
Locally adaptive tree-based thresholding using the treethresh

package in R

Ludger Evers Tim Heaton

January 6, 2010

1 Methodology

TreeThresh (Evers and Heaton, 2009) is a modification of the EbayesThresh method (John-
stone and Silverman, 2004, 2005a,b) which tries to partition the underlying signal before
carrying out the thresholding. This should yield better results for heterogeneous signals.

1.1 Model

Suppose we have, after possible rescaling to obtain unit variance, observed a sequence X =
(Xi)i∈I satisfying

Xi = µi + εi, for i ∈ I,

where µ = (µi)i∈I is a possibly sparse signal (i.e. some/most of the µi are believed to be zero),
the εi are independentN(0, 1) noise, and I is a possibly multidimensional index domain. Being
a generalisation of the EbayesThresh method, the TreeThresh method is based on assuming
a mixture between a point mass at zero (denoted δ0) and a signal with density γ(·) as prior
distribution for the µi:

fprior(µi) = (1− wi)δ0 + wiγ(µi)

In contrast to the EbayesThresh method the mixing weights wi depends on the index i,
i.e. the underlying signal can be heterogeneous (in the sense of not being everywhere equally
sparse). We assume there is a partition of the index space I = P1 ∪ . . . ∪ Pp , Pk ∩ Pl = ∅,
such that the weights within each region P are (almost) constant.

The treethresh software uses a double exponential distribution1 with fixed scale parame-
ter a (set to 0.5 by default) as γ(·), which is also the default setting used in the EbayesThresh
package. This yields

l(w) =
∑
i∈I

log ((1− wi)φ(xi) + wi(γ ? φ)(xi))

as the marginal loglikelihood of the observed x.
1i.e. a distribution on the real line with density γ(u) = a

2
exp(−a|u|).
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1.2 Estimation

In order to estimate the mixing weights wi we need to estimate the partition P and the mixing
weights in each region P . Once an“optimal”partition has been identified, one can estimate the
mixing weights in each partition by maximising the loglikelihood of the observations in that
region. This corresponds to carrying out the EbayesThresh algorithm for region separately.

The partitioning is found using an algorithm that resembles the one used in recursive
partitioning algorithms like Classification and Regression Trees (CARTs, Breiman et al.,
1984). First of all, a nested sequence of increasingly fine partitions is estimated. Cross-
validation is then used to find the “best” partition of that sequence. Section 2 gives a more
detailed description of the algorithm.

1.3 Thresholding

Having estimated the mixing weights wi, we can use these to estimate the underlying signal
µi. This can be done in many ways:

Posterior median The posterior median of µi given Xi = x is shown in figure 1 as a function
of x (solid line). It has a thresholding property: For x ∈ [−tŵi

, tŵi
], the posterior median

is zero. (for the mathematical details see e.g. Johnstone and Silverman, 2005b, sec. 6.1).

Hard thresholding Alternatively, we could use the tŵi
obtained from the posterior median

to define the hard thresholding rule

µ̂hard
i (x) =


x for x < −tŵi

0 for −tŵi
≤ x ≤ tŵi

x for x > tŵi

(dashed line in figure 1). The hard thresholding rule is discontinuous at −tŵi
and at

tŵi
.

Soft thresholding The soft thresholding rule

µ̂soft
i (x) =


x+ tŵi

for x < −tŵi

0 for −tŵi
≤ x ≤ tŵi

x− tŵi
for x > tŵi

(dotted line in figure 1) is continuous, but is biased even for large values of x.

By default, the treethresh software uses the posterior median.

2 Algorithmic details

The partitioning algorithm aims to find a partitioning of the index set I = P1 ∪ . . . ∪ Pp ,
Pk ∩ Pl = ∅, such that {wi, i ∈ Pk} is (almost) constant.

An exhaustive search over all possible rectangular partitions is prohibitive, thus the method
uses a greedy “one step look-ahead” strategy of recursively partitioning the signal: the canon-
ical step of the algorithm is to split one rectangular region P into two rectangular regions
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Figure 1: Comparison of the three thresholding rules.
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L and R. As there is only a small number of these “splits”, an exhaustive search can be
performed. An optimal cutoff should split the current region P into two new regions in which
the signal is hopefully more heterogeneous. This can be measured by looking at a test of the
null hypothesis that the signal is equally sparse in both regions, i.e. H0 : w(L) = w(R). By
default, the software uses the score statistic, as this does not require computing w(L) and w(R)

for all pairs of candidate regions L and R, see Evers and Heaton (2009) for the mathematical
details.

This canonical step of splitting one rectangular region into two rectangular regions is
carried out recursively. This (first) step of the algorithm is implemented in the functions
treethresh and wtthresh (see section 3 for the differences between these two functions).

In order to avoid overfitting, it is important not to estimate too fine a partition. One
possibility could be to use stopping rules based on the test statistic of the score test (or a
likelihood ratio test). However these suffer from two drawbacks. First, it is difficult to find the
correct critical value, as we are testing data-driven hypotheses. Second, using a näıve stopping
rule would lead to a short-sighted strategy for choosing the optimal partition: a seemingly
worthless split might turn out to be an important boundary in a more complex partition.
Thus we propose, in complete analogy with the CART algorithm, to initially estimate too
fine a partition and then reduce its complexity by finding a coarser super-partition such that

lP − α · |P|

is maximal, where lP is the log-likelihood obtained by partition P and |P| is the number of
regions in P.

Just as in the case of CARTs, one can show (see e.g. Ripley, 1996, sec. 7.2) that there exists
a nested sequence of partitions which maximize the penalized log-likelihood over different
ranges of α. Figure 2 illustrates this idea. The “optimal” value of α can found using cross-
validation. As the parameter α is on a scale which is difficult to interpret, the software works
with the parameter C = α

α0
, where α0 is the value that would yield a partition consisting of a

single region. This parameter C can thus take values between 0 (no pruning) to 1 (partition
reduced to a single region).

As such, one would choose the value of C that yields the largest predictive loglikelihood.
However, it turns out to be often better to use a simpler model (corresponding to a larger
value of C) if the corresponding predictive loglikelihood is not much worse than that of the
best model. Thus the package uses by default the largest C for which the difference to the best
predictive loglikelihood is less than half the standard error of the best predictive loglikelihood.

This second step of the algorithm can be carried out by calling the function prune.
For a more detailed description of the algorithm together with its asymptotic properties

see Evers and Heaton (2009). Sections 4.1 and 4.2 contain two examples illustrating these
two steps of the algorithm.

3 Application to wavelet coefficients

Perhaps the most common application of thresholding is for denoising an observed, possibly
multidimensional, signal (or image) using wavelets. Here the process consists of transforming
the noisy signal to the wavelet domain where it is expected that the underlying signal has
a sparse representation. The observed wavelet coefficients are thus thresholded before being

4



Figure 2: Example of a nested sequence of partitions corresponding to different values of
α. As α increases, the optimal penalised likelihood partition becomes coarser and is nested
within the optimal partition for smaller values of α.

transformed back to the original domain to provide a hopefully noise-free version of the original
signal.

Denoising of signals/images in this way provokes an additional question of whether we
would wish to partition our image in the original untransformed domain or simply within
each individual level of the wavelet coefficient space. The former approach is appealing in
that it permits the interpretation of the untransformed image as containing distinct regions
with differing characteristics and allows partitioning information to be shared across differing
levels of the wavelet transform which may improve estimation. Identification of such regions
in the original domain may also be of independent interest to the user. Figure 3 illustrates
the idea of partitioning the original untransformed domain and illustrates how the partition
of the original domain is transferred to the wavelet coefficients.

Our code provides the possibility to apply both types of partitioning algorithm. Levelwise
TreeThresh simply applies the partitioning algorithm explained in 2 to each level of the wavelet
coefficients independently. On the other hand, Wavelet TreeThresh combines the information
across different levels of the wavelet transform to partition in the original space domain. As
well as providing an estimate of the noise-free image/signal, the output of Wavelet TreeThresh
provides the partition of the space domain selected for the user to see. For an example of how
to apply the TreeThresh algorithm see section 4.2.

4 Using the software

4.1 Thresholding sequences

This section uses a simple example (which is very similar to the one given in the help file of
treethresh) to illustrates how the treethresh package can be used to threshold a simple
sequence.

First of all we start with creating a sparse signal, which is rather dense towards the middle
and sparse at the beginning and at the end.

We start with creating a vector that contains the probabilities wi that µi 6= 0.

> w.true <- c(rep(0.15,400),rep(0.6,300),rep(0.05,300))

Next we create the signal µ = (µ1, . . . , µ1000) by drawing the non-zero µi from a Laplace
distribution. Figure 4(a) displays the simulated true signal.
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(a) Illustration for a one-dimensional signal. (b) Illustration for a two-
dimensional signal.

Figure 3: Underlying signal in the original domain (bottom) and corresponding wavelet coeffi-
cients at fine levels. The thick solid lines indicating the partitions illustrate how the partition
of the original index domain in transferred to the each level of the wavelet coefficients.

> mu <- numeric(length(w.true))

> non.zero.entry <- runif(length(mu))<w.true

> num.non.zero.entries <- sum(non.zero.entry)

> mu[non.zero.entry] <- rexp(num.non.zero.entries,rate=0.5) *

+ sample(c(-1,1),num.non.zero.entries,replace=TRUE)

> mu[1:14]

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[7] 0.2581282 0.0000000 0.0000000 1.8380074 0.0000000 0.0000000
[13] 0.7091753 -2.2708853

Next we create the observed noisy signal x = (x1, . . . , x1000) by adding white noise to µ.
Figure 4(b) displays the simulated “observed” signal.

> x <- mu + rnorm(length(mu))

In our example we know that the noise has unit variance. However, in most practical
settings this would not necessarily be the case. Estimating the standard error a priori is
difficult. The medium absolute deviation as used in the function mad can be used to get
a rough idea of the standard error of the noise. The correction factor of 1.4826 used by
mad however is only unbiased if no signal is present, i.e. µ = 0. If a signal is present, it
overestimates the standard deviation of the noise. For a homogeneous signal with wi ≡ 0.5
mad overestimates the standard deviation by about 50%. To illustrate this bias, table 1 gives
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Figure 4: Underlying true signal and observed noisy signal x (entries corresponding to non-
zero µi in red)

True proportion of signal w 0 0.01 0.05 0.1
Correction factor 1.482602 1.473273 1.435957 1.389315
True proportion of signal w (ctd.) 0.2 0.3 0.5 1
Correction factor (ctd.) 1.296104 1.203145 1.019313 0.6176064

Table 1: Correction factors that would give an unbiased estimate of the standard deviation
of the noise

the correction factors one could use (instead of 1.4826) for a homogeneous signal if the wi
were constant and known (which would of course defeat the purpose of the EbayesThresh or
TreeThresh algorithms).

When using mad to estimate the standard error of the noise in our example signal, we use
a correction factor of 1.3 to account for the fact that our signal is fairly dense:

> sdev <- mad(x, constant=1.3)

> sdev

[1] 0.9973816

Next, we rescale the signal using our estimate sdev:

> x <- x /sdev

We are now ready to apply the treethresh function, which estimates the partitioning and
the corresponding wi.

> x.tt <- treethresh(x)
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The element splits contains detailed information about the partition. Each row corre-
sponds to a region or a split, respectively. The columns are as follows:

id Integer uniquely identifying the region / split.

parent.id The modulus of parent.id is the id of the parent region. If the current region
is to the left of the split, parent.id is negative, otherwise it is positive.

dim The dimension (indexed starting at 0) used to define the split.

pos The position of the split.

left.child.id / left.child.id If the region has been split further, these two columns
contain the id of the newly created “children”, otherwise NA.

crit The value of the criterion (i.e. by default the score test) for carrying out this split.

w The value of ŵ(P ) used in this region (before splitting further).

t The corresponding threshold tŵ(P ) in this region (before splitting further).

loglikelihood Contribution of the observations in this region to the loglikelihood (before
splitting further)

alpha / C If the value of C (or α) in the pruning step is chosen larger than the number given,
this region (not split) would be removed in the pruning, and only its “parent” or another
“ancestor” would be retained.

> x.tt$splits

id parent.id dim pos left.child.id right.child.id crit w
[1,] 1 NA 0 745 2 63 51.794514 0.291419714
[2,] 2 -1 0 393 3 32 52.354525 0.369894137
[3,] 3 -2 0 369 4 31 19.843343 0.139722902
[4,] 4 -3 0 9 5 6 4.821266 0.154346257
[5,] 5 -4 NA NA NA NA NA 0.008961814
[6,] 6 4 0 145 7 14 2.741212 0.158658582
[7,] 7 -6 0 83 8 13 21.499363 0.086433684
[8,] 8 -7 0 51 9 12 4.202844 0.176956791
[9,] 9 -8 0 14 10 11 18.933715 0.050922031
[10,] 10 -9 NA NA NA NA NA 0.918786110
[11,] 11 9 NA NA NA NA NA 0.008961814
[12,] 12 8 NA NA NA NA NA 0.403881292
[13,] 13 7 NA NA NA NA NA 0.008961814
[14,] 14 6 0 209 15 24 7.217389 0.201446984
[15,] 15 -14 0 202 16 23 2.755131 0.444045959
[16,] 16 -15 0 174 17 20 4.602292 0.333423913
[17,] 17 -16 0 168 18 19 3.978556 0.575379645
[18,] 18 -17 NA NA NA NA NA 0.239113084
[19,] 19 17 NA NA NA NA NA 1.000000000
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[20,] 20 16 0 193 21 22 14.132629 0.085758632
[21,] 21 -20 NA NA NA NA NA 0.008961814
[22,] 22 20 NA NA NA NA NA 0.450094843
[23,] 23 15 NA NA NA NA NA 1.000000000
[24,] 24 14 0 222 25 26 6.292213 0.103932956
[25,] 25 -24 NA NA NA NA NA 0.008961814
[26,] 26 24 0 360 27 30 1.403153 0.115532264
[27,] 27 -26 0 318 28 29 21.033108 0.086737152
[28,] 28 -27 NA NA NA NA NA 0.160374716
[29,] 29 27 NA NA NA NA NA 0.008961814
[30,] 30 26 NA NA NA NA NA 0.520767184
[31,] 31 3 NA NA NA NA NA 0.008961814
[32,] 32 2 0 699 33 58 13.165712 0.593491441
[33,] 33 -32 0 578 34 49 6.490249 0.656840656
[34,] 34 -33 0 558 35 46 6.313493 0.534220715
[35,] 35 -34 0 398 36 37 1.477147 0.583540235
[36,] 36 -35 NA NA NA NA NA 1.000000000
[37,] 37 35 0 433 38 41 3.805415 0.562061951
[38,] 38 -37 0 408 39 40 4.487796 0.283618576
[39,] 39 -38 NA NA NA NA NA 0.620281112
[40,] 40 38 NA NA NA NA NA 0.008961814
[41,] 41 37 0 526 42 43 1.689291 0.632060627
[42,] 42 -41 NA NA NA NA NA 0.701163056
[43,] 43 41 0 548 44 45 2.529591 0.444711221
[44,] 44 -43 NA NA NA NA NA 0.235895281
[45,] 45 43 NA NA NA NA NA 0.811099320
[46,] 46 34 0 570 47 48 10.629355 0.132429216
[47,] 47 -46 NA NA NA NA NA 0.008961814
[48,] 48 46 NA NA NA NA NA 0.383637108
[49,] 49 33 0 691 50 57 1.769788 0.856418890
[50,] 50 -49 0 686 51 56 1.924944 0.821869635
[51,] 51 -50 0 679 52 55 1.924676 0.846940694
[52,] 52 -51 0 591 53 54 2.009814 0.805784166
[53,] 53 -52 NA NA NA NA NA 1.000000000
[54,] 54 52 NA NA NA NA NA 0.747009644
[55,] 55 51 NA NA NA NA NA 1.000000000
[56,] 56 50 NA NA NA NA NA 0.008961814
[57,] 57 49 NA NA NA NA NA 1.000000000
[58,] 58 32 0 731 59 60 16.093096 0.135461573
[59,] 59 -58 NA NA NA NA NA 0.008961814
[60,] 60 58 0 736 61 62 1.889118 0.783767974
[61,] 61 -60 NA NA NA NA NA 1.000000000
[62,] 62 60 NA NA NA NA NA 0.456043602
[63,] 63 1 NA NA NA NA NA 0.033008570

t loglikelihood alpha C
[1,] 2.194507e+00 448.225319227 NA NA
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[2,] 1.996889e+00 463.494532535 19.9573109 1.00000000
[3,] 2.650636e+00 66.098749944 19.9573109 1.00000000
[4,] 2.597540e+00 67.704496409 1.9817559 0.09929975
[5,] 3.716922e+00 -0.024799078 1.9817559 0.09929975
[6,] 2.582479e+00 68.157410623 1.9817559 0.09929975
[7,] 2.883452e+00 17.246465573 1.9817559 0.09929975
[8,] 2.521125e+00 19.601810451 1.9817559 0.09929975
[9,] 3.107908e+00 0.562496789 1.9817559 0.09929975
[10,] 3.074389e-01 3.382137134 1.9817559 0.09929975
[11,] 3.716922e+00 -0.121345896 1.9817559 0.09929975
[12,] 1.913253e+00 20.864824894 1.9817559 0.09929975
[13,] 3.716922e+00 -0.162716706 1.9817559 0.09929975
[14,] 2.444340e+00 52.060227762 1.9817559 0.09929975
[15,] 1.814353e+00 36.212726074 1.9817559 0.09929975
[16,] 2.087522e+00 19.043980745 1.9817559 0.09929975
[17,] 1.477179e+00 20.552128104 1.9817559 0.09929975
[18,] 2.334947e+00 0.906651079 1.9817559 0.09929975
[19,] 4.656613e-09 21.800441126 1.9817559 0.09929975
[20,] 2.886988e+00 0.465277215 1.9817559 0.09929975
[21,] 3.716922e+00 -0.064435955 1.4789267 0.07410451
[22,] 1.799384e+00 2.008639895 1.4789267 0.07410451
[23,] 4.656613e-09 19.089805391 1.9817559 0.09929975
[24,] 2.798074e+00 19.810361342 1.9817559 0.09929975
[25,] 3.716922e+00 -0.038290657 1.2531460 0.06279132
[26,] 2.746972e+00 20.296258081 1.2531460 0.06279132
[27,] 2.881868e+00 10.820791673 1.2531460 0.06279132
[28,] 2.576553e+00 12.913908687 1.2531460 0.06279132
[29,] 3.716922e+00 -0.151214788 1.2531460 0.06279132
[30,] 1.621294e+00 10.845396079 1.2531460 0.06279132
[31,] 3.716922e+00 -0.094327569 1.9817559 0.09929975
[32,] 1.427620e+00 420.521353677 19.9573109 1.00000000
[33,] 1.245454e+00 423.344045805 5.5900262 0.28009917
[34,] 1.586444e+00 206.568628409 3.3452366 0.16761960
[35,] 1.454972e+00 200.361348969 2.3299279 0.11674558
[36,] 4.656613e-09 18.321250908 1.5539855 0.07786548
[37,] 1.513012e+00 182.942570321 1.5539855 0.07786548
[38,] 2.214841e+00 20.311702162 1.5539855 0.07786548
[39,] 1.352379e+00 22.414088081 1.5539855 0.07786548
[40,] 3.716922e+00 -0.020264070 1.5539855 0.07786548
[41,] 1.318493e+00 164.308230660 1.5539855 0.07786548
[42,] 1.108258e+00 134.137444158 1.0828199 0.05425681
[43,] 1.812708e+00 30.973234531 1.0828199 0.05425681
[44,] 2.343965e+00 9.707221576 1.0828199 0.05425681
[45,] 7.266783e-01 22.629204792 1.0828199 0.05425681
[46,] 2.678441e+00 8.537207297 2.3299279 0.11674558
[47,] 3.716922e+00 -0.046508986 1.1502850 0.05763728
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[48,] 1.963023e+00 9.734001310 1.1502850 0.05763728
[49,] 5.532468e-01 220.120653951 3.3452366 0.16761960
[50,] 6.861616e-01 205.410488114 0.8402070 0.04210021
[51,] 5.901004e-01 206.648162934 0.8402070 0.04210021
[52,] 7.464881e-01 177.582960433 0.6522152 0.03268052
[53,] 4.656613e-09 32.280795173 0.6522152 0.03268052
[54,] 9.564945e-01 146.085835615 0.6522152 0.03268052
[55,] 4.656613e-09 29.585962588 0.6522152 0.03268052
[56,] 3.716922e+00 -0.008273762 0.8402070 0.04210021
[57,] 4.656613e-09 15.161178727 0.8402070 0.04210021
[58,] 2.666764e+00 2.767334024 5.5900262 0.28009917
[59,] 3.716922e+00 -0.105419332 4.5238544 0.22667655
[60,] 8.271500e-01 7.396607787 4.5238544 0.22667655
[61,] 4.656613e-09 6.643391846 0.7137060 0.03576163
[62,] 1.784635e+00 1.466921907 0.7137060 0.03576163
[63,] 3.274768e+00 1.519837484 19.9573109 1.00000000

Figure 6 shows the estimated partion and the estimated weights wi both before and after the
pruning.

As mentioned in section 2 and as one can see from figure 6(a), the partition estimated in
this first step constitutes an overfit to the data. Thus we need to carry out a second pruning
step that reduces the complexity of the estimated partition.

> x.ttp <- prune(x.tt)

> x.ttp$splits

id parent.id dim pos left.child.id right.child.id crit w
[1,] 1 NA 0 745 2 63 51.79451 0.29141971
[2,] 2 -1 0 393 3 32 52.35453 0.36989414
[3,] 3 -2 NA NA NA NA NA 0.13972290
[4,] 32 2 NA NA NA NA NA 0.59349144
[5,] 63 1 NA NA NA NA NA 0.03300857

t loglikelihood alpha C
[1,] 2.194507 448.225319 NA NA
[2,] 1.996889 463.494533 19.95731 1
[3,] 2.650636 66.098750 19.95731 1
[4,] 1.427620 420.521354 19.95731 1
[5,] 3.274768 1.519837 19.95731 1

Figure 5 shows how the “optimal” value of the complexity parameter C was determined.
By default prune uses five-fold cross validation (can be changed using the argument v) to
estimate the predictive log-likelihood. The predictive log-likelihood is highest for partitions
with three regions, and the simpler partition having only one region is more than half a
standard error worse (being below the dotted line), thus we retain the partition with three
regions.

Now that we have found the optimal partition, we can start using the estimated weights
to threshold the sequence. Figure 7 shows the corresponding threshold. The thresholding is
done using the function thresh, which uses by default the posterior median.
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Figure 5: Predictive loglikelihood as a function of the complexity parameter C.
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Figure 6: Estimated partition and weights before and after pruning.
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Figure 7: Estimated thresholds tŵi
of the partition after pruning.

> mu.hat <- thresh(x.ttp)

Finally, we need to scale the reconstructed signal µ̂ back to the original domain.

> mu.hat <- mu.hat * sdev

Figure 8 shows the reconstructed sequence.

4.2 Thresholding wavelet coefficients

4.2.1 Preparing the example

This example uses the image tiles, shown in figure 9(a)

> data(tiles)

In the next step we will add noise to the image to see whether we can remove this noise
using the TreeThresh algorithm.

> tiles.noisy <- tiles + 0.8 * rnorm(length(tiles))

Figure 9(b) shows the noisy image. The corresponding signal to noise ratio is about 1 : 1.
In order to be able to use the treethresh algorithm, we need to compute the wavelet

transform of the image. We do this using the function imwd from the package wavethresh
(Nason, 1998).
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Figure 9: Image tiles (panel (a)) and image with white noise added (panel (b)).
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(a) TreeThresh (b) EbayesThresh

Figure 10: Image reconstructed by the TreeThresh algorithm (panel (a)) compared to the one
reconstructed by the EbayesThresh algorithm.

> tiles.noisy.imwd <- imwd(tiles.noisy)

4.2.2 Using the high-level function wavelet.treethresh

The function wavelet.treethresh allows for thresholding in a more user-friendly way by call-
ing the relevant functions extract.coefficients, estimate.sdev, treethresh / wttresh,
prune, and thresh as well as rescaling the coefficients so that the noise has approximately unit
variance. This subsection explains how to use this more user-friendly interface, see subsection
4.2.3 for the commands required to carry out the thresholding step by step.

> tiles.noisy.imwd.threshed <- wavelet.treethresh(tiles.noisy.imwd)

To use the Levelwise TreeThresh algorithm simply add an additional argument levelwise=TRUE.
After having thresholded the wavelet coefficients, we transform them back to the original

domain using the function imwr from the package wavethresh.

> tiles.denoised <- imwr(tiles.noisy.imwd.threshed)

Figure 10(a) shows the reconstructed image and compares it to the result obtained by
EbayesThresh (panel (b)). The corresponding l2 loss is 3468.336 for the TreeThresh algorithm
and 5697.663 for the EbayesThresh algorithm.

4.2.3 A step-by-step guide to carrying out the thresholding manually

This subsection explains how the reconstruction of the image can be done manually using
the functions extract.coefficients, estimate.sdev, treethresh / wttresh, prune, and
thresh
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Starting with the wavelet transform we have computed in section 4.2.1 we first estimate
the standard error of the noise. This is easier for wavelets than it is for general sequences, as
one can base the estimate on the coefficients at the finest level, which typically do not contain
much of the underlying signal. This can be done using the function estimate.sdev which
can be applied to objects of the classes wd or imwd.

> sdev <- estimate.sdev(tiles.noisy.imwd)

Our estimate of the standard error is 0.9476077, which is not too far from the true value of
0.8 which we used when we added the noise.

Next, we need to extract the coefficient matrices (or vectors in the case of wd objects) from
the object, so that we can threshold them. Typically one would not threshold the coarser
coefficients, by default extract.coefficients does not extract the coefficients at the four
coarsest levels (i.e. these will not be thresholded).

> tiles.noisy.coefs <- extract.coefficients(tiles.noisy.imwd)

Next we need to rescale the coefficients, so that the noise has (approximately) unit variance.

> for (nm in names(tiles.noisy.coefs))

+ tiles.noisy.coefs[[nm]] <- tiles.noisy.coefs[[nm]] / sdev

We are now ready to threshold the coefficients. We will use the Wavelet TreeThresh
algorithm.2

> tiles.noisy.wtt <- wtthresh(tiles.noisy.coefs)

Figure 12 (a) shows the estimated partitioning together with the corresponding thresholded
image (before having carried out the pruning). Panel (b) shows the partitioning after the
pruning, which removes two splits towards the middle of the image and one towards the
bottom left. Figure 11 shows how the optimal complexity parameter C was estimated: it
shows the predictive loglikelihood estimated by cross-validation as a function of the complexity
parameter C. The predictive log-likelihood is highest for C = 0.0130 (corresponding to 14
regions). However, choosing the slightly larger C = 0.2049 (corresponding to 13 regions) does
not give results that are more than half a standard error worse than the best choice (being
above the dotted line). Thus a partition with 13 regions is retained.

> tiles.noisy.wttp <- prune(tiles.noisy.wtt)

Once we have determined the partitioning, we only need to carry out the actual threshold-
ing, rescale the coefficients to their original domain, insert them into the imwd (or wd object)
and transform the coefficients back to the original domain.

> tiles.noisy.coefs.threshed <- thresh(tiles.noisy.wttp)

> for (nm in names(tiles.noisy.coefs))

+ tiles.noisy.coefs.threshed[[nm]] <-tiles.noisy.coefs.threshed[[nm]] * sdev

> tiles.noisy.imwd.threshed <- insert.coefficients(tiles.noisy.imwd,

+ tiles.noisy.coefs.threshed)

> tiles.noisy.threshed <- imwr(tiles.noisy.imwd.threshed)

2If we wanted to use the Levelwise TreeThresh algorithm we would simply threshold each coefficient matrix
(or vector) separately as described in section 4.1 (with the only exception that we would do the rescaling again).
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Figure 11: Predictive loglikelihood as a function of the complexity parameter C.

(a) before pruning (b) after pruning

Figure 12: Estimated partitioning (before and after the pruning) and corresponding recon-
structed image.
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