
The traitr package

John Verzani
verzani at math dot csi dot cuny dot edu

August 15, 2010

Abstract

This vignette describes the traitr package. This package provides an interface to GUI

design within R in the spirit of the Traits UI python module. The basic idea is that the user

specifies the type of data that is desired, and the package gives a reasonable GUI to edit that

data.

1 Five-minute, or so, introduction

The traitr package is intended to provide a natural, relatively easy means to produce GUIs for

underlying functions. The design was inspired by the Traits UI python module (http://code.

enthought.com/projects/traits), although the implementation is not nearly as feature rich as

that.

The Traits UI interface uses the model-view-controller design pattern. The main idea is that

a user specifies a model consisting of possibly many properties, each holding data of a certain type.

Each property we call an item. A view of the model is specified by indicating which items are to

be shown along with a layout. The items themselves know how to present themselves graphically

so that the user can interact, or edit, the values. One then ties the model and view together by

specifying some common methods (a controller).

This provides a simple map between a function with arguments (whose values are of a certain

type) and a GUI to edit these values, which makes the writing of basic GUI dialogs for R functions

very straightforward – no GUI programming is needed.˜1

The traitr package uses gWidgets to provide a link to a graphical toolkit. At this point it

works with gWidgetsRGtk2 and gWidgetsQt, but there are issues with gWidgetstcltk.

There are a few means available now within R to have GUIs automatically written for you such

as fgui and the ggenericwidget function in gwidgets. The basic idea employed is an inspection

of a function’s arguments to determine the type of data expected and the a determination of the

appropriate widget for editing that type. This package provides dialogMaker to do so, but also

make it easy for the user to just specify the data type for the arguments to make a GUI.

The basic unit in traitr is an item, which is an object that knows what type of value it should

hold and how to represent that value in a GUI. Since the programmer knows the type of value they

1This vignette documents version 0.9 of the package.

1

The traitr package Page 2

want, this isn’t difficult to provide, yet the GUI creation aspect is mostly hidden from sight – unless

the programmer wishes to change the defaults. The GUI for an item is referred to as an editor, as

in most cases, the primary usage is to display the underlying value for editing.

At this point, there are a few basic type of items listed in Table˜2. Adding more is on the

TODO list.

1.1 A first example

To begin with traitr, we load the package and specify a gWidgets implementation.

require(traitr)

require(gWidgets)

options(guiToolkit="RGtk2")

An item constructor is called with a default value and possibly many other values. Items may

be combined into “item groups” or “dialogs,” the latter being an item group with a window and a

set of buttons.

To see how a simple GUI can be made, here we construct a GUI to collect a number and string:

dlg <- aDialog(items=list(

number=numericItem(0),

string=stringItem("")

)

)

dlg$make_gui() # method call using $ notation.

The aDialog constructor returns a proto object for which there are many methods defined, but

just a few that are necessary to know. In this instance, we use the dialog’s make_gui method to

create the GUI. To see other documented methods and properties of the proto objects produced,

call their show_help method.˜2 That is, this command will produce a web page with the information

for the dlg instance: dlg$show_help().

The default dialog GUI has three buttons, an OK button (which when clicked prints out the

values in the GUI), a Cancel button to dismiss the dialog and a Help button to call up a simple help

string, which in this example is not implemented. To change the buttons, one assigns the names to

the buttons property of the dialog. The values “Undo” and “Redo” will implement the undo/redo

pattern for the underlying model.

To override the default behaviours or to assign actions to other buttons, one defines methods

for the dialog object using a certain naming convention. For the dialog buttons, if one defines a

function (buttonname_handler), then this will be called when the button “buttonname” is clicked.

For example, to make the dialog do something else, we have:

2The proto package extends R’s environments to implement a prototype programming style. To call a function,
we use the $ notation to reference the function. Unlike storing a function in a regular environment, this function call
passes back into the function, as the first argument, a reference to the proto object. As such, the function signature
would be something like (self, arg1, arg2), where self is used here for familiarity with javascript (another prototype
language). However, it is traditional to use . as this variable instead of self, so we use this in the code, as needed.

2

The traitr package Page 3

Figure 1: Basic interface with two items, a number and string.

dlg <- aDialog(items=list(

number=numericItem(0),

string=stringItem("")

),

OK_handler=function(.) { # . is reference to dlg object

values <- .$to_R()

f <- function(number,string)

cat("number is", number, "string is", string, "\n")

do.call(f, values)

}

)

dlg$make_gui()

The function OK_handler becomes a method of the proto object, so its lone argument . passes

into the function body the proto object. (These objects are environments, so the usual pass by

copy is not used, rather this is the same object.) Its method to_R returns a named list of the values

stored for each item in the dialog – which is convenient for do.call – and this handler simply

echoes them back in a friendly manner. Individual properties in the dialog can be accessed through

“getters.” These follow the naming convention get_PROPERTYNAME, as in

dlg$get_number()

[1] 0

(The number is the name assigned to the item. In this case – since it is not specified in an argument

– it gets it from the named component of the list where the item is defined.)

3

The traitr package Page 4

To make a less trivial dialog we just need to have more complicated functions. What follows

is a dialog˜(Figure˜2) for computing a t-test when the values are summarized. First a function to

compute the p-value.

basic.t.test <- function(mean, mu, sd, alternative=c("two.sided","less","greater"),

n, ...) {

alternative <- match.arg(alternative)

obs <- (mean - mu)/(sd/sqrt(n))

switch(alternative,

"greater" = 1 - pt(obs, df=n-1),

"less" = pt(obs, df=n-1),

2*(1 - pt(abs(obs), df=n-1))

)

}

Our dialog setup is similar, but we have more variables that need their type specified:

dlg <- aDialog(items=list(

mean=numericItem(0),

sd=numericItem(1),

n=numericItem(5),

mu=numericItem(0),

alternative=choiceItem("two.sided", values=c("two.sided","less","greater")),

output=stringItem("", label="p.value")

),

title="A basic t-test interface",

help_string="Enter in summarized values then click OK to get the p-value",

OK_handler=function(.) {

lst <- .$to_R()

lst$output <- NULL # not really needed, ignored by function

out <- do.call("basic.t.test", lst)

.$set_output(out)

}

)

dlg$make_gui()

Here we used the choiceItem to provide a choice to the user. As well, we added values for

the title and help string. The handler has the method call set_output to set the value to show in

the output widget. When a dialog is created, both “get” and “set” methods are created for each

item specified, where output matches the name property of the item (which is specified through the

named list passed to items).

1.2 Views

The default GUI layout uses a 2-column table to organize the items. To modify this, one creates an

alternate view or layout for the items. There are a few view constructors, similar to the containers

in gWidgets. Table˜5.1 lists them.

4

The traitr package Page 5

Figure 2: Basic t-test interface

Figure 3: The t-test interface using an alternate view that separates off the statistics from the

hypotheses.

5

The traitr package Page 6

The basic layout is equivalent to:

view <- aContainer("mean","sd","n","mu","alternative","output")

The aContainer constructor simply lays out its child components using a two-column table, one

for the label and one for the widget representing the item. The items are specified by name. (The

name can be explicitly set when the item is constructed, e.g. numericItem(1, name="x") or, as

in the example, found from using a named list to define the items.)

To make a more complicated layout, we nest the containers. Here is how one can separate out

the computed values from the hypotheses using frames:

view <- aContainer(aFrame("mean","sd","n", label="Statistics"),

aFrame("mu", "alternative", label="Hypotheses"),

"output")

However, this view will not align values, as the aFrame container is just a box container. Instead

we add in another level with aContainer (Figure˜3):

view <- aContainer(aFrame(aContainer("mean","sd","n"), label="Statistics"),

aFrame(aContainer("mu","alternative"),label="Hypotheses"),

separatorItem(),

"output")

To see this in action, to save typing, we use the instance method, which for this purpose simply

copies the dialog object. Then to specify a view different than the default, we use the gui_layout

argument of the make_gui method:

dlg1 <- dlg$instance() ## instead of copying the definition above.

dlg1$make_gui(gui_layout=view)

1.3 Validation

Items use the model-view-controller design pattern, with a transport phase from view to model that

allows for inspection of values. As such, we can check for valid input when assigning from the view

to the model.˜3 When an item has invalid input, some signal is specified. To see it, try typing in a

non-numeric value in where a number is expected.

To see how to specify our own validation function,˜4 we first write the function, then add it

to the item. For the standard deviation, we shouldn’t be able to specify non-positive standard

deviations. A function to check this would be:

positive_value <- function(., rawvalue) {

value <- as.numeric(rawvalue)

if(!value > 0)

stop("value is not positive")

value

}

3Although we allow invalid input for technical reasons. It isn’t until the call to to_R that an issue will arise.
4Validation is done for the main value stored in an item. For more complicated items using more than one main

property, one can defind validate_PROPERTYNAME methods.

6

The traitr package Page 7

The . argument is the item instance (not the dialog, say) and the argument rawvalue comes

from the widget. (In this case a string, so we coerce the value before testing.) The validation

functions should throw an error with a message if not valid. (The item itself has a coerce_with

method to carry out the proper coercion.)

To add to a numeric item, we assign to its validate method:˜5

sd <- numericItem(1, name="sd")

sd$validate <- positive_value

To do this for our dialog object, we can grab the item from the dialog, then specify its validation

method:

sd <- dlg$get_item_by_name("sd") # lookup and return item by name

sd$validate <- positive_value # assigns method to item

dlg1 <- dlg$instance()

dlg1$make_gui(gui_layout=view)

1.4 Conditional layout

Parts of a view can be enabled conditioned on other parts of the GUI. In this example we make

a GUI˜(Figure 4) for a one or two-sample t-test. As some options (such as paired) only make

sense when two samples are specified, we enable those only when a possible value for y is specified.

In the x and y items, the argument eval=TRUE is specified, which causes the specified value to be

parsed and evaluated in the global environment. This allows the user to specify a variable name or

R expression for the variable, and not just a number.

dlg <- aDialog(items=list(

x = numericItem(NA, eval=TRUE),

y = numericItem(NA, eval=TRUE),

alternative=choiceItem("two.sided",

values=c("two.sided", "less", "greater")),

mu = numericItem(0),

paired=trueFalseItem(FALSE),

var.equal=trueFalseItem(FALSE)

),

title="GUI with some parts disabled"

)

view <- aContainer("x",

aContext("y", context=dlg,

enabled_when=function(.) { # y depends on x

. here is the context value, not the container object

val <- .$to_R()$x

!is.null(val) && !is.na(val) && (nchar(val) > 0)

}),

5Here we see the ease of using the proto package, but it is also a burden. It is quite possible to assign to a
“private” method, thereby having very unintended side effects that can be hard to debug.

7

The traitr package Page 8

Figure 4: A t-test interface with some items having sensitivity depending on values of other items.

"alternative",

"mu",

aContainer("paired","var.equal", context=dlg,

enabled_when=function(.) {

val <- .$to_R()$y

!is.null(val) && !is.na(val) && (nchar(.$get_y()) > 0)

})

)

dlg$make_gui(gui_layout=view)

The aContext container is used to specify optional arguments to the view, but does not do any

layout. In this case, the y value is conditioned on the value specified for x. The context argument

specifies a dialog (or item group) where the variable is to be looked up.

1.5 Why wait?

The basic dialog calls a function when the OK button is clicked. Making a more interactive GUI,

say to update when a value is changed, can be done by creating a method model_value_changed.

For example, here is a GUI˜(Figure 5) to draw a graph for a random sample of size n.

drawGraph <- function(n,..) hist(rnorm(n))

dlg <- aDialog(items=list(

n=rangeItem(10, from=1, to=100, by=1),

graph=graphicDeviceItem()

8

The traitr package Page 9

Figure 5: GUI where slider movement updates the graphic.

),

title="Draw a graph",

help_string="Adjust slider or click OK to produce a new graph",

model_value_changed=function(.) {

l <- .$to_R()

l$graph <- NULL # not really necessary

do.call("drawGraph", l)

},

OK_handler=function(.) do.call("drawGraph",.$to_R())

)

dlg$make_gui()

The dialog is a model that observes itself for changes. When such a change occurs, methods

matching a certain naming convention are called. The model_value_changed method, if present,

is always called when any property is changed.

9

The traitr package Page 10

Table 1: Table of item constructors.

Constructor Description

stringItem For holding strings

numericItem For numbers

integerItem For integers

expressionItem For R expressions

trueFalseItem For Boolean values

choiceItem For choosing one or more values from a list of possible values

rangeItem To select a value from a range of values

buttonItem For adding a button

labelItem For adding a label

dateItem For editing a calendar date.

separatorItem To add a visual separator

dataframeItem To select a data frame

variableSelectorItem To select a variable from a data frame

graphicDeviceItem (RGtk2 only) To embed a graphic device

formulaItem For formula specification (to be written)

dfeditItem To edit a data set (to be written)

itemList An item that stores a list of other items (or itemgroups)

2 Items

The basic object in traitr is an item. An item includes a model to keep track of its value(s), an

editor (the view) to create a GUI to edit the value(s) and a controller to link the two. In addition,

items may include methods for validation of its values. Following the design of Traits UI, items

allow the programmer to focus on the type of value, not the GUI presentation of the value.

Items are constructed through one of the item constructors. Table˜2 lists the currently available

ones. The constructors have some common arguments: value to specify the initial value of the item;

name to specify the unique name for the item within a dialog (this can also be specified through a

named list); label for a text label to identify the argument (defaults to name); tooltip to specify

a tooltip for the widget, should it provide one; attr to pass arguments to the gWidgets constructor

underlying the editor; model to specify a model for the item (models can be shared, or a new one

will be created); and editor to specify a different editor.

In addition to these, each item has some item-specific arguments. For example, numericItem

and integerItem have an argument eval_first which if set to TRUE will force the value from the

editor to be evaluated within the global environment as a string.

The choiceItem provides a means to choose a value for a specified list of values. The editor may

use a radio button group, a checkbox group, a combobox or a table widget to present the choice

depending on the size of the list of values and whether multiple selection is possible. The constructor

has two arguments, value to specify the initially chosen value and values to specify the list to

choose from. The former can be specified by value (the default) or by index (if by_index=FALSE is

give). The latter may be a vector or data frame.

10

The traitr package Page 11

Figure 6: Standard methods and properties for an Item. (All UML diagrams come from

http://yuml.me/)

The dataframeItem constructor provides a means to select a data frame. The variableSelec-

torItem constructor requires such an object to be passed to it, in order for it to have a context to

find names in. For example

dfi <- dataframeItem(value=".GlobalEnv", name="dfi",

editor_style="compact") # alternative editor style

dlg <- aDialog(items=list(

dfi,

vsi=variableSelectorItem("", multiple=FALSE, dataframeItem=dfi,

attr=list(size=c(200,200)))

))

dlg$make_gui()

The itemList constructor is used to create a list of items or item groups. See˜6.3 for examples.

2.1 Item groups

An ItemGroup is used by aDialog to combine more than one item into a unit which acts as the

model for the GUI. The anItemGroup constructor is similar to that for a dialog, but is used if one

wants to embed the resulting GUI into some gWidgets container without the buttons, menubar,

and toolbar options.

Item groups implement the model interface, described in the next section.

Item groups can allow for resuse of parts of a GUI. In this example, we see how we can separate

some pieces out that are common to both a t-test and a Wilcox test call:

hyps <- anItemGroup(items=list(

mu=numericItem(0),

alternative=choiceItem("two.sided", c("two.sided","less","greater"))

),

gui_layout=aFrame("mu","alternative", label="Hypotheses")

)

ttestDialog <- aDialog(items=list(

11

The traitr package Page 12

x=numericItem(NA, eval=TRUE),

y=numericItem(NA, eval=TRUE),

hyps$instance()

),

OK_handler=function(.) {

do.call("t.test",.$to_R())

}

)

wilcoxDialog <- aDialog(items=list(

x=numericItem(NA, eval=TRUE),

y=numericItem(NA, eval=TRUE),

hyps$instance()

),

OK_handler=function(.) {

do.call("wilcox.test", .$to_R())

}

)

ttestDialog$make_gui()

wilcoxDialog$make_gui() # shares alt info!

The use of instance ties the models together, but allows for multiple views. This may not

be desirable. If two independent realizations are desired, then creating a factory (a function) to

produce new instances of hyps would be suggested.

3 Models

Each item (and item group) implements a model interface. The underlying items uses the model-

view-controller design pattern. A model is a object with a means to store and access properties and

a mechanism to notify observers when these properties have changed.

3.1 Getters/Setters

Each model property has get and set methods to interact with the value stored in the model. For

an item with a given name, say x, there are always methods get_x to get the value and set_x to

set the value. The get method returns a raw value, unlike the method to_R which returns a value

after coercion to the appropriate type. For example:

i <- numericItem(0, name="item1")

i$get_item1()

[1] 0

i$set_item1(3)

i$get_item1()

[1] 3

12

The traitr package Page 13

Figure 7: Standard methods and properties for an item group.

try(i$set_item1("c(1,2,3)")) # fails validation, still stored in model

Not a valid value: Error in function (., value) :

(converted from warning) NAs introduced by coercion

i$get_item1()

[1] NA

Where as, we can have the value run through eval to have:

i <- numericItem(0, name="item2", eval=TRUE)

i$set_item2("c(1,2,3)") # now okay

i$get_item2()

[1] 1 2 3

i$to_R() # coerced

$item2

[1] 3

Item groups and dialogs also implement these methods, as they act as models with several

properties:

13

The traitr package Page 14

dlg <- aDialog(items=list(

x=numericItem(0),

y=stringItem("a")

))

dlg$get_x()

[1] 0

dlg$set_y("some string")

dlg$get_y()

[1] "some string"

3.1.1 Getting/Setting other values in an item

If an item in an item group has more than one main property, the main getter/setter pairs created

from each item name do not suffice. For example, the choice item has a main property for setting

the value, but another property to store the values to choose from. To access a secondary property,

we first extract the item by name with the get_item_by_name method of item groups, and then

use the item’s getter/setter values. For example:

ig <- anItemGroup(items=list(

x=numericItem(1),

y=choiceItem("a", values=letters[1:5])

)

)

ig$get_y()

[1] "a"

i <- ig$get_item_by_name("y")

i$get_y() # same as above

[1] "a"

i$get_values() # get values

[1] "a" "b" "c" "d" "e"

i$set_values(letters) # to set values

3.2 Observers

Models implement the observer pattern. An observer is notified whenever a specific model property

changes or if any of the model’s properties changes. To do so, the observer (which is a model instance

like an item, item group, or dialog; or a controller) would have methods model_value_changed

which is called whenever any property is changed or property_NAME_value_changed which is called

when a given property is changed.

14

The traitr package Page 15

To add an observer to a model, the add_observer method is used, whereas remove_observer

is provided to remove the observer. This example defines two dialogs, the second with a suitably

named method and then has the second observer change in the first.

dlg <- aDialog(items=list(

x=numericItem(0),

y=numericItem(0)

)

)

dlg1 <- aDialog(items=list(

a=numericItem(0)

),

property_x_value_changed=function(., value, old_value) {

.$set_a(.$get_a() + value) # add value to a (assumes numeric)

}

)

dlg$add_observer(dlg1)

dlg1$get_a()

[1] 0

dlg$set_x(10)

dlg1$get_a() # updated by x

[1] 10

A dialog listens to itself, which allows the change of one property to update another. This

example shows how the image is updated whenever the file is changed.

dlg <- aDialog(items=list(

f=fileItem(""),

i=imageItem("",attr=list(size=c(480,480)))

),

property_f_value_changed=function(., value, old_value) {

.$set_i(value)

},

buttons="Cancel")

dlg$make_gui()

The model_value_changed method has previously been illustrated. This method is called when-

ever any value is changed in the model.

3.3 Sharing a model

An item can share a model with another item. This allows for synchronization of values in a GUI.

There are several means to do this: specifying the model at construction, calling the set_model

method, or calling the instance method. For example,

15

The traitr package Page 16

Figure 8: Standard methods and properties for a model.

i <- numericItem(0, name="x")

j <- numericItem(1, name="x")

j$get_x()

[1] 1

j$set_model(i)

j$get_x()

[1] 0

i$set_x(10)

j$get_x()

[1] 10

The instance method also creates a new item with a shared model, or as seen, a new dialog

with shared models. There can only be one GUI for an instance of an item, but different instances

can have GUIs, allowing multiple views for the same model.

4 Dialogs

Dialogs and item groups combine several items into a model, with different properties. In addition

to the getter/setter methods, there is the useful get_item_by_name to retrieve a given item, and

to_R method to get the values as a named list.

16

The traitr package Page 17

A dialog is an item group which creates its own top-level window. As such, dialogs have op-

tions for decorating the window: e.g., to add menubars, toolbars, and statusbars etc. We’ve seen

how specifying the title and help string at construction is done through the argument title and

help_string.

The top-level container is constructed by a call to the make_gui method. To close the GUI

programmatically, the close_gui method is available.

4.1 Menubars, toolbars, statusbars

Menu bars and toolbars are specified using gWidgets objects. Basically, a list of gaction objects

(of gWidgets) are specified to the dialog properties menu_list and toolbar_list.

mb_l <- list(File=list(

New=gaction("new", icon="new", handler=function(h,...) print("New")),

Quit=gaction("quit", icon="quit", handler=function(h,...) dlg$close_gui())

))

tb_l <- list(Quit=gaction("quit", icon="quit", handler=function(h,...) dlg$close_gui()))

dlg <- aDialog(items=list(x=stringItem("some value")),

menu_list=mb_l,

toolbar_list=tb_l,

title="Dialog with menu and toolbar")

dlg$make_gui()

A status bar is created if the value of the status_text property is non NULL, say "", when

make_gui is called. If there is a status bar, the method update_status_text is provided.

4.2 Buttons

Dialogs have a default set of buttons: OK, Cancel and Help. When clicked these call the methods

OK_handler, Cancel_handler and Help_Handler. As well, buttons named Undo and Redo have

default handlers if specified. Likely, only OK_handler will need to be overridden. An example was

previously given.

To specify other buttons, simply provide the names to the buttons property prior to construction

of the GUI. For example, to have a GUI whose closure depends on the value of x being changed,

we might have:

dlg <- aDialog(items=list(

x=numericItem(0)

),

title="Change x to be able to close",

buttons="Close",

Close_handler=function(.) {

if(.$get_x() != 0)

.$close_gui()

})

dlg$make_gui()

17

The traitr package Page 18

If a button name has spaces or other non-alpha characters, they are stripped before calling the

handler. For example, a button labeled ”Click me” would call the handler Clickme_handler.

The special button name “SPACE” will insert a 10 pixel space. The special button name

“SPRING” will insert a “spring” between the buttons.

4.3 Scope

The underlying proto package treats methods differently than may be expected. In particular,

sometimes lookup for a variable happens in a different place than expected. For example:

fun <- function() {

a <- 1

dlg <- aDialog(items=list(),

a=2,

meth1=function(.) a)

dlg$meth2 <- function(.) a

dlg[['meth3']] <- function(.) a

c("1"=dlg$meth1(), "2"=dlg$meth2(), "3"=dlg$meth3())

}

fun()

1 2 3

1 2 1

In meth1 and meth2 the environment of passed in methods is the lexical environment, so the unbound

variable a is found from the enclosing envrionment of fun, whereas in meth2 the environment is

that of the proto object dlg, which has the value of 2 defined for a. the moral here, is you likely

want to use [[<- for assignment of new methods if done after the time of construction.

5 Views

View provide a means to customize the look of a dialog or item group. A view is simply a container.

The constructors specify the child components as either strings indicating items, or other views. A

context allows the appropriate item to be found from the string. By default, this context is the

calling dialog or item group, but need not be. This can be useful if the item to display is in another

item group.

5.1 Types of views

The various views are described by their man pages. They are very similar to the gWidgets

containers except for that provided by the aContext constructor. This view does not place its

items in a container, but rather provides a means to specify a context. This is useful if an item

comes from another item group, but you wish the alignment of the item to be as others.

18

The traitr package Page 19

Figure 9: Standard methods and properties for a dialog.

Table 2: Table of view constructors.

Constructor Description

aContainer Basic container, uses tabular layout

aTableLayout Tabular layout with more than 2 columns

aGroup Box container to pack in children left to right or top to bottom

aFrame Box container with decorative frame

anExpandGroup Box container with trigger to hide

aPanedGroup Two pane container

aNotebook Notebook container

aContext Provide context for an item or items

19

The traitr package Page 20

Figure 10: Standard methods and properties for a view.

5.2 Enabled and visible

In a previous example we illustrated the view method enabled_when which is called whenever a

property value is changed. If this returns FALSE, then this part of the view has its sensitivity

disabled.

Similarly, there is a visible_when method that can be used to hide a portion of a GUI until

something occurs.

5.3 Editors

A view is used to layout one or more items, whereas each item itself has its interface produced

by an editor. Editors are specified by the item constructor, with a default editor usually being

appropriate. Some items provide more than one possible editor, for instance the choiceItem. To

specify which editor to use, the property editor_style is set to the name of the different editor.

To define a new item, one must also provide an editor or use one of the existing ones.

5.4 Integration with gWidgets

The gWidgets package is used to provide the link between the traitr objects and a graphical

toolkit package, such as RGtk2. In order to customize the appearance of the editors, one passes

through the attr argument a list of values for gWidgets constructors.

To place a traitr GUI within a gWidgets GUI, one can use either the make_ui method of an

item obect, or the make_gui method of an itemgroup object, as both have a container argument

to pass in a gWidgets container.

To place a gWidgets object within a traitr object is more difficult, as there is no API for this

(yet). At this point, one can create a container object and place it within that. The container

20

The traitr package Page 21

Figure 11: Standard methods and properties for an editor.

object has a property container that stores the gWidgets container needed. However, this isn’t

available until after the GUI has been drawn.

This idea is illustrated below:

dlg <- aDialog(items=list(x=numericItem(1)))

g <- aGroup() # define outside view to access later

view <- aContainer("x",g)

dlg$make_gui(gui_layout=view, visible=FALSE) # postpone showing, but create containers

l <- glabel("Look ma, a gWidgets label", cont = g$container) # how to find container

dlg$visible(TRUE)

5.5 Adding elements to an already drawn GUI

In gWidgets, and indeed only because it is a common feature of the graphical toolkits, one can

add elements to a previously drawn GUI. In gWidgets, this is done through the add method of

containers (although this is usually called indirectly in the containers construction).

However, to add to a GUI using traitr is not so direct. Using the previous idea though allows

it to be done provided you provide a place where objects will be added in the GUI construction.

This is implemented by hiding the visibility of the container through its visible_when method.

dlg <- aDialog(items=list(x=numericItem(0)))

g <- aGroup(visible_when=function(.) FALSE) # suppress showing

view <- aContainer("x", g)

dlg$make_gui(gui_layout=view)

21

The traitr package Page 22

now to add to the GUI at g:

ig <- anItemGroup(list(y=stringItem("a string")))

ig$make_gui(container=g)

g$visible_when <- function(.) TRUE

dlg$update_ui()

The call to the update_ui method is also done whenever a value changes, but in this case we want

it to be done immediately so the string item shows up.

6 Some examples

Some additional examples follow that are a bit more involved.

6.1 chooseCRANmirror

The function chooseCRANmirror provides a GUI for selecting a CRAN mirror, providing a table

to choose the mirror from and a button to click once the selction is done. Here we give a slightly

better alternative, with a bit more information and also connect to a double click event. The key

function, setCran, is taken from the original with slight modification.

m <- getCRANmirrors(all = FALSE, local.only = FALSE)[,c(1,2,4)]

setCran <- function(.,...) {

URL <- .$get_cran()

repos <- getOption("repos")

repos["CRAN"] <- gsub("/$", "", URL[1L])

options(repos = repos)

.$close_gui()

}

Now we define our model, and use the default view.

dlg <- aDialog(items=list(

cran=choiceItem(value=NA, values=m,

show_label=FALSE, # suppress label

attr=list(chosencol=3, size=c(400,500)) #chosencol is URL one, not first

)

),

title="Choose a CRAN Mirror",

help_string="Click a mirror, then OK, or double click on mirror",

OK_handler=setCran, # OK button click

property_cran_value_changed=setCran # double click

)

dlg$make_gui()

22

The traitr package Page 23

Figure 12: A dialog similar to that of the tkdensity demo in the tcltk package.

6.2 The tkdensity dialog

The tkdensity demo is a standard in the tcltk package. Here we redo the demo using traitr

(Figure˜12). This function will make the density plot for us, in a manner similar to that of the

demo.

replot <- function(.) {

l <- .$to_R()

f <- function(dist, kernel, n, bw,...) {

y <- switch(dist, "Normal"=rnorm(n), rexp(n))

plot(density(y, bw=bw, kernel=kernel), xlim=range(y)+c(-2,2), main="Density example")

points(y, rep(0,n))

}

do.call(f,l)

}

Here we define the items and the dialog properties. There are 5 main items, including the graphic

device. The labels are suppressed, as we use a frame to set off similar to the original example.

dlg <- aDialog(items=list(

dist=choiceItem("Normal", values=c("Normal","Exponential"),

show_label=FALSE),

kernel=choiceItem("gaussian",

values=c("gaussian", "epanechnikov", "rectangular",

"triangular", "cosine"),

show_label=FALSE),

23

The traitr package Page 24

n=choiceItem(50L, as.integer(c(50,100,200,300)),

show_label=FALSE),

bw=rangeItem(value=1, from=0.05, to=2.00, by=0.05,

show_label=FALSE),

out=graphicDeviceItem()

),

help_string="Adjust a parameter to update graphic",

title="tkdensity through traitr",

buttons="Cancel",

model_value_changed=replot)

Our layout places the controls on the left within frames, and the graphic device on the right. We

use only the ’Cancel’ button to match, somewhat, the demo.

view <- aGroup(aContainer(aFrame("dist", label="Distribution"),

aFrame("kernel", label="Kernel"),

aFrame("n", label="Sample size"),

aFrame("bw", label="Bandwidth")

),

"out",

horizontal=TRUE)

dlg$make_gui(gui_layout=view)

replot(dlg) # initial plot

6.3 The itemList item

One of the drawbacks with this framework is that it is not geared around R’s vectorized treatment

of parameters and data. Although, the basic items, such as numericItem, can hold a vector of

data, the editor for that is not helpful. The itemList item is used to get around this. It stores a

list of items or itemgroups and has a means to edit on a per item basis. The basic usage depends

on specifying how new items are to be constructed. The argument item_factory is where this is

specified. Here are a few examples of it being used.

The most basic usage is to edit a vector of values, as here where the items are numeric.

i1 <- itemList(items=list(),

items_names="x",

item_factory=function(.) numericItem(0)

)

i1$make_ui(container=gwindow("Basic Use"))

NULL

If we add some items, we see that the to_R method will return a list of item values.

add some items offline

for(i in 1:2) i1$append_item(i1$item_factory())

24

The traitr package Page 25

i1$to_R()

$Anonymous

$Anonymous$Anonymous

[1] 0

$Anonymous$Anonymous

[1] 0

If we want to make a data frame editor, we can do so as follows. Rather than have a single item,

we have an item group to edit. The new to_string method is needed as this method gets called to

label the table that shows the list of defined items. It should return a character vector of length 1.

i2 <- itemList(items=list(),

items_names="Data frame rows",

item_factory=function(.) {

ig <- anItemGroup(items=list(a=numericItem(0), b=stringItem("")))

ig$to_string <- function(.) .$get_b()

ig

})

We provide a custom to_R method to take the output and place into a data frame. (Suggestions

for a more elegant solution here are most welcome.)

i2$to_R <- function(.) {

items <- .$get_value()

if(length(items) == 0) {

out <- as.data.frame(.$item_factory()$to_R(), stringsAsFactors=FALSE)[0,]

} else {

out <- as.data.frame(items[[1]]$to_R(), stringsAsFactors=FALSE)

if(length(items) > 1) {

for(i in 2:length(items))

out[i,] <- items[[i]]$to_R()

}

}

out

}

And the basic call:

i2$make_ui(container=gwindow("Basic Use to make data frame"))

NULL

Finally, the manual page’s example illustrates the post_process method call and how to add

in icons to the item list.

25

The traitr package Page 26

Figure 13: A GUI for the read.csv and read.table functions.

6.4 A GUI for read.csv and read.table

This example shows how the mapping between argument and traitr items proceeds in a straight-

forward manner. We provide a GUI (Figure˜13) for read.csv and read.table. While these both

work quite easily with the default arguments, in the case they don’t the arguments can be numerous.

This GUI allows one to specify the arguments (except for typing in names and class types, although

that could have been implemented using stringItems which evaluate their argument first.

First, the model part:

dlg <- aDialog(items=list(

file=fileItem("", attr=list(

filter=list("CSV or TXT"=list(

patterns=c("*.csv","*.txt")

),

"All files" = list(patterns=c("*"))

))),

header=trueFalseItem(TRUE, tooltip=paste("Variable onfirst line?")),

sep=stringItem("", tooltip="Field separator character"),

quote=stringItem("", tooltip="Set of quoting characters"),

dec=stringItem(".", tooltip="Character used for decimal points"),

as.is=trueFalseItem(!default.stringsAsFactors(),

tooltip="Do not convert character to factor"),

na.strings=stringItem("NA", tooltip="Strings to be NA", eval=TRUE),

nrows=integerItem(-1, tooltip="Max number of rows to read"),

skip=integerItem(0, tooltip="Number of lines to skip at header"),

check.names=trueFalseItem(TRUE, tooltip="If TRUE ensure names are valid"),

fill=trueFalseItem(TRUE, tooltip="Fill unequal length rows if TRUE"),

strip.white=trueFalseItem(TRUE),

blank.lines.skip=trueFalseItem(TRUE, tooltip="If TRUE, skip blank lines"),

26

The traitr package Page 27

comment.char=stringItem("#", tooltip="Comment character"),

allowEscapes=trueFalseItem(TRUE, tooltip="C-style escapes read verbatim?"),

stringsAsFactors=trueFalseItem(default.stringsAsFactors(),

tooltip="Characters converted to factors"),

fileEncoding=stringItem(""),

encoding=stringItem("unknown"),

our things

assign.to=stringItem("df", label="Assign to:"),

output=tableItem(attr=list(size=c(400,400)), show_label=FALSE),

file.type=stringItem("")

),

title="Read in txt or csv file",

help_string="Select a file, then adjust parameters."

)

The file object has gWidgets arguments passed through to filter which files are displayed. Other-

wise, this is a straightforward mapping of arguments to type. The last three are there for the GUIs

usage.

The view separates out the main arguments from some secondary ones, using the notebook

container; and provides a place for the assignment and preview features. Above, we manually set

the size in the output object above, as it does not gracefully allocate enough size to itself when the

gWidgetsRGtk2 backend is used.

view <- aGroup(aNotebook(

aNotebookPage("file",

separatorItem(),

"header", "sep","quote",

"dec", "fill", "comment.char",

label="Main args"),

aNotebookPage("as.is","na.strings","nrows","skip",

"check.names","fill","strip.white","blank.lines.skip",

"allowEscapes","stringsAsFactors",

separatorItem(),

"fileEncoding", "encoding",

label="Extra args")

),

aContainer("assign.to",

aFrame("output", label="Preview")

),

horizontal=TRUE)

The main function called to update the UI is this one, which checks the file type, then reads in

the file using either read.csv or read.table. If successful, it returns the data frame.

dlg$read_file <- function(., file.type, output, assign.to, ...) {

if(file.type != "") {

27

The traitr package Page 28

out <- try(do.call(sprintf("read.%s",file.type), list(...)), silent=TRUE)

if(inherits(out, "try-error")) {

cat("Error reading file of type,", file.type, "\n")

out <- data.frame(V1="")

}

} else {

out <- data.frame(V1="")

}

return(out)

}

To integrate the read_file method, we set up the following handler for control:

dlg$model_value_changed <- function(.) {

fname <- .$get_file()

if(file.exists(fname)) {

for(i in c("txt","csv")) {

if(grepl(paste("\\.",i,sep=""), fname))

.$set_file.type(c(txt="table",csv="csv")[i])

}

}

switch(.$get_file.type(),

"csv"={.$set_sep(","); .$set_quote('\"')},
"table"={},

{}

)

.$set_output(.$do_call("read_file",.$to_R()))

}

This method sets up a call to our read_file using the values found from the to_R method.

The use of do_call is identical to the familiar do.call function, except it gracefully handles the

instance where the method does not exist.

This method is called whenever a model value is changed, even the output value, say, which is

not really necessary. If this inefficiency bothers you, a different manner is presented at the end.

Finally, we change the default OK_handler to output the value to the given name. We use a

gWidgets call to gconfirm to avoid overwriting a variable name without permission.

dlg$OK_handler <- function(.) {

out <- .$do_call("read_file",.$to_R())

assign.to <- .$get_assign.to()

if(exists(assign.to, envir=.GlobalEnv)) {

if(!gconfirm(sprintf("Overwrite variable %s?", assign.to)))

return()

}

assign(assign.to, out, envir=.GlobalEnv)

}

28

The traitr package Page 29

The GUI is drawn as usual now:

dlg$make_gui(gui_layout=view)

To see one way to get the dialog to update only in response to the appropriate changing of

the model, we could replace the model_value_changed code with the following. First we have

a different response when the file is changed, as we need to find the file type and adjust some

arguments for CSV files.

dlg$property_file_value_changed <- function(., value, old_value) {

if(file.exists(value)) {

for(i in c("txt","csv")) {

if(grepl(paste("\\.",i,sep=""), value))

.$set_file.type(c(txt="table",csv="csv")[i])

}

}

switch(.$get_file.type(),

"csv"={.$set_sep(","); .$set_quote('\"')},
"table"={.$set_output(.$do_call("read_file",.$to_R()))},

{}

)

}

The call to set_output will be done by both set_sep and set_quote as well, so we don’t repeat

more than we have to.

Now to update the preview when an argument is changed, we set up the appropriate prop-

erty_XXX_value_changed methods, as follows:

nms <- names(dlg$get_items())

nms <- setdiff(nms, c("file","file.type","assign.to","output"))

QT <- sapply(nms, function(i) {

assign(sprintf("property_%s_value_changed",i),

function(., ...) {

.$set_output(.$do_call("read_file",.$to_R()))

},

envir=dlg)

})

The assignment of the method within the environment takes advantage of proto objects being

environments.

6.5 A view data frame by row GUI

A common GUI for viewing data on web sites basically shows each row of a data frame as editable

data. In statistics terms, we scroll through the cases in a data set. Below, we leave the editable

part as an exercise, but show how the method set_model can be used to effect this type of GUI.

29

The traitr package Page 30

Figure 14: A GUI to scroll through the rows of a data frame.

30

The traitr package Page 31

This function creates a list of items from a row in the data frame. The set_model method for

a dialog takes a dialog or item group for an argument. The output of this function will provide the

items value.

m <- mtcars

nms <- names(m)

make_model <- function(i) {

l <- list(i = integerItem(i))

for(j in 1:ncol(m)) {

l[[nms[j]]] <- numericItem(m[i,j])

}

l

}

Here we initialize the dialog and make two buttons to scroll through the rows. The set_row method

finds the next row to show, then creates an item group which is used for our new model. The same

extractor method, get_i is used in the button handlers.

dlg <- aDialog(items=make_model(1),

title="Data frame scroller",

help_string="Press buttons to scroll through data set",

buttons=c("<< previous","next >>","SPACE","Cancel"),

set_row=function(.,i) {

if(i < 1)

i <- nrow(m)

if(i > nrow(m))

i <- 1

ig <- make_model(as.numeric(i))

.$set_model(anItemGroup(items=ig))

},

previous_handler=function(.) {

i <- as.integer(.$get_i())

.$set_row(i-1)

},

next_handler=function(.) {

i <- .$to_R()$i # same but different

.$set_row(i + 1)

})

We now make the GUI (Figure˜14).

dlg$make_gui()

That’s it. We leave for later perhaps using a scroller to scroll through the rows, or a means to edit

the values and store in the data frame.

31

The traitr package Page 32

6.6 A Wizard GUI

A wizard, or multi-page dialog is a common GUI arrangement. Here is one way to implement such

a feature, maybe not the best. We create a model to store our values and use instances of this

model and views to show just part.

model <- aDialog(items=list(

a=stringItem(""),

b=stringItem("")

)

)

dlg1 <- aDialog(buttons="Next",

Next_handler=function(.) {

dlg2$make_gui(gui_layout=view2)

.$close_gui()

})

view1 <- aContainer("a", context=model)

dlg2 <- aDialog(buttons = c("Finished"),

Finished_handler = function(.) {

print(model$to_R())

.$close_gui()

})

view2 <- aContainer("b", context=model)

dlg1$make_gui(gui_layout=view1)

6.7 A ”spotfire” like demo

The purveyor of S-Plus has a product to create interactive web pages from within S-Plus. See

http://spotfire.tibco.com for details. The examples shown are of a similar type. A GUI is

constructed around a specific data set and has some graphic to summarize the data and some filter

controls to filter the display of the data. Additionally, there is some interactivity between the

graphic and the data table. The latter we don’t illustrate below, but we do illustrate how to use

traitr to make a similar type of GUI.

This example will also demonstrate how one can create components with traitr to be used

within other parts of a GUI.

The Spotfire demos all have a description page. Here illustrate how PANGO markup can be

used with a label item to provide some markup for the instructions.

theDesc <- paste("Spotfire",

"The Spotfire web player (http://spotfire.tibco.com)",

"has several demos built around a somewhat similar set-up:",

"a description page, a data set, a graphic display of the data, and a set",

"of controls to filter out the data that is being displayed in the graphic.",

"",

"This example shows how traitr can be used to make a simple version of such.",

"",

32

The traitr package Page 33

Figure 15: A GUI designed around the graphical summary of a data frame with controls to narrow

the values displayed.

33

The traitr package Page 34

"Click the <i>Explore</i> tab to begin.",

sep="\n")

The data set we will use here is the standy mtcars one. This would be customized to the GUI in

question. Our table display will also include a label to display the number of selected cases (rows)

after filtering has occurred.

theData <- mtcars

makeLabel <- function(nr) sprintf("%s cases",nr)

dataDisplay <- anItemGroup(items=list(

data = tableItem(theData, name="data", attr=c(expand=TRUE)),

label = labelItem(makeLabel(nrow(theData)), attr=c(markup=TRUE, expand=FALSE))

),

attr=c(expand=TRUE)

)

We define this handler to synchronize the label with the size of the data being displayed.

synchronize labe with data dimension

dataDisplay$property_data_value_changed <- function(., value, old_value)

.$set_label(makeLabel(nrow(.$get_data())))

We wish to specify the layout for the data table here, rather than in a monolithic specification

when the entire GUI is constructed. By doing so, we could reuse this in other GUIs without much

fuss. To do so, we redefine the method to define the default layout.

dataDisplay$make_default_gui_layout <- function(.) {

aGroup("data",

aGroup(labelItem("", attr=c(expand=TRUE)),"label", horizontal=TRUE),

horizontal=FALSE)

}

Our filter controls are chosen to illustrate how we could use a slider or a checkbox to narrow

the number of cases displayed.

We begin with a filter to narrow down by levels of a variable. The get_selected method returns

a logical vector of the cases that are selected. For this, we also specify a default layout. Together,

this creates a component that can easily be incorporated into another item group.

var <- "cyl"

varLevels <- sort(unique(theData[, var]))

cylFilter <- anItemGroup(name=var,

items=list(

choice=choiceItem(varLevels, varLevels,

by_index=FALSE, multiple=TRUE, show_label=FALSE)

),

data=theData[, var],

get_selected = function(.) {

34

The traitr package Page 35

choice <- .$get_item_by_name("choice")

value <- choice$get_choice()

values <- choice$get_values()

vals <- values[values %in% value]

.$data %in% vals

},

make_default_gui_layout=function(.) {

aFrame("choice", label="Cylinders")

})

This shows a filter for a numeric variable.

var1 <- "wt"

rng <- range(theData[, var1])

wtFilter <- anItemGroup(name=var1,

items=list(

weight=rangeItem(value=rng[1] - .2, from=rng[1], to=rng[2], by=.2,

show_label=FALSE, label="Weight >")

),

data=theData[,var1],

get_selected=function(.) {

.$data >= .$to_R()$weight

},

make_default_gui_layout=function(.) {

aFrame("weight", label="Weight > ")

}

)

Our filters item group will hold the two. Here we specify the layout using a frame.

filters <- anItemGroup(items=list(cylFilter, wtFilter))

filters$make_default_gui_layout <- function(.) {

aFrame(var,

var1,

label="Filter by",

attr=c(size=c(300,-1)))

}

Our main method is called when a filter value is changed. It computes the indices of the cases

that are still valid. This task is made simpler by defining the get_selected methods, as these

return the logical values we wish.

filters$model_value_changed <- function(.) {

items <- .$get_items()

ind <- as.logical(items[[1]]$get_selected() * items[[2]]$get_selected())

dlg$update_data(ind)

}

35

The traitr package Page 36

With the pieces above, creating the main GUI is now straightforward. The items are four in

number: the label, the data, the graphic device and the filter area.

dlg <- aDialog(items=list(

Description=labelItem(theDesc, attr=c(markup=TRUE)),

gd = graphicDeviceItem(),

filters,

dataDisplay

),

title="Spotfire example",

buttons="Cancel"

)

When the data is changed, we want the graphic to be updated.

dlg$property_data_value_changed <- function(., value, old_value)

.$draw_graphic()

This method was referred to above in the method calls for filtering. The filter updates the data,

and then the above method is called to update the graphic.

dlg$update_data <- function(., index) {

if(missing(index))

data <- theData

else

data <- theData[index,]

dataDisplay$set_data(data)

}

Finally, we make the drawing of the graphic a separate method, so we can call it without having

to update the data set. We don’t work very hard in the graphical summary of data.

dlg$draw_graphic <- function(.) {

data <- dataDisplay$get_data()

if(nrow(data)) {

hist(data[,"mpg"])

rug(data[, "mpg"])

} else {

plot.new()

}

}

Finally, we use paned groups to layout our GUI, allowing the user to give more area to the data

table if desired.

Layout for main GUI

lyt <- aNotebook(aNotebookPage("Description",

label="About"

36

The traitr package Page 37

),

aNotebookPage(aPanedGroup(

aPanedGroup("gd",

dataDisplay,

horizontal=FALSE),

filters),

label="Explore"

)

)

Since the GUI takes a few seconds to load, we first call the loadingAnimation window to give

the user some feedback.

w <- loadingAnimation()

dlg$make_gui(gui_layout=lyt)

w$close()

37

