=

0 ∀ i), a consistent SUR estimation requires that all disturbance terms and all regressors are
uncorrelated (E

[
u>i Xj

]
= 0 ∀ i, j).

2.2. Estimation with endogenous regressors

If the regressors of one or more equations are correlated with the disturbances (E
[
u>i Xi

]
6= 0),

OLS, WLS, and SUR estimates are biased. This can be circumvented by a two-stage least
squares (2SLS), weighted two-stage least squares (W2SLS), or a three-stage least squares

3Note that Ω̂ in Equation˜7 is not the same Ω̂ as in Equation˜8. The first is calculated from the residuals
of a first-step OLS estimation; the second is calculated from the residuals of this WLS estimation. The same
applies to the SUR, W2SLS, and 3SLS estimations described in the following sections.
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(3SLS) estimation with instrumental variables (IV). The instrumental variables for each equa-
tion Zi can be either different or identical for all equations. They must not be correlated with
the disturbance terms of the corresponding equation (E

[
u>i Zi

]
= 0).

At the first stage new (“fitted”) regressors are obtained by

X̂i = Zi

(
Z>i Zi

)−1
Z>i Xi. (9)

Then, these “fitted” regressors are substituted for the original regressors in Equation˜7 to
obtain unbiased 2SLS, W2SLS, or 3SLS estimates of β by

β̂ =
(
X̂>Ω̂−1X̂

)−1
X̂>Ω̂−1y, (10)

where

X̂ =


X̂1 0 · · · 0

0 X̂2 · · · 0
...

...
. . .

...

0 0 · · · X̂G

 . (11)

An estimator of the covariance matrix of the estimated coefficients can be obtained from
Equation˜8 analogously. Hence, we get

ĈOV
[
β̂
]

=
(
X̂>Ω̂−1X̂

)−1
. (12)

Two-stage least squares (2SLS)

The two-stage least squares (2SLS) estimator is based on the same assumptions about the
disturbance terms as the OLS estimator. Accordingly, Ω̂ in Equation˜10 is equal to IG·T and
thus, cancels out. Like for the OLS estimator, the whole system can be treated either as
one single equation with Ω̂ in Equation˜12 equal to σ̂2IG·T , or the disturbance terms of the
individual equations are allowed to have different variances with Ω̂ in Equation˜12 equal to
Σ̂⊗ IT , where σ̂ij = 0 ∀ i 6= j and σ̂ii = σ̂2i .

Weighted two-stage least squares (W2SLS)

The weighted two-stage least squares (W2SLS) estimator allows for different variances of the
disturbance terms in the different equations. Hence, Ω̂ in Equations˜10 and˜12 is Σ̂ ⊗ IT ,
where σ̂ij = 0 ∀ i 6= j and σ̂ii = σ̂2i . If the estimated coefficients are not constrained by
cross-equation restrictions, they are equal to 2SLS estimates.

Three-stage least squares (3SLS)

If the disturbances are contemporaneously correlated, a feasible generalized least squares
(FGLS) version of the two-stage least squares estimation leads to consistent and asymptoti-
cally more efficient estimates. This estimation procedure is generally called “three-stage least
squares” (3SLS, Zellner and Theil 1962). The standard 3SLS estimator and its covariance ma-
trix are obtained by Equations˜10 and˜12 with Ω̂ equal to Σ̂⊗ IT , where Σ̂ is the estimated
covariance matrix of the disturbance terms.
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While an unbiased 2SLS or W2SLS estimation requires only that the instrumental variables
and the disturbance terms of each single equation are uncorrelated (E

[
u>i Zi

]
) = 0 ∀ i),

Schmidt (1990) points out that the 3SLS estimator is only consistent if all disturbance terms
and all instrumental variables are uncorrelated (E

[
u>i Zj

]
) = 0 ∀ i, j). Since there might be

occasions where this cannot be avoided, Schmidt (1990) analyses other approaches to obtain
3SLS estimators.

One of these approaches based on instrumental variable estimation (3SLS-IV) is

β̂3SLS-IV =
(
X̂>Ω̂−1X

)−1
X̂>Ω̂−1y. (13)

An estimator of the covariance matrix of the estimated 3SLS-IV coefficients is

ĈOV
[
β̂3SLS-IV

]
=
(
X̂>Ω̂−1X

)−1
. (14)

Another approach based on the generalized method of moments (GMM) estimator (3SLS-
GMM) is

β̂3SLS-GMM =

(
X>Z

(
Z>Ω̂Z

)−1
Z>X

)−1
X>Z

(
Z>Ω̂Z

)−1
Z>y (15)

with

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZG

 . (16)

An estimator of the covariance matrix of the estimated 3SLS-GMM coefficients is

ĈOV
[
β̂3SLS-GMM

]
=

(
X>Z

(
Z>Ω̂Z

)−1
Z>X

)−1
. (17)

A fourth approach developed by Schmidt (1990) himself is

β̂3SLS-Schmidt =
(
X̂>Ω̂−1X̂

)−1
X̂>Ω̂−1Z

(
Z>Z

)−1
Z>y. (18)

An estimator of the covariance matrix of these estimated coefficients is

ĈOV
[
β̂3SLS-Schmidt

]
=
(
X̂>Ω̂−1X̂

)−1
X̂>Ω̂−1Z

(
Z>Z

)−1
Z>Ω̂Z (19)(

Z>Z
)−1

Z>Ω̂−1X̂
(
X̂>Ω̂−1X̂

)−1
.

The econometrics software EViews uses

β̂3SLS-EViews = β̂2SLS +
(
X̂>Ω̂−1X̂

)−1
X̂>Ω̂−1

(
y −Xβ̂2SLS

)
, (20)

where β̂2SLS is the two-stage least squares estimator as defined above. EViews uses the stan-
dard 3SLS formula (Equation˜12) to calculate an estimator of the covariance matrix of the
estimated coefficients.
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If the same instrumental variables are used in all equations (Z1 = Z2 = . . . = ZG), all the
above mentioned approaches lead to identical estimates. However, if this is not the case,
the results depend on the method used (Schmidt 1990). The only reason to use different
instruments for different equations is a correlation of the instruments of one equation with
the disturbance terms of another equation. Otherwise, one could simply use all instruments
in every equation (Schmidt 1990). In this case, only the 3SLS-GMM (Equation˜15) and the
3SLS estimator developed by Schmidt (1990) (Equation˜18) are consistent.

2.3. Estimation under linear restrictions on the coefficients

In many empirical applications, it is desirable to estimate the coefficients under linear re-
strictions. For instance, in econometric demand and production analysis, it is common to
estimate the coefficients under homogeneity and symmetry restrictions that are derived from
the underlying theoretical model.

There are two different methods to estimate the coefficients under linear restrictions. First,
a matrix M can be specified that

β = M · βM, (21)

where βM is a vector of restricted (linear independent) coefficients, and M is a matrix with
the number of rows equal to the number of unrestricted coefficients (β) and the number of
columns equal to the number of restricted coefficients (βM). M can be used to map each
unrestricted coefficient to one or more restricted coefficients.

The second method to estimate the coefficients under linear restrictions constrains the coef-
ficients by

RβR = q, (22)

where βR is the vector of the restricted coefficients, and R and q are a matrix and vector,
respectively, that specify the restrictions (see Greene 2003, p.˜100). Each linear independent
restriction is represented by one row of R and the corresponding element of˜q.

The first method is less flexible than the second4, but is preferable if the coefficients are
estimated under many equality constraints across different equations of the system. Of course,
these restrictions can be also specified using the latter method. However, while the latter
method increases the dimension of the matrices to be inverted during estimation, the first
reduces it. Thus, in some cases the latter way leads to estimation problems (e.g., (near)
singularity of the matrices to be inverted), while the first does not.

These two methods can be combined. In this case, the restrictions specified using the latter
method are imposed on the linear independent coefficients that are restricted by the first
method, so that

RβMR = q, (23)

where βMR is the vector of the restricted βM coefficients.

4 While restrictions like β1 = 2β2 can be specified by both methods, restrictions like β1 + β2 = 4 can be
specified only by the second method.
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Calculation of restricted estimators

If the first method (Equation˜21) is chosen to estimate the coefficients under these restrictions,
the matrix of regressors X is (post-)multiplied by the M matrix, so that

XM = X ·M. (24)

Then, XM is substituted for X and a standard estimation as described in the previous section
is done (Equations˜7–20). This results in the linear independent coefficient estimates β̂M and
their covariance matrix. The original coefficients can be obtained by Equation˜21 and the
estimated covariance matrix of the original coefficients can be obtained by

ĈOV
[
β̂
]

= M · ĈOV
[
β̂M
]
·M>. (25)

The implementation of the second method to estimate the coefficients under linear restrictions
(Equation˜22) is described for each estimation method in the following sections.

Restricted OLS, WLS, and SUR estimation

The OLS, WLS, and SUR estimators restricted by RβR = q can be obtained by[
β̂R

λ̂

]
=

[
X>Ω̂−1X R>

R 0

]−1
·
[
X>Ω̂−1y

q

]
, (26)

where λ is a vector of the Lagrangean multipliers of the restrictions and Ω̂ is defined as in
Section˜2.1. An estimator of the covariance matrix of the estimated coefficients is

ĈOV

[
β̂R

λ̂

]
=

[
X>Ω̂−1X R>

R 0

]−1
. (27)

Restricted 2SLS, W2SLS, and 3SLS estimation

The 2SLS, W2SLS, and standard 3SLS estimators restricted by RβR = q can be obtained by[
β̂R

λ̂

]
=

[
X̂>Ω̂−1X̂ R>

R 0

]−1
·
[
X̂>Ω̂−1y

q

]
, (28)

where Ω̂ is defined as in Section˜2.2. An estimator of the covariance matrix of the estimated
coefficients is

ĈOV

[
β̂R

λ̂

]
=

[
X̂>Ω̂−1X̂ R>

R 0

]−1
. (29)

The 3SLS-IV estimator restricted by RβR = q can be obtained by[
β̂R3SLS-IV

λ̂

]
=

[
X̂>Ω̂−1X R>

R 0

]−1
·
[
X̂>Ω̂−1y

q

]
, (30)

where

ĈOV

[
β̂R3SLS-IV

λ̂

]
=

[
X̂>Ω̂−1X R>

R 0

]−1
. (31)
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The restricted 3SLS-GMM estimator can be obtained by[
β̂R3SLS-GMM

λ̂

]
=

[
X>Z

(
Z>Ω̂Z

)−1
Z>X R>

R 0

]−1
·

[
X>Z

(
ZΩ̂Z

)−1
Z>y

q

]
, (32)

where

ĈOV

[
β̂R3SLS-GMM

λ̂

]
=

[
X>Z

(
Z>Ω̂Z

)−1
Z>X R>

R 0

]−1
. (33)

The restricted 3SLS estimator based on the suggestion of Schmidt (1990) is[
β̂R3SLS-Schmidt

λ̂

]
=

[
X̂>Ω̂−1X̂ R>

R 0

]−1
·

[
X̂>Ω̂−1Z

(
Z>Z

)−1
Z>y

q

]
, (34)

where

ĈOV

[
β̂R3SLS-Schmidt

λ̂

]
=

[
X̂>Ω̂−1X̂ R>

R 0

]−1
(35)

·

[
X̂>Ω̂−1Z

(
Z>Z

)−1
Z>Ω̂Z

(
Z>Z

)−1
Z>Ω̂−1X̂ 0>

0 0

]−1

·
[
X̂>Ω̂−1X̂ R>

R 0

]−1
.

The econometrics software EViews calculates the restricted 3SLS estimator by[
β̂R3SLS-EViews

λ̂

]
=

[
X̂>Ω̂−1X̂ R>

R 0

]−1
·

[
X̂>Ω̂−1

(
y −Xβ̂R2SLS

)
q

]
, (36)

where β̂R2SLS is the restricted 2SLS estimator calculated by Equation˜28. EViews uses the
standard formula of the restricted 3SLS estimator (Equation˜29) to calculate an estimator
for the covariance matrix of the estimated coefficients.

If the same instrumental variables are used in all equations (Z1 = Z2 = . . . = ZG), all the
above mentioned approaches lead to identical coefficient estimates and identical covariance
matrices of the estimated coefficients.

2.4. Residual covariance matrix

Since the (true) disturbances (ui) of the estimated equations are generally not known, their
covariance matrix cannot be determined. Therefore, this covariance matrix is generally calcu-
lated from estimated residuals (ûi) that are obtained from a first-step OLS or 2SLS estimation.
Then, in a second step, the estimated residual covariance matrix can be employed for a WLS,
SUR, W2SLS, or 3SLS estimation. In many cases, the residual covariance matrix is calculated
by

σ̂ij =
û>i ûj
T

, (37)
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where T is the number of observations in each equation. However, in finite samples this
estimator is biased, because it is not corrected for degrees of freedom. The usual single-
equation procedure to correct for degrees of freedom cannot always be applied, because the
number of regressors in each equation might differ. Two alternative approaches to calculate
the residual covariance matrix are

σ̂ij =
û>i ûj√

(T −Ki) · (T −Kj)
(38)

and

σ̂ij =
û>i ûj

T −max (Ki,Kj)
, (39)

where Ki and Kj are the number of regressors in equation i and j, respectively. However,
these formulas yield unbiased estimators only if Ki = Kj (Judge et˜al. 1985, p.˜469).

A further approach to obtain a residual covariance matrix is

σ̂ij =
û>i ûj

T −Ki −Kj + tr

[
Xi

(
X>i Xi

)−1
X>i Xj

(
X>j Xj

)−1
X>j

] (40)

=
û>i ûj

T −Ki −Kj + tr

[(
X>i Xi

)−1
X>i Xj

(
X>j Xj

)−1
X>j Xi

] (41)

(Zellner and Huang 1962, p.˜309). This yields an unbiased estimator for all elements of Σ,
but even if Σ̂ is an unbiased estimator of Σ, its inverse Σ̂−1 is not an unbiased estimator of
Σ−1 (Theil 1971, p.˜322). Furthermore, the covariance matrix calculated by Equation˜40 is
not necessarily positive semidefinite (Theil 1971, p.˜322). Hence, “it is doubtful whether [this
formula] is really superior to [Equation˜37]” (Theil 1971, p.˜322).

The WLS, SUR, W2SLS and 3SLS coefficient estimates are consistent if the residual covariance
matrix is calculated using the residuals from a first-step OLS or 2SLS estimation. There
exists also an alternative slightly different approach that consists of three steps.5 In a first
step, an OLS or 2SLS estimation is applied to obtain residuals to calculate a (first-step)
residual covariance matrix. In a second step, the first-step residual covariance matrix is used
to estimate the model by WLS or W2SLS and new residuals are obtained to calculate a
(second-step) residual covariance matrix. Finally, in the third step, the second-step residual
covariance matrix is used to estimate the model by SUR or 3SLS. If the estimated coefficients
are not constrained by cross-equation restrictions, OLS and WLS estimates as well as 2SLS
and W2SLS estimates are identical. Hence, in this case both approaches generate the same
results.

It is also possible to iterate WLS, SUR, W2SLS and 3SLS estimations. At each iteration
the residual covariance matrix is calculated from the residuals of the previous iteration. If
Equation˜37 is applied to calculate the residual covariance matrix, an iterated SUR estimation
converges to maximum likelihood (Greene 2003, p.˜345).

In some uncommon cases, for instance in pooled estimations, where the coefficients are re-
stricted to be equal in all equations, the means of the residuals of each equation are not equal

5 For instance, this approach is applied by the command TSCS of the software LIMDEP that carries out SUR
estimations in which all coefficient vectors are constrained to be equal (Greene 2006b).
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to zero (ûi 6= 0). Therefore, it might be argued that the residual covariance matrix should
be calculated by subtracting the means from the residuals and substituting ûi − ûi for ûi in
Equations˜37–40.

If the coefficients are estimated under any restrictions, the residual covariance matrix for a
WLS, SUR, W2SLS, or 3SLS estimation can be obtained either from a restricted or from an
unrestricted first-step estimation.

2.5. Degrees of freedom

To our knowledge the question about how to determine the degrees of freedom for single-
coefficient t tests is not comprehensively discussed in the literature. While sometimes the
degrees of freedom of the entire system (total number of observations in all equations minus
total number of estimated coefficients) are applied, in other cases the degrees of freedom of
each single equation (number of observations in the equations minus number of estimated
coefficients in the equation) are used. Asymptotically, this distinction does not make a differ-
ence. However, in many empirical applications, the number of observations of each equation
is rather small, and therefore, it matters.

If a system of equations is estimated by an unrestricted OLS and the covariance matrix of
the coefficients is calculated with Ω̂ in Equation˜8 equal to Σ̂⊗ IT , the estimated coefficients
and their standard errors are identical to an equation-wise OLS estimation. In this case, it is
reasonable to use the degrees of freedom of each single equation, because this yields the same
P values as the equation-wise OLS estimation.

In contrast, if a system of equations is estimated with many cross-equation restrictions and
the covariance matrix of an OLS estimation is calculated with Ω̂ in Equation˜8 equal to
σ̂2IG·T , the system estimation is similar to a single equation estimation. Therefore, in this
case, it seems to be reasonable to use the degrees of freedom of the entire system.

2.6. Goodness of fit

The goodness of fit of each single equation can be measured by the traditional R2 values

R2
i = 1− û>i ûi

(yi − yi)>(yi − yi)
, (42)

where R2
i is the R2 value of the ith equation and yi is the mean value of yi.

The goodness of fit of the whole system can be measured by the McElroy’s R2 value

R2
∗ = 1− û>Ω̂−1û

y>
(

Σ̂−1 ⊗
(
IT − ιι>

T

))
y
, (43)

where ι is a column vector of T ones (McElroy 1977).

2.7. Testing linear restrictions

Linear restrictions can be tested by an F test, two Wald tests and a likelihood ratio (LR)
test.
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The F statistic for systems of equations is

F =
(Rβ̂ − q)>(R(X>(Σ⊗ I)−1X)−1R>)−1(Rβ̂ − q)/j

û>(Σ⊗ I)−1û/(G · T −K)
, (44)

where j is the number of restrictions, K is the total number of estimated coefficients, and all
other variables are as defined before (Theil 1971, p.˜314). Under the null hypothesis, F is F
distributed with j and G · T −K degrees of freedom.

However, F in Equation˜44 cannot be computed, because Σ is generally unknown. As a
solution, Theil (1971, p.˜314) proposes to replace the unknown Σ in Equation˜44 by the
estimated covariance matrix Σ̂.

F̂ =
(Rβ̂ − q)>(R(X>(Σ̂⊗ I)−1X)−1R>)−1(Rβ̂ − q)/j

û>(Σ̂⊗ I)−1û/(G · T −K)
(45)

Asymptotically, F̂ has the same distribution as F in Equation˜44, because the numerator of
Equation˜45 converges in probability to the numerator of Equation˜44 and the denominator
of Equation˜45 converges in probability to the denominator of Equation˜44 (Theil 1971,
p.˜402).

Furthermore, the denominators of both Equations˜44 and˜45 converge in probability to˜1.
Taking this into account and applying Equation˜8, we obtain the usual F˜statistic of the
Wald test.

ˆ̂
F =

(Rβ̂ − q)>(R ĈOV
[
β̂
]
R>)−1(Rβ̂ − q)

j
(46)

Under the null hypotheses, also
ˆ̂
F is asymptotically F distributed with j and G·T−K degrees

of freedom.

Multiplying Equation˜46 with j, we obtain the usual χ2 statistic for the Wald test

W = (Rβ̂ − q)>(R ĈOV[β̂]R>)−1(Rβ̂ − q). (47)

Asymptotically, W has a χ2 distribution with j degrees of freedom under the null hypothesis
(Greene 2003, p.˜347).

The likelihood-ratio (LR) statistic for systems of equations is

LR = T ·
(

log
∣∣∣Σ̂r

∣∣∣− log
∣∣∣Σ̂u

∣∣∣) , (48)

where T is the number of observations per equation, and Σ̂r and Σ̂u are the residual covariance
matrices calculated by Equation˜37 of the restricted and unrestricted estimation, respectively.
Asymptotically, LR has a χ2 distribution with j degrees of freedom under the null hypothesis
(Greene 2003, p.˜349).

2.8. Hausman test

Hausman (1978) developed a test for misspecification. The null hypothesis of the test is that
the instrumental variables of each equation are uncorrelated with the disturbance terms of
all other equations (E

[
u>i Zj

]
= 0∀ i 6= j). Under this null hypothesis, both the 2SLS and



Arne Henningsen, Jeff D. Hamann 13

the 3SLS estimator are consistent, but the 3SLS estimator is (asymptotically) more efficient.
Under the alternative hypothesis, the 2SLS estimator is consistent but the 3SLS estimator
is inconsistent, i.e., the instrumental variables of each equation are uncorrelated with the
disturbances of the same equation (E

[
u>i Zi

]
= 0∀ i), but the instrumental variables of at least

one equation are correlated with the disturbances of another equation (E
[
u>i Zj

]
6= 0∃ i 6= j).

The Hausman test statistic is

m =
(
β̂2SLS − β̂3SLS

)> (
ĈOV

[
β̂2SLS

]
− ĈOV

[
β̂3SLS

])(
β̂2SLS − β̂3SLS

)
, (49)

where β̂2SLS and ĈOV
[
β̂2SLS

]
are the estimated coefficient and covariance matrix from a 2SLS

estimation, and β̂3SLS and ĈOV
[
β̂3SLS

]
are the estimated coefficients and covariance matrix

from a 3SLS estimation. Under the null hypothesis, this test statistic has a χ2 distribution
with degrees of freedom equal to the number of estimated coefficients.

3. Source code

The source code of the systemfit package is publicly available for download from the Compre-
hensive R Archive Network (CRAN, http://CRAN.R-project.org/). The basic functionality
of this package is provided by the function systemfit. Moreover, this package provides tools
for statistical tests, functions (methods) to show, extract or calculate results, some conve-
nience functions, and internal helper functions.

3.1. The basic function systemfit

The systemfit function estimates systems of linear equations by different estimation meth-
ods. Where possible, the user interface and the returned object of this function follow the
function lm — the basic tool for linear regressions in R — to make the usage of systemfit
as easy as possible for R users.

The econometric estimation is done by applying the formulas in Sections˜2.1 and˜2.2 or —
if the coefficients are estimate under linear restrictions — by the formulas in Section˜2.3. If
the restrictions on the coefficients are specified symbolically, function makeHypothesis of the
car package (Fox 2006, 2002) is used to create the restriction matrix.

The systemfit function returns a list of class systemfit that contains the results that
belong to the entire system of equations. One special element of this list is called eq, which
is a list that contains one object for each estimated equation. These objects are lists of class
systemfit.equation and contain the results that belong only to the regarding equation. A
complete description is available in the documentation of this function that is included in
the package. A comparison of the elements returned by lm and by systemfit is available in
appendix˜A.

3.2. Statistical tests

The linearHypothesis and lrtest methods for systemfit objects as well as the function
hausman.systemfit apply the statistical tests described in Sections˜2.7 and˜2.8.

The linearHypothesis method for systemfit objects can be used to test linear restrictions
on the estimated coefficients by Theil’s F test or by usual Wald tests. Internally, Theil’s

http://CRAN.R-project.org/
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F statistic is computed by the hidden function .ftest.systemfit and the Wald tests are
computed by the default linearHypothesis method of the car package (Fox 2006, 2002). The
lrtest method for systemfit objects is a wrapper function to the default lrtest method
of the lmtest package (Zeileis and Hothorn 2002), which computes the likelihood-ratio (LR)
test statistic. All these functions return an object of class anova that contains — amongst
others — the empirical test statistic, the degrees of freedom, and the corresponding P value.

The function hausman.systemfit tests the consistency of the 3SLS estimator. It returns an
object of class htest, which contains — amongst others — the empirical test statistic, the
degrees of freedom, and the P value.

3.3. Other methods and functions

The systemfit package provides several methods for objects both of classes systemfit and
systemfit.equation: print methods print the estimation results, summary methods cal-
culate summary results, confint methods compute confidence intervals for the coefficients,
predict methods calculate predicted values, coef methods extract the estimated coefficients,
vcov methods extract their covariance matrix, fitted methods extract the fitted values,
residuals methods extract the residuals, formula methods extract the formula(s), terms
methods extract the model terms, model.frame methods extract the model frame, and model

.matrix methods extract the model matrix. Some methods can be applied to objects of class
systemfit only: a correlation method calculates the correlations between the predictions
of two equations, an se.ratio method computes the ratios of the standard errors of the
predictions between two models, and a logLik method extracts the log likelihood value. The
package provides print methods to print objects of classes summary.systemfit, summary

.systemfit.equation, and confint.systemfit that are returned by the above mentioned
summary and confint methods. There exist also two coef methods to extract the estimated
coefficients, their standard errors, t values, and P values from objects of classes summary

.systemfit and summary.systemfit.equation.6

The convenience function createSystemfitModel creates a model for systemfit by random
numbers; systemfit.control sets suitable default values for the technical control parameters
for systemfit.

Finally, the package includes some internal (hidden) helper functions: .prepareData

.systemfit, .stackMatList, and .prepareWmatrix for preparing the data matrices;

.calcXtOmegaInv and .calcGLS for calculating the GLS estimator; .calcResidCov and

.calcSigma2 for calculating the (co)variances of the residuals; and .ftest.systemfit for
calculating Theil’s F statistic. If systemfit is applied to a (classical) “seemingly unrelated
regression” analysis with panel data, it calls the hidden internal function .systemfitPanel,
which reshapes the data, creates the formulas to be estimated, and — if requested — specifies
restrictions to ensure that the coefficients of all individuals are equal.

3.4. Efficiency of computations

We have followed Bates (2004) to make the code of systemfit faster and more stable. First,
if a formula contains an inverse of a matrix that is post-multiplied by a vector or ma-

6There does not exist a special method to extract the degrees of freedom of the residuals from systemfit

objects, because the default method of df.residual works for these objects.
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trix, we use solve(A,b) instead of solve(A) %*% b. Second, we calculate crossproducts
by crossprod(X) or crossprod(X,y) instead of t(X) %*% X or t(X) %*% y, respectively.

The matrix Ω−1 that is used to compute the estimated coefficients and their covariance
matrix is of size (G · T )× (G · T ) (see Sections˜2.1, 2.2, and˜2.3). In case of large data sets,
Ω−1 becomes computationally infeasible. Therefore, we use the following transformation and
compute X>Ω−1 by dividing the X matrix into submatrices, doing some calculations with
these submatrices, adding up some of these submatrices, and finally putting the submatrices
together, so that

X>Ω−1 =
∑
i=1


σ1iX1

σ2iX2

...
σGiXG


>

, (50)

where σij are the elements of the matrix Σ−1, and Xi is a submatrix of X that contains the
rows that belong to the i’s equation. This computation is done inside the internal (hidden)
function .calcXtOmegaInv.

Since version 1.0, the systemfit function by default uses the Matrix package (Bates and
Maechler 2007) for all computations where matrices are involved. The Matrix package pro-
vides classes for different types of matrices. For instance, we choose class dgeMatrix (“real
matrices in general storage mode”), for matrices Xi in Equation˜2, class dgCMatrix (“general,
numeric, sparse matrices in the (sorted) compressed sparse column format”) for matrix X in
Equation˜3, and class dspMatrix (“symmetric real matrices in packed storage (one triangle
only)”) for the residual covariance matrix Σ̂. If the Matrix package is used, the possibly huge
matrix Ω−1 is no longer a problem, because it is a sparse matrix that can be stored in a com-
pressed format (class dgCMatrix). Hence, we no longer need the algorithm in Equation˜50.
We have tested different ways to calculate a GLS estimator like in Equation˜7 and we found
that the following code is the fastest:

R> sigmaInv <- solve(residCov)

R> xtOmegaInv <- crossprod(xMat, kronecker(sigmaInv, Diagonal(nObs)))

R> coef <- solve(xtOmegaInv %*% xMat, xtOmegaInv %*% yVec)

In this code snippet, residCov is the residual covariance matrix Σ̂, nObs is the number of
observations in each equation T , xMat is the matrix X and yVec is the vector y in Equation˜7.

By default, the systemfit function uses the Matrix package to perform GLS estimations,
because using this package considerably decreases the computation time for many common
models. However, the estimation of small models with small data sets gets slower by using the
Matrix package (see appendix˜B). While this increase in computation time is often impercep-
tible to human beings, it might matter in some cases such as iterated estimations or Monte
Carlo studies. Therefore, the user can opt for not using the Matrix package, but Equation˜50
with standard R matrices.

3.5. Overlap with other functions and packages in R

Single-equation models can be fitted in R by OLS with function lm (package stats) and by
2SLS with function tsls (package sem, Fox 2007). This is also possible with the systemfit
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function, but systemfit is specialized in estimating systems of equation, i.e., more than one
equation. Its capability to estimate single-equation models is just a side-effect.

Function sem (package sem, Fox 2007) can be used to estimate structural equation models
in R by limited information maximum likelihood (LIML) and full information maximum
likelihood (FIML) assuming normal or multinormal errors, respectively. A special feature
of this function is the estimation of models with unobserved (“latent”) variables, which is
not possible with systemfit. While sem cannot be used to consistently estimate systems of
simultaneous equations with some endogenous regressors, it can be used to estimate systems
of equations, where all regressors are exogenous. However, the latter is rather cumbersome
(see appendix˜C). Hence, systemfit is the only function in R that can be used to estimate
systems of simultaneous equations and it is the most convenient function to estimate systems
of equations with purely exogenous regressors.

4. Using systemfit

In this section we demonstrate how to use the systemfit package. First, we show the standard
usage of systemfit by a simple example. Second, several options that can be specified by
the user are presented. Then, the usage of systemfit for a (classical) “seemingly unrelated
regression” analysis with panel data is described. Finally, we demonstrate how to apply some
statistical tests.

4.1. Standard usage of systemfit

As described in the previous section, systems of equations can be econometrically estimated
with the function systemfit. The only mandatory argument is formula. Typically, it is a
list of formulas to be estimated, but it may also be a single formula for estimating a single-
equation model. Each formula is a standard regression formula in R (see documentation of
formula).

The following demonstration uses an example taken from Kmenta (1986, p.˜685). We want
to estimate a small model of the US food market:

consump = β1 + β2 · price + β3 · income (51)

consump = β4 + β5 · price + β6 · farmPrice + β7 · trend (52)

The first equation represents the demand side of the food market. Variable consump (food
consumption per capita) is the dependent variable. The regressors are price (ratio of food
prices to general consumer prices) and income (disposable income) as well as a constant.
The second equation specifies the supply side of the food market. Variable consump is the
dependent variable of this equation as well. The regressors are again price (ratio of food
prices to general consumer prices) and a constant as well as farmPrice (ratio of preceding
year’s prices received by farmers to general consumer prices) and trend (a time trend in
years). These equations can be estimated by OLS in R by

R> library("systemfit")

R> data("Kmenta")

R> attach(Kmenta)

R> eqDemand <- consump ~ price + income
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R> eqSupply <- consump ~ price + farmPrice + trend

R> eqSystem <- list(demand = eqDemand, supply = eqSupply)

R> fitols <- systemfit(eqSystem)

R> print(fitols)

systemfit results

method: OLS

Coefficients:

demand_(Intercept) demand_price demand_income supply_(Intercept)

99.895423 -0.316299 0.334636 58.275431

supply_price supply_farmPrice supply_trend

0.160367 0.248133 0.248302

The first line loads the systemfit package. The second line loads example data that are
included with the package. They are attached to the R search path in line three. In the
fourth and fifth line, the demand and supply equations are specified, respectively.7 In the
sixth line, these equations are concatenated into a list and are labeled demand and supply,
respectively.8 Finally, in the last two lines, the regression is performed and the estimation
results are printed.

4.2. User options of systemfit

The user can modify the default estimation method by providing additional optional argu-
ments, e.g., to specify instrumental variables or restrictions on the coefficients. All optional
arguments are described in the following:

Estimation method

The optional argument method is a string that determines the estimation method. It must
be either "OLS", "WLS", "SUR", "2SLS", "W2SLS", or "3SLS". These methods correspond
to the estimation methods described in Sections˜2.1, 2.2, and˜2.3. The following command
estimates the model described above as “seemingly unrelated regression”.

R> fitsur <- systemfit(eqSystem, method = "SUR")

Instrumental variables

The instruments for a 2SLS, W2SLS or 3SLS estimation can be specified by the argument
inst. If the same instruments should be used for all equations, inst must be a one-sided
formula.9 If different instruments should be used for each equation, inst must be a list that
contains a one-sided formula for each equation. The following example uses instrumental
variables to estimate the model described above by “three-stage least squares” (3SLS). While
the first command specifies the same instruments for all equations, the second uses different
instruments:

7 A regression constant is always implied if not explicitly omitted.
8 If no labels are provided, the equations are numbered consecutively ( eq1, eq2, . . . ).
9 A one-sided formula is a standard formula in R without a dependent variable.
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R> fit3sls <- systemfit(eqSystem, method = "3SLS", inst = ~income +

+ farmPrice + trend)

R> fit3sls2 <- systemfit(eqSystem, method = "3SLS", inst = list(~farmPrice +

+ trend, ~income + farmPrice + trend))

Data

Having all data in the global environment or attached to the search path is often inconve-
nient. Therefore, systemfit has the argument data to specify a data frame that contains the
variables of the model. In the following example, we use this argument to specify that the
data for the estimation should be taken from the data frame Kmenta. Hence, we no longer
need to attach this data frame before calling systemfit:

R> fitsur <- systemfit(eqSystem, method = "SUR", data = Kmenta)

Restrictions on the coefficients

As outlined in Section˜2.3, restrictions on the coefficients can be specified in two ways. One
way is to use the matrix R and the vector q (see Section˜2.3). These restrictions can be speci-
fied symbolically by argument restrict.matrix as in the generic function linearHypothesis

of the car package (Fox 2006, 2002). This argument must be a vector of character strings,
where each element represents one linear restriction, and each element must be either a linear
combination of coefficients, or a linear equation in the coefficients (see documentation of func-
tion linearHypothesis in the car package, Fox 2006, 2002). We illustrate this by estimating
the model under the restriction β2+β6 = 0. Since the name of β2 (coefficient of variable price
in equation demand) is demand_price and the name of β6 (coefficient of variable farmPrice

in equation supply) is supply_farmPrice, this restriction can be specified by

R> restrict <- "demand_price + supply_farmPrice = 0"

R> fitsurRmat <- systemfit(eqSystem, method = "SUR",

+ restrict.matrix = restrict)

Alternatively, the restrictions via matrix R and vector q can be specified numerically. The
matrix R can be specified with argument restrict.matrix and the vector q with argument
restrict.rhs.

R> Rmat <- matrix(0, nrow = 1, ncol = 7)

R> Rmat[1, 2] <- 1

R> Rmat[1, 6] <- 1

R> qvec <- c(0)

R> fitsurRmatNum <- systemfit(eqSystem, method = "SUR",

+ restrict.matrix = Rmat, restrict.rhs = qvec)

The first line creates a 1 × 7 matrix of zeros, where 1 is the number of restrictions and 7 is
the number of unrestricted coefficients. The following two lines specify this matrix in a way
that the multiplication with the coefficient vector results in β2 + β6. The fourth line creates
a vector with a single element that contains the right hand side of the restriction, i.e., zero.
Finally the coefficients are estimated under the restriction β2 + β6 = 0.
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The other way to specify restrictions on the coefficients is to modify the regressor matrix
by post-multiplying it with a matrix, say M (see Section˜2.3). This kind of restriction can
be specified by setting argument restrict.regMat equal to the matrix M . We convert the
restriction specified above to β2 = −β6, and set β1 = βM1 , . . . , β5 = βM5 , β6 = −βM2 , and
β7 = βM6 . We can do this in R by

R> modRegMat <- matrix(0, nrow = 7, ncol = 6)

R> modRegMat[1:5, 1:5] <- diag(5)

R> modRegMat[6, 2] <- -1

R> modRegMat[7, 6] <- 1

R> fitsurRegMat <- systemfit(eqSystem, method = "SUR",

+ restrict.regMat = modRegMat)

The first line creates a 7×6 matrix of zeros, where 7 is the number of unrestricted coefficients
and 6 is the number of restricted coefficients. The following three lines specify the matrix M
(modRegMat) as described before. Finally the coefficients are estimated under the restriction
βM2 = β2 = −β6.
Of course, the estimation results do not depend on the method that was used to specify this
restriction:

R> all.equal(coef(fitsurRmat), coef(fitsurRmatNum))

[1] TRUE

R> all.equal(coef(fitsurRmat), coef(fitsurRegMat))

[1] TRUE

Iteration control

The estimation methods WLS, SUR, W2SLS and 3SLS need a covariance matrix of the
residuals that can be calculated from a first-step OLS or 2SLS estimation (see Section˜2.4).
This procedure can be iterated and at each iteration the covariance matrix is calculated
from the previous step estimation. This iteration is repeated until the maximum number of
iterations is reached or the coefficient estimates have converged. The maximum number of
iterations is specified by argument maxiter. Its default value is one, which means no iteration.
The convergence criterion is √∑

i(βi,g − βi,g−1)2∑
i β

2
i,g−1

< tol, (53)

where βi,g is the ith coefficient of the gth iteration. The default value of the convergence
criterion (argument tol) is 10−5.

In the following example, we estimate the model described above by iterated SUR:

R> fitsurit <- systemfit(eqSystem, method = "SUR", maxiter = 500)
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Residual covariance matrix

It was explained in Section˜2.4 that several different methods have been proposed to calcu-
late the residual covariance matrix. The user can specify, which method systemfit should
use. Possible values of the argument methodResidCov are presented in Table˜1. By default,
systemfit uses Equation˜38.

argument equation
methodResidCov

"noDfCor" 37

"geomean" 38

"max" 39

"Theil" 40

Table 1: Possible values of argument methodResidCov

Furthermore, the user can specify whether the means should be subtracted from the residuals
before Equations˜37, 38, 39, or˜40 are applied to calculate the residual covariance matrix
(see Section˜2.4). The corresponding argument is called centerResiduals. It must be either
TRUE (subtract the means) or FALSE (take the unmodified residuals). The default value of
centerResiduals is FALSE.

Moreover, if the coefficients are estimated under restrictions, the user can use argument
residCovRestricted to specify whether the residual covariance matrix for a WLS, SUR,
W2SLS, or 3SLS estimation should be obtained from a restricted or from an unrestricted
first-step estimation (see Section˜2.4). If this argument is TRUE (the default), the residual
covariance matrix is obtained from a restricted OLS or 2SLS estimation. If it is FALSE, the
residual covariance matrix is obtained from an unrestricted first-step estimation.

Finally, argument residCovWeighted can be used to decide, whether the residual covariance
matrix for a SUR (3SLS) estimation should be obtained from a WLS (W2SLS) estimation
instead of from an OLS (2SLS) estimation (see Section˜2.4). By default, residCovWeighted
is FALSE, which means that the residuals of an OLS (2SLS) estimation are used to compute
the residual covariance matrix.

3SLS formula

As discussed in Sections˜2.2 and˜2.3, there exist several different methods to perform a 3SLS
estimation. The user can specify the method by argument method3sls. Possible values are
presented in Table˜2. The default value is "GLS".

argument equation equation
method3sls (unrestricted) (restricted)

"GLS" 10 28

"IV" 13 30

"GMM" 15 32

"Schmidt" 18 34

"EViews" 20 36

Table 2: Possible values of argument method3sls
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Sigma squared

In case of OLS or 2SLS estimations, argument singleEqSigma can be used to specify, whether
different σ2s for each single equation or the same σ2 for all equations should be used. If
argument singleEqSigma is TRUE, Ω̂ in Equation˜8 or˜12 is set to Σ̂ ⊗ IT . In contrast,
if argument singleEqSigma is FALSE, Ω̂ in Equation˜8 or˜12 is set to σ̂2IG·T . In case of
an unrestricted regression, argument singleEqSigma is TRUE by default. However, if the
coefficients are estimated under restrictions, this argument is FALSE by default.

System options

Furthermore, two options regarding some internal calculations are available. First, argument
solvetol specifies the tolerance level for detecting linear dependencies when inverting a
matrix or calculating a determinant (using functions solve and det). The default value
depends on the used computer system and is equal to the default tolerance level of solve and
det.

Second, argument useMatrix specifies whether the Matrix package (Bates and Maechler 2007)
should be used for all computations where matrices are involved (see Section˜3.4).

Returned data objects

Finally, the user can decide whether systemfit should return some data objects. Argument
model indicates whether a data frame with the data of the model should be returned. Its
default value is TRUE, i.e., the model frame is returned. Arguments x, y, and z specify whether
the model matrices (Xi), the responses (yi), and the matrices of instrumental variables (Zi),
respectively, should be returned. These three arguments are FALSE by default, i.e., these data
objects are not returned.

4.3. Summary results with summary.systemfit

The summary method can be used to compute and print summary results of objects returned
by systemfit.

R> summary(fitsur)

systemfit results

method: SUR

N DF SSR detRCov OLS-R2 McElroy-R2

system 40 33 169.741 0.879285 0.683453 0.788722

N DF SSR MSE RMSE R2 Adj R2

demand 20 17 65.6829 3.86370 1.96563 0.755019 0.726198

supply 20 16 104.0584 6.50365 2.55023 0.611888 0.539117

The covariance matrix of the residuals used for estimation

demand supply

demand 3.72539 4.13696
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supply 4.13696 5.78444

The covariance matrix of the residuals

demand supply

demand 3.86370 4.92431

supply 4.92431 6.50365

The correlations of the residuals

demand supply

demand 1.000000 0.982348

supply 0.982348 1.000000

SUR estimates for 'demand' (equation 1)

Model Formula: consump ~ price + income

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.3328942 7.5144525 13.21891 2.2597e-10 ***

price -0.2754857 0.0885091 -3.11251 0.0063324 **

income 0.2985505 0.0419454 7.11760 1.7249e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.96563 on 17 degrees of freedom

Number of observations: 20 Degrees of Freedom: 17

SSR: 65.682902 MSE: 3.8637 Root MSE: 1.96563

Multiple R-Squared: 0.755019 Adjusted R-Squared: 0.726198

SUR estimates for 'supply' (equation 2)

Model Formula: consump ~ price + farmPrice + trend

Estimate Std. Error t value Pr(>|t|)

(Intercept) 61.9661660 11.0807901 5.59222 4.0480e-05 ***

price 0.1468841 0.0944351 1.55540 0.13940780

farmPrice 0.2140040 0.0398684 5.36776 6.2829e-05 ***

trend 0.3393039 0.0679113 4.99628 0.00013185 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.550226 on 16 degrees of freedom

Number of observations: 20 Degrees of Freedom: 16

SSR: 104.05843 MSE: 6.503652 Root MSE: 2.550226

Multiple R-Squared: 0.611888 Adjusted R-Squared: 0.539117

First, the estimation method is reported and a few summary statistics for the entire system
and for each equation are given. Then, the covariance matrix used for estimation and the
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covariance matrix as well as the correlation matrix of the (final) residuals are printed. Finally,
the estimation results of each equation are reported: the formula of the estimated equation,
the estimated coefficients, their standard errors, t values, P values and codes indicating their
statistical significance, as well as some other statistics like the standard error of the residuals
and the R2 value of the equation.

Degrees of freedom for t tests

The summary method for systemfit objects has an optional argument useDfSys. It selects
the approach that is applied by systemfit to determine the degrees of freedom of t tests of
the estimated coefficients (Section˜2.5). If argument useDfSys is TRUE, the degrees of freedom
of the whole system are taken. In contrast, if useDfSys is FALSE, the degrees of freedom of
the single equation are taken. If the coefficients are estimated under restrictions, argument
useDfSys is TRUE by default. However, if no restrictions on the coefficient are specified, the
default value of useDfSys is FALSE.

Reduce amount of printed output

The optional arguments residCov and equations can be used reduce the amount of the
printed output. Argument residCov specifies whether the covariance matrix and the corre-
lation matrix of the residuals are printed. Argument equations specifies whether summary
results of each equation are printed. By default, both arguments are TRUE. The following
command returns a sparse summary output:

R> summary(fitsur, residCov = FALSE, equations = FALSE)

systemfit results

method: SUR

N DF SSR detRCov OLS-R2 McElroy-R2

system 40 33 169.741 0.879285 0.683453 0.788722

N DF SSR MSE RMSE R2 Adj R2

demand 20 17 65.6829 3.86370 1.96563 0.755019 0.726198

supply 20 16 104.0584 6.50365 2.55023 0.611888 0.539117

Coefficients:

Estimate Std. Error t value Pr(>|t|)

demand_(Intercept) 99.3328942 7.5144525 13.21891 2.2597e-10 ***

demand_price -0.2754857 0.0885091 -3.11251 0.00633240 **

demand_income 0.2985505 0.0419454 7.11760 1.7249e-06 ***

supply_(Intercept) 61.9661660 11.0807901 5.59222 4.0480e-05 ***

supply_price 0.1468841 0.0944351 1.55540 0.13940780

supply_farmPrice 0.2140040 0.0398684 5.36776 6.2829e-05 ***

supply_trend 0.3393039 0.0679113 4.99628 0.00013185 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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4.4. Panel data

The systemfit function can also be used for a (classical) “seemingly unrelated regression”
analysis with panel data. For this type of analysis, the data must be provided in a transformed
data frame of class plm.dim10 which can be created with the function plm.data from the R
package plm (Croissant and Millo 2007). In contrast to the previously described usage of
systemfit, argument formula must be a single equation (object of class formula). This
formula is estimated for all individuals.

We demonstrate the application of systemfit to panel data using an example taken from
Greene (2003, p.˜340) that is based on Grunfeld (1958). We want to estimate a model for
gross investment of 5 US firms in the years 1935–1954:

investit = β1 + β2 · valueit + β3 · capitalit (54)

where invest is the gross investment of firm i in year t, value is the market value of the firm
at the end of the previous year, and capital is the capital stock of the firm at the end of the
previous year.

This model can be estimated by

R> data("GrunfeldGreene")

R> library("plm")

[1] "kinship is loaded"

R> GGPanel <- plm.data(GrunfeldGreene, c("firm", "year"))

R> greeneSur <- systemfit(invest ~ value + capital, method = "SUR",

+ data = GGPanel)

The first line loads the example data set GrunfeldGreene that is included in the systemfit
package. The second line loads the plm package and the following line specifies a data frame
of class plm.dim, where the variables firm and year indicate the individual (cross-section)
and time identifier, respectively. Finally, a seemingly unrelated regression is performed.

The optional argument pooled is a logical variable indicating whether the coefficients are
restricted to be equal for all individuals. By default, this argument is set to FALSE. The
following command does a seemingly unrelated regression of the same model as before, but
with coefficients restricted to be equal for all individuals.

R> greeneSurPooled <- systemfit(invest ~ value + capital, method = "SUR",

+ data = GGPanel, pooled = TRUE)

4.5. Testing linear restrictions

As described in Section˜2.7, linear restrictions can be tested by an F test, two Wald tests
and an LR test. The systemfit package provides the method linearHypothesis for the F
and Wald tests as well as the method lrtest for LR tests.

10 Generally, panel data can be either in “long format” (different individuals are arranged below each other)
or in “wide format” (different individuals are arranged next to each other). For this analysis, the data must be
in “long format”.
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We will now test the restriction β2 = −β6 that was specified by the matrix Rmat and the
vector qvec in the example above (p.˜18).

R> linearHypothesis(fitsur, Rmat, qvec, test = "FT")

Linear hypothesis test (Theil's F test)

Hypothesis:

demand_price + supply_farmPrice = 0

Model 1: restricted model

Model 2: fitsur

Res.Df Df F Pr(>F)

1 34

2 33 1 0.9322 0.3413

R> linearHypothesis(fitsur, Rmat, qvec, test = "F")

Linear hypothesis test (F statistic of a Wald test)

Hypothesis:

demand_price + supply_farmPrice = 0

Model 1: restricted model

Model 2: fitsur

Res.Df Df F Pr(>F)

1 34

2 33 1 0.6092 0.4407

R> linearHypothesis(fitsur, Rmat, qvec, test = "Chisq")

Linear hypothesis test (Chi^2 statistic of a Wald test)

Hypothesis:

demand_price + supply_farmPrice = 0

Model 1: restricted model

Model 2: fitsur

Res.Df Df Chisq Pr(>Chisq)

1 34

2 33 1 0.6092 0.4351

R> lrtest(fitsurRmat, fitsur)
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Likelihood ratio test

Model 1: fitsurRmat

Model 2: fitsur

#Df LogLik Df Chisq Pr(>Chisq)

1 9 -52.117

2 10 -51.614 1 1.0043 0.3163

The linear restrictions are tested by Theil’s F test (Equation˜45) first, second by the F
statistic of a Wald test (Equation˜46), third by the χ2 statistic of a Wald test (Equation˜47),
and finally by an LR test (Equation˜48).

The first argument of the linearHypothesis method for systemfit objects must be an
unrestricted regression returned by systemfit. The second and third arguments are the
restriction matrix R and the optional vector q, as described in Section˜2.3. Analogously to
the argument restrict.matrix of the systemfit function, the restrictions can be specified
either in matrix form or symbolically. The optional argument test must be a character string,
"FT", "F", or "Chisq", specifying whether to compute Theil’s finite-sample F test (with
approximate F distribution) the finite-sample Wald test (with approximate F distribution)
or the large-sample Wald test (with asymptotic χ2 distribution).

All arguments of the lrtest method for systemfit objects must be fitted model objects
returned by systemfit. It consecutively compares all provided fitted model objects.

All tests print a short description of the test and the tested model objects first. Then, a small
table is printed, where each row belongs to one (unrestricted or restricted) model. The second
row reports (amongst others) the degree(s) of freedom of the test, the empirical test statistic,
and the marginal level of significance (P value). Although all tests check the same hypothesis,
there is some variation of the P values. However, all tests suggest the same decision: The
null hypothesis β2 = −β6 cannot be rejected at any reasonable level of significance.

4.6. Hausman test

A Hausman test, which is described in Section˜2.8, can be carried out with following com-
mands:

R> fit2sls <- systemfit(eqSystem, method = "2SLS", inst = ~income +

+ farmPrice + trend, data = Kmenta)

R> fit3sls <- systemfit(eqSystem, method = "3SLS", inst = ~income +

+ farmPrice + trend, data = Kmenta)

R> hausman.systemfit(fit2sls, fit3sls)

Hausman specification test for consistency of the 3SLS estimation

data: Kmenta

Hausman = 2.5357, df = 7, p-value = 0.9244

First of all, the model is estimated by 2SLS and then by 3SLS. Finally, in the last line the test is
carried out by the command hausman.systemfit. This function requires two arguments: the
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result of a 2SLS estimation and the result of a 3SLS estimation. The Hausman test statistic
is 2.536, which has a χ2 distribution with 7 degrees of freedom under the null hypothesis. The
corresponding P value is 0.924. This shows that the null hypothesis is not rejected at any
reasonable level of significance. Hence, we can assume that the 3SLS estimator is consistent.

5. Replication of textbook results

In this section, we reproduce results from several textbook examples using the systemfit pack-
age for several reasons. First, a comparison of systemfit’s results with results published in the
literature confirms the reliability of the systemfit package. Second, this section helps teachers
and students become familiar with using the systemfit package. Third, the section encour-
ages reproducible research, which should be a general goal in scientific analysis (Buckheit and
Donoho 1995; Schwab, Karrenbach, and Claerbout 2000). For instance, by preparing this
section, the exact estimation methods of the replicated analyses have been discovered and a
few errors in Greene (2003) have been found (see Greene 2006a).

5.1. Kmenta (1986): Example on p.˜685 (food market)

First, we reproduce an example taken from Kmenta (1986, p.˜685). The data are available
from Table˜13-1 (p.˜687), and the results are presented in Table˜13-2 (p.˜712) of this book.

Before starting the estimation, we load the data and specify the two formulas of the model
as well as the instrumental variables. Then the equation system is estimated by OLS, 2SLS,
3SLS, and iterated 3SLS. After each estimation, we provide the commands to print the esti-
mated coefficients.

R> data("Kmenta")

R> eqDemand <- consump ~ price + income

R> eqSupply <- consump ~ price + farmPrice + trend

R> inst <- ~income + farmPrice + trend

R> system <- list(demand = eqDemand, supply = eqSupply)

OLS estimation:

R> fitOls <- systemfit(system, data = Kmenta)

R> round(coef(summary(fitOls)), digits = 4)

2SLS estimation:

R> fit2sls <- systemfit(system, method = "2SLS", inst = inst, data = Kmenta)

R> round(coef(summary(fit2sls)), digits = 4)

3SLS estimation:

R> fit3sls <- systemfit(system, method = "3SLS", inst = inst, data = Kmenta)

R> round(coef(summary(fit3sls)), digits = 4)

Iterated 3SLS estimation:
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R> fitI3sls <- systemfit(system, method = "3SLS", inst = inst, data = Kmenta,

+ maxit = 250)

R> round(coef(summary(fitI3sls)), digits = 4)

The above commands return exactly the same coefficients and standard errors as published
in Kmenta (1986, p.˜712) except for two minor exceptions: two standard errors of the 2SLS
estimation deviate by 0.0001. However, this difference is likely due to rounding errors in
systemfit or Kmenta (1986) and is so small that it empirically does not matter.

5.2. Greene (2003): Example 15.1 (Klein’s model I)

Second, we try to replicate Klein’s “Model I” (Klein 1950) that is described in Greene
(2003, p.˜381). The data are available from the online complements to Greene (2003), Ta-
ble˜F15.1 (http://pages.stern.nyu.edu/~wgreene/Text/tables/TableF15-1.txt), and
the estimation results are presented in Table˜15.3 (p.˜412).

Initially, the data are loaded and three equations as well as the instrumental variables are
specified. As in the example before, the equation system is estimated by OLS, 2SLS, 3SLS,
and iterated 3SLS, and commands to print the estimated coefficients are presented.

R> data("KleinI")

R> eqConsump <- consump ~ corpProf + corpProfLag + wages

R> eqInvest <- invest ~ corpProf + corpProfLag + capitalLag

R> eqPrivWage <- privWage ~ gnp + gnpLag + trend

R> inst <- ~govExp + taxes + govWage + trend + capitalLag + corpProfLag +

+ gnpLag

R> system <- list(Consumption = eqConsump, Investment = eqInvest,

+ PrivateWages = eqPrivWage)

OLS estimation:

R> kleinOls <- systemfit(system, data = KleinI)

R> round(coef(summary(kleinOls)), digits = 3)

2SLS estimation:

R> klein2sls <- systemfit(system, method = "2SLS", inst = inst,

+ data = KleinI, methodResidCov = "noDfCor")

R> round(coef(summary(klein2sls)), digits = 3)

3SLS estimation:

R> klein3sls <- systemfit(system, method = "3SLS", inst = inst,

+ data = KleinI, methodResidCov = "noDfCor")

R> round(coef(summary(klein3sls)), digits = 3)

iterated 3SLS estimation:

R> kleinI3sls <- systemfit(system, method = "3SLS", inst = inst,

+ data = KleinI, methodResidCov = "noDfCor", maxit = 500)

R> round(coef(summary(kleinI3sls)), digits = 3)

http://pages.stern.nyu.edu/~wgreene/Text/tables/TableF15-1.txt
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Again, these commands return almost the same results as published in Greene (2003).11 There
are only two minor deviations, where these values differ merely in the last digit.

5.3. Greene (2003): Example 14.1 (Grunfeld’s investment data)

Third, we reproduce Example˜14.1 of Greene (2003, p.˜340) that is based on Grunfeld
(1958). The data are available from the online complements to Greene (2003), Table˜F13.1
(http://pages.stern.nyu.edu/~wgreene/Text/tables/TableF13-1.txt). Several differ-
ent versions of the “Grunfeld” data set can be found, whereas the version of Greene (2003) is
considered incorrect (Cummins 2001). However, we use this incorrect version to replicate the
results in Greene (2003), Tables˜14.1 and˜14.2 (p.˜351).12

First, we load the data and the plm package, indicate the individual (cross-section) and time
identifiers, and specify the formula to be estimated. Then, the system is estimated by OLS,
pooled OLS, SUR, and pooled SUR. After each estimation, we show the commands to print
the estimated coefficients, the σ2 values of the OLS estimations, and the residual covariance
matrix as well as the residual correlation matrix of the SUR estimations.

R> data("GrunfeldGreene")

R> library("plm")

R> GGPanel <- plm.data(GrunfeldGreene, c("firm", "year"))

R> formulaGrunfeld <- invest ~ value + capital

OLS estimation (Table 14.2):

R> greeneOls <- systemfit(formulaGrunfeld, data = GGPanel)

R> round(coef(summary(greeneOls)), digits = 4)

R> round(sapply(greeneOls$eq, function(x) {

+ return(summary(x)$ssr/20)

+ }), digits = 3)

pooled OLS (Table 14.2):

R> greeneOlsPooled <- systemfit(formulaGrunfeld, data = GGPanel,

+ pooled = TRUE)

R> round(coef(summary(greeneOlsPooled$eq[[1]])), digits = 4)

R> sum(sapply(greeneOlsPooled$eq, function(x) {

+ return(summary(x)$ssr)

+ }))/100

SUR estimation (Table˜14.1):

R> greeneSur <- systemfit(formulaGrunfeld, method = "SUR", data = GGPanel,

+ methodResidCov = "noDfCor")

R> round(coef(summary(greeneSur)), digits = 4)

R> round(greeneSur$residCov, digits = 3)

R> round(summary(greeneSur)$residCor, digits = 3)

11 There are two typos in Table˜15.3 (p.˜412). Please take a look at the errata (Greene 2006a).
12 A correct version of this data set with five additional firms is available as data set Grunfeld in the Ecdat

package (Croissant 2006).

http://pages.stern.nyu.edu/~wgreene/Text/tables/TableF13-1.txt
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pooled SUR estimation (Table˜14.1):

R> greeneSurPooled <- systemfit(formulaGrunfeld, method = "SUR",

+ data = GGPanel, pooled = TRUE, methodResidCov = "noDfCor",

+ residCovWeighted = TRUE)

R> round(coef(summary(greeneSurPooled$eq[[1]])), digits = 4)

R> round(greeneSurPooled$residCov, digits = 3)

R> round(cov(residuals(greeneSurPooled)), digits = 3)

R> round(summary(greeneSurPooled)$residCor, digits = 3)

These commands return nearly the same results as published in Greene (2003).13 We present
two different commands to print the residual covariance matrix of the pooled SUR estimation.
The first calculates the covariance matrix without centering the residuals (see Section˜2.4); the
returned values are equal to those published in Greene (2003, p.˜351). The second command
calculates the residual covariance matrix after centering the residuals; these returned values
are equal to those published in the errata (Greene 2006a).

5.4. Theil (1971): Example on p.˜295ff (Grunfeld’s investment data)

Finally, we estimate an example taken from Theil (1971, p.˜295ff) that is also based on
Grunfeld (1958). The data are available in Table˜7.1 of Theil (1971, p.˜296). They are a
subset of the data set published by Greene (2003) (see Section˜5.3).

After extracting the data from the GrunfeldGreene data set, the individual (cross-section)
and time identifiers are indicated. Then, the formula is specified, and the model is estimated
by OLS and SUR. Commands to print the estimated coefficients are reported after each
estimation.

R> GrunfeldTheil <- subset(GrunfeldGreene, firm %in% c("General Electric",

+ "Westinghouse"))

R> GTPanel <- plm.data(GrunfeldTheil, c("firm", "year"))

R> formulaGrunfeld <- invest ~ value + capital

OLS estimation (page 295)

R> theilOls <- systemfit(formulaGrunfeld, data = GTPanel)

R> round(coef(summary(theilOls)), digits = 3)

SUR estimation (page 300)

R> theilSur <- systemfit(formulaGrunfeld, method = "SUR", data = GTPanel,

+ methodResidCov = "noDfCor")

R> round(coef(summary(theilSur)), digits = 3)

These commands return exactly the same results as published in Theil (1971, pp.˜295, 300).

Now, we apply an F test to check whether the slope parameters are equal for General Electric
and Westinghouse (pages˜313–315). Then we re-estimate the model under these restrictions
on the coefficients.

13 There are several typos and errors in Table˜14.1 (p.˜412). Please take a look at the errata of this book
(Greene 2006a).
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F test (page 313–315)14

R> RMatrix <- rbind(c(0, 1, 0, 0, -1, 0), c(0, 0, 1, 0, 0, -1))

R> linearHypothesis(theilSur, RMatrix)

Restricted SUR estimation (page˜316)

R> theilSurRestr <- systemfit(formulaGrunfeld, method = "SUR",

+ data = GTPanel, methodResidCov = "noDfCor", restrict.matrix = RMatrix,

+ residCovRestricted = FALSE)

R> round(coef(summary(theilSurRestr)), digits = 3)

The method linearHypothesis returns the same value of the F statistic as published in Theil
(1971, p.˜315). Hence, we arrive at the the same conclusion: we accept the null hypothesis
(restrictions on the coefficients are true) at the 5˜percent significance level.

Also the results of the restricted SUR estimation are identical to the results published in Theil
(1971, p.˜316).

6. Summary and outlook

In this article, we have described some of the basic features of the systemfit package for
estimating systems of linear equations. Many details of the estimation can be controlled by
the user. Furthermore, the package provides some statistical tests for restrictions on the
coefficients and consistency of 3SLS estimation. It has been tested on a variety of datasets
and has produced satisfactory for a few years. While the systemfit package performs the basic
fitting methods, more sophisticated tools exist. We hope to implement missing functionalities
in the near future.

Unbalanced datasets

Currently, the systemfit package requires that all equations have the same number of obser-
vations. However, many data sets have unbalanced observations.15 Simply dropping data
points that do not contain observations for all equations may reduce the number of obser-
vations considerably, and thus, the information utilized in the estimation. Hence, it is our
intention to include the capability for estimations with unbalanced data sets as described in
Schmidt (1977) in future releases of systemfit.

Serial correlation and heteroscedasticity

For all of the methods developed in the package, the disturbances of the individual equations
are assumed to be independent and identically distributed (iid). The package could be en-
hanced by the inclusion of methods to fit equations with serially correlated and heteroscedastic
disturbances (Parks 1967).

14The same restriction can be specified also symbolically by RMatrix <- c("General.Electric_value =

Westinghouse_value", "General.Electric_capital = Westinghouse_capital")
15 For instance, forestry datasets typically contain many observations of inexpensive variables (stem diameter,

tree count) and few expensive variables such as stem height or volume.
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Estimation methods

In the future, we wish to include more sophisticated estimation methods such as limited in-
formation maximum likelihood (LIML), full information maximum likelihood (FIML), gener-
alized methods of moments (GMM) and spatial econometric methods (Paelinck and Klaassen
1979; Anselin 1988).

Non-linear estimation

Finally, the systemfit package provides a function to estimate systems of non-linear equations.
However, the function nlsystemfit is currently under development and the results are not
yet always reliable due to convergence difficulties.
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A. Object returned by systemfit

systemfit returns a list of class systemfit that contains the results that belong to the entire
system of equations. One special element of this list is called eq. It is a list that contains one
object for each estimated equation. These objects are of the class systemfit.equation and
contain the results that belong only to the regarding equation.

lm systemfit systemfit.equation

coefficients coefficients coefficients

coefCov coefCov

fitted.values fitted.values

residuals residuals

residCov

residCovEst

rank rank rank

rank.sys

nCoef.sys

df.residual df.residual df.residual

df.residual.sys

call call

terms terms

inst

weights

contrasts

xlevels

offset

model* model*
x** x**
y** y**

z**
iter

eq

eqnLabel

eqnNo

method method

panelLike

restrict.matrix

restrict.rhs

restrict.regMat

control

Table 3: Elements returned by systemfit and lm (* if requested by the user with default
TRUE, ** if requested by the user with default FALSE).

The elements returned by systemfit are similar to those returned by lm, the basic tool for
linear regressions in R. While some counterparts of elements returned by lm can be found
directly in objects of class systemfit, other counterparts are available for each equation in
objects of class systemfit.equation. This is demonstrated in Table˜3.
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B. Computation times

Theoretically, one would expect that the calculations with the Matrix package are faster
and more robust than calculations with the traditional method. To test this hypothesis, we
use function createSystemfitModel to create a medium-sized multi-equation model with
8˜equations, 10˜regressors in each equation (without constant), and 750˜observations. Then,
we estimated this model with and without using the Matrix package. Finally, the results are
compared.

R> library("systemfit")

R> set.seed(1)

R> systemfitModel <- createSystemfitModel(nEq = 8, nReg = 10, nObs = 750)

R> system.time(fitMatrix <- systemfit(systemfitModel$formula, method = "SUR",

+ data = systemfitModel$data))

user system elapsed

2.097 0.068 2.195

R> system.time(fitTrad <- systemfit(systemfitModel$formula, method = "SUR",

+ data = systemfitModel$data, useMatrix = FALSE))

user system elapsed

2.372 0.608 3.008

R> all.equal(fitMatrix, fitTrad)

[1] "Component 2: target, current do not match when deparsed"

[2] "Component 11: Component 6: 1 element mismatch"

The returned computation times clearly show that using the Matrix package makes the esti-
mation faster. The comparison of the estimation results shows that both methods return the
same results. The only differences between the returned objects are — as expected — the
call and the stored control variable useMatrix.

However, the estimation of rather small models is much slower with the Matrix package
than without this package. Moreover, the differences in computation time accumulate, if the
estimation is iterated.

R> smallModel <- createSystemfitModel(nEq = 3, nReg = 4, nObs = 50)

R> system.time(fitSmallMatrix <- systemfit(smallModel$formula, method = "SUR",

+ data = smallModel$data, maxit = 500))

user system elapsed

0.720 0.000 0.725

R> system.time(fitSmallTrad <- systemfit(smallModel$formula, method = "SUR",

+ data = smallModel$data, maxit = 500, useMatrix = FALSE))
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user system elapsed

0.060 0.000 0.061

R> all.equal(fitSmallMatrix, fitSmallTrad)

[1] "Component 2: target, current do not match when deparsed"

[2] "Component 11: Component 6: 1 element mismatch"

As mentioned above, the usage of the Matrix package clearly increases the computation times
for iterated (SUR) estimations of small models with small data sets.

C. Estimating systems of equations with sem

This section compares the commands to estimate a system of equations by sem and systemfit.
This comparison uses Klein’s “Model I” (see Section˜5.2). Before starting the estimation, we
load the sem and systemfit package as well as the required data set.

R> library("sem")

R> library("systemfit")

R> data("KleinI")

First, we estimate the system by limited information maximum likelihood (LIML) with sem:

R> limlRam <- matrix(c(

+ "consump <- corpProf", "consump_corpProf", NA,

+ "consump <- corpProfLag", "consump_corpProfLag", NA,

+ "consump <- wages", "consump_wages", NA,

+ "invest <- corpProf", "invest_corpProf", NA,

+ "invest <- corpProfLag", "invest_corpProfLag", NA,

+ "invest <- capitalLag", "invest_capitalLag", NA,

+ "privWage <- gnp", "privWage_gnp", NA,

+ "privWage <- gnpLag", "privWage_gnpLag", NA,

+ "privWage <- trend", "privWage_trend", NA,

+ "consump <-> consump", "s11", NA,

+ "privWage <-> privWage", "s22", NA,

+ "invest <-> invest", "s33", NA),

+ ncol = 3, byrow = TRUE)

R> class(limlRam) <- "mod"

R> exogVar <- c("corpProf", "corpProfLag", "wages", "capitalLag", "trend",

+ "gnp", "gnpLag")

R> endogVar <- c("consump", "invest", "privWage")

R> allVar <- c(exogVar, endogVar)

R> limlResult <- sem(ram = limlRam, S = cov(KleinI[ -1, allVar ]),

+ N = (nrow(KleinI) - 1), fixed.x = exogVar)

R> print(limlResult)
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Model Chisquare = 108.5145 Df = 15

consump_corpProf consump_corpProfLag consump_wages

0.1929344 0.0898849 0.7962187

invest_corpProf invest_corpProfLag invest_capitalLag

0.4796356 0.3330387 -0.1117947

privWage_gnp privWage_gnpLag privWage_trend

0.4394770 0.1460899 0.1302452

s11 s22 s33

0.8939724 0.5002375 0.8661351

Iterations = 0

Theoretically, the LIML results should be identical to OLS results. Therefore, we re-estimate
this model by OLS with systemfit.

R> eqConsump <- consump ~ corpProf + corpProfLag + wages

R> eqInvest <- invest ~ corpProf + corpProfLag + capitalLag

R> eqPrivWage <- privWage ~ gnp + gnpLag + trend

R> system <- list(consump = eqConsump, invest = eqInvest,

+ privWage = eqPrivWage)

R> olsResult <- systemfit(system, data = KleinI)

R> print(olsResult)

systemfit results

method: OLS

Coefficients:

consump_(Intercept) consump_corpProf consump_corpProfLag

16.2366003 0.1929344 0.0898849

consump_wages invest_(Intercept) invest_corpProf

0.7962187 10.1257885 0.4796356

invest_corpProfLag invest_capitalLag privWage_(Intercept)

0.3330387 -0.1117947 1.4970438

privWage_gnp privWage_gnpLag privWage_trend

0.4394770 0.1460899 0.1302452

As expected, the results are identical.

Now, we estimate the system by full information maximum likelihood (FIML) with sem:

R> fimlRam <- rbind(limlRam,

+ c("consump <-> invest", "s12", NA),

+ c("consump <-> privWage", "s13", NA),

+ c("privWage <-> invest", "s23", NA))

R> class(fimlRam) <- "mod"

R> fimlResult <- sem(ram = fimlRam, S = cov(KleinI[ -1, allVar ]),

+ N = (nrow(KleinI) - 1), fixed.x = exogVar)

R> print(fimlResult)
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Model Chisquare = 92.0588 Df = 12

consump_corpProf consump_corpProfLag consump_wages

0.30160268 0.04239028 0.78017328

invest_corpProf invest_corpProfLag invest_capitalLag

0.38068523 0.41092159 -0.13826103

privWage_gnp privWage_gnpLag privWage_trend

0.37050385 0.20764035 0.18453869

s11 s22 s33

0.97698109 0.68197218 0.93669712

s12 s13 s23

0.05836149 -0.59677701 0.31379082

Iterations = 83

Theoretically, results of an iterated SUR estimation should converge to FIML results. There-
fore, we re-estimate this model by iterated SUR with systemfit.

R> surResult <- systemfit(system, method = "SUR", data = KleinI,

+ methodResidCov = "noDfCor", maxit = 500)

R> print(surResult)

systemfit results

method: iterated SUR

convergence achieved after 18 iterations

Coefficients:

consump_(Intercept) consump_corpProf consump_corpProfLag

15.8445600 0.3015609 0.0424001

consump_wages invest_(Intercept) invest_corpProf

0.7801850 15.8278109 0.3807044

invest_corpProfLag invest_capitalLag privWage_(Intercept)

0.4109122 -0.1382606 2.0699937

privWage_gnp privWage_gnpLag privWage_trend

0.3705266 0.2076226 0.1845203

As expected, the results are rather similar.
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