
Preparing case-parent trio data

and detecting disease-associated

SNP interactions with trio

Qing Li, Holger Schwender, and Ingo Ruczinski

1 Introduction

The R package trio contains functions for performing genotypic transmission disequi-

librium tests (gTDTs) for testing whether the distributions of individual SNPs (Schaid,

1996), two-way interactions of SNPs (Cordell, 2002; Cordell et al., 2004), or interactions

between SNPs and binary environmental variables differ between the cases, i.e. the children

affected by a disease, and the pseudo-controls derived from the parents’ genotypes.

Furthrmore, trio provides functionalities relevant for the analysis of case-parent trio

data with trio logic regression (Li et al., 2010). Two major features are implemented

in this package: functions that aid in the transformation of the trio data from standard

linkage files (ped format) or genotype format into objects suitable as input for trio logic

regression, and a framework that allows for the simulation of case-parent data, where the

risk of disease is specified by (higher order) SNP interactions.

In Section 2 of this vignette, it is shown how family-based data stored in a linkage/ped

file can be read into R and transformed into a format suitable for the application of the

functions for performing the genotypic TDTs, whereas Section 3 contains examples for

the application of these gTDT functions to individual SNPs, two-way SNP interactions,

and gene-environment interactions.

Section 4 is devoted to the steps relevant for data processing, to derive a matrix suitable

as input for trio logic regression, starting from a linkage or genotype file which possibly

contains missing data and/or Mendelian errors. We give some examples how missing

data can be addressed using haplotype-based imputation. The haplotype information can

be specified by the user, or when this information is not readily available, automatically

inferred. The haplotype blocks are also relevant in the delineation of the genotypes for

the pseudo-controls, as the linkage disequilibrium (LD) structure observed in the parents

is taken into account in this process. While this function is intended to generate complete

case-pseudo-control data as input for trio logic regression, an option to simply return the

completed trio data is also available.

For the estimation of the haplotype structure that might be used in the functions described

in Section 4, the R package trio also contains functions for computing and plotting

the pairwise LD values and for detecting LD blocks. In Section 5, it is described how

the pairwise values of the LD measures D′ and r2 can be computed with the function

getLD(), and how the D′ values can be employed to estimate haplotype blocks with the

algorithm of Gabriel et al. (2002).

Finally, Section 6 of the vignette explains in more detail how to set up simulations of case-

parent trio data, where the risk of disease is specified by SNP interactions. The most

time-consuming step for these types of simulations is the generation of mating tables and

the respective probabilities. The mating table information, however, can be stored, which

allows for fast simulations when replicates of the case-parent trio data are generated.

2 Preparing data for the genotypic TDTs

Case-parent trio data are typically stored in a ped file. The first six columns in such a ped

file, which is also referred to as linkage file, identify the family structure of the data, and

the phenotype. It is assumed that only one phenotype variable (column 6) is used. The

2

object trio.ped1, available in the R package, is an example of a data set in ped format. It

contains information for 10 SNPs in 100 trios. Besides the variables providing information

on the family structure and the phenotypes (columns 1–6), each SNP is encoded in two

variables denoting the alleles.

> library(trio)

> data(trio.data)

> str(trio.ped1)

'data.frame': 300 obs. of 26 variables:

$ famid : int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ fatid : int 0 0 1 0 0 1 0 0 1 0 ...

$ motid : int 0 0 2 0 0 2 0 0 2 0 ...

$ sex : int 1 2 2 1 2 1 1 2 1 1 ...

$ affected: int 0 0 2 0 0 2 0 0 2 0 ...

$ snp1_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp1_2 : int 1 1 1 1 1 1 1 1 1 2 ...

$ snp2_1 : int 1 2 1 1 2 1 1 1 1 1 ...

$ snp2_2 : int 1 2 2 1 2 2 1 1 1 1 ...

$ snp3_1 : int 1 1 1 2 1 1 1 1 1 1 ...

$ snp3_2 : int 2 1 2 2 1 2 1 2 1 2 ...

$ snp4_1 : int 1 1 1 2 1 1 1 1 1 1 ...

$ snp4_2 : int 2 1 2 2 1 2 1 2 1 2 ...

$ snp5_1 : int 1 2 1 1 2 1 1 1 1 1 ...

$ snp5_2 : int 2 2 2 1 2 2 2 1 1 1 ...

$ snp6_1 : int 1 1 1 2 1 1 1 1 1 1 ...

$ snp6_2 : int 2 1 2 2 1 2 1 2 1 2 ...

$ snp7_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp7_2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp8_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp8_2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp9_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp9_2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp10_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp10_2 : int 1 1 1 2 1 1 1 1 1 2 ...

> trio.ped1[1:10,1:12]

famid pid fatid motid sex affected snp1_1 snp1_2 snp2_1 snp2_2 snp3_1 snp3_2

1 10001 1 0 0 1 0 1 1 1 1 1 2

2 10001 2 0 0 2 0 1 1 2 2 1 1

3 10001 3 1 2 2 2 1 1 1 2 1 2

4 10002 1 0 0 1 0 1 1 1 1 2 2

5 10002 2 0 0 2 0 1 1 2 2 1 1

6 10002 3 1 2 1 2 1 1 1 2 1 2

7 10003 1 0 0 1 0 1 1 1 1 1 1

8 10003 2 0 0 2 0 1 1 1 1 1 2

3

9 10003 3 1 2 1 2 1 1 1 1 1 1

10 10004 1 0 0 1 0 1 2 1 1 1 2

If not already available as data frame or matrix in the R workspace, trio data can be read

into R using the function read.pedfile(). If we, for example, assume that the working

directory of the current R session contains a file called "pedfile.ped" (this file is actually

not available in trio, we just assume that such a file exists in the working directory),

then this file can be read into R by calling

> ped <- read.pedfile("pedfile.ped")

If the arguments coded and first.row of read.pedfile() are not specified by the

user, read.pedfile() automatically tries to figures out how the alleles in the ped file

are coded, and whether the first row contains the SNP names (first.row = FALSE) or

the data for the first subject (first.row = TRUE). In the former case, read.pedfile()

adds the SNP names (with extensions .1 and .2 to differ between the two alleles) to the

respective columns of the read-in data frame.

For the applications of the functions for performing gTDTs (see Section 3), the trio data

must be in a matrix in genotype format. In such a matrix, each columns represents a

SNP, which is coded by the number of minor alleles, and each block of 3 consecutive rows

contains the genotypes of the father, the mother, and their offspring (in this order) of one

specific trio. Missing values are allowed in this matrix, and need to be coded by NA. This

matrix can either be generated from a data frame in ped format by employing the function

ped2geno(), or more conveniently, by setting p2g = TRUE in read.pedfile(). Thus,

a matrix in genotype format might be obtained from the above ped file by calling

> geno <- read.pedfile("pedfile.ped", p2g=TRUE)

The output of these functions just contains the matrix in genotype format, whereas

trio.check() described in Section 4 additionally contains information about Mendelian

4

errors. Instead of checking for Mendelian errors in ped2geno() or read.pedfile(),

such errors are removed SNP-wise in the functions for performing genotypic TDTs.

If, for example, the data frame trio.ped1 should be transformed into a matrix in genotype

format, ped2geno() can be applied to it. However, ped2geno() requires unique personal

IDs (second column of trio.ped1) such that we first have to combine the family ID and

the personal ID (which would be automatically done by read.pedfile()), and change

the IDs of the fathers and mothers in columns 3 and 4 likewise.

> data(trio.data)

> trio.ped1[,2] <- paste(trio.ped1[,1], trio.ped1[,2], sep="_")

> ids <- trio.ped1[,3] != 0

> trio.ped1[ids,3] <- paste(trio.ped1[ids,1], trio.ped1[ids,3], sep="_")

> trio.ped1[ids,4] <- paste(trio.ped1[ids,1], trio.ped1[ids,4], sep="_")

> trio.ped1[1:5, 1:4]

famid pid fatid motid

1 10001 10001_1 0 0

2 10001 10001_2 0 0

3 10001 10001_3 10001_1 10001_2

4 10002 10002_1 0 0

5 10002 10002_2 0 0

Afterwards, ped2geno() can be applied to trio.ped1

> geno <- ped2geno(trio.ped1)

> geno[1:5,]

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

10001_1 0 0 1 1 1 1 0 0 0 0

10001_2 0 2 0 0 2 0 0 0 0 0

10001_3 0 1 1 1 1 1 0 0 0 0

10002_1 0 0 2 2 0 2 0 0 0 1

10002_2 0 2 0 0 2 0 0 0 0 0

The matrix trio.gen1 is the genotype matrix corresponding to trio.ped1. So the

genotypes in the output of ped2geno() are identical to trio.gen1 (except for that the

first two columns of trio.gen1 contain the family ID and the personal ID).

> data(trio.data)

> trio.gen1[1:5, 3:12]

5

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 0 0 1 1 1 1 0 0 0 0

2 0 2 0 0 2 0 0 0 0 0

3 0 1 1 1 1 1 0 0 0 0

4 0 0 2 2 0 2 0 0 0 1

5 0 2 0 0 2 0 0 0 0 0

> table(trio.gen1[,3:12] == geno)

TRUE

3000

3 Testing SNPs, pairs of SNPs, and GxE interac-

tions

A single SNP or two-way interaction can be tested with a gTDT by employing the functions

tdt() and tdt2way(). If we, for example, would like to test the first SNP in the matrix

mat.test available in the R package trio, then this could be done by calling

> data(trio.data)

> tdt(mat.test[,1])

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Coef OR Lower Upper SE Statistic p-Value

-0.04256 0.9583 0.6396 1.436 0.2063 0.04255 0.8366

In this case, a conditional logistic regression is fitted, and the output of tdt() contains

the parameter estimate Coef for the SNP in this model, the odds ratio OR, the Lower and

Upper bound of the 95% confidence interval of this odds ratio, the standard error SE of

the parameter estimate, the Wald Statistic for testing whether this SNP has an effect,

and the corresponding p-Value.

By default, an additive effect is tested. It is, however, also possible to consider a dominant

effect

6

> tdt(mat.test[,1], model="dominant")

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Dominant

Coef OR Lower Upper SE Statistic p-Value

-0.1134 0.8928 0.5219 1.527 0.2739 0.1713 0.679

or a recessive effect

> tdt(mat.test[,1], model="recessive")

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Recessive

Coef OR Lower Upper SE Statistic p-Value

0.06502 1.067 0.5279 2.157 0.3591 0.03278 0.8563

Similarly the interaction between SNP1 and SNP2 in mat.test can be tested by

> tdt2way(mat.test[,1], mat.test[,2])

Genotypic TDT for Epistatic Interactions (Using 15 Pseudo Controls)

Likelihood Ratio Test:

Loglikelihood (with Interactions): -272.644

Loglikelihood (without IAs): -275.29

Test Statistic: 5.293

P-Value: 0.26

In this case, the interaction is tested for epistatic interactions as described in Cordell

(2002). Thus, two conditional logistic regression models are fitted to the cases and the

respective 15 matched pseudo-controls (i.e. the 15 possible, but not transmitted Mendelian

genotype realizations, given the parents’ genotypes at the two loci), one consisting of two

dummy variables for each of the two SNPs, and the other additionally containing the

four possible interactions of these dummy variables. The two fitted models are then

compared by a likelihood ratio test, and the p-values are computed by approximation to

a χ2-distribution with four degrees of freedom.

7

This is the recommended way to test the two-way interaction. tdt2way(), however, also

provides a simpler test, in which the values of the SNPs (either coding for an additive

– which is the default – for a recessive, or for a dominant model) are simply multiplied

for each case and its 15 matched pseudo-controls, and a conditional logistic regression is

applied to this interaction.

> tdt2way(mat.test[,1], mat.test[,2], epistatic=FALSE)

Genotypic TDT for Two-Way Interaction (Using 15 Pseudo Controls)

Model Type: Additive

Coef OR Lower Upper SE Statistic p-Value

0.02424 1.025 0.7806 1.345 0.1387 0.03052 0.8613

All SNPs represented by the columns of a matrix in genotype format can be tested with a

gTDT by employing the function colTDT(). Thus, all SNPs in mat.test can be tested

by calling

> tdt.out <- colTDT(mat.test)

> tdt.out

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Top 5 SNPs:

Coef OR Lower Upper SE Statistic p-Value

6 0.44895 1.5667 0.9910 2.477 0.2337 3.6908 0.05471

3 -0.22884 0.7955 0.5103 1.240 0.2265 1.0209 0.31232

2 -0.19671 0.8214 0.5561 1.213 0.1990 0.9772 0.32288

4 -0.13353 0.8750 0.5783 1.324 0.2113 0.3994 0.52740

5 0.09764 1.1026 0.7148 1.701 0.2211 0.1950 0.65881

By default, the five top SNPs, i.e. the five SNPs with the lowest p-values, are shown

ordered by their significance. The top three SNPs can be shown by

> print(tdt.out, 3)

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

8

Top 3 SNPs:

Coef OR Lower Upper SE Statistic p-Value

6 0.4490 1.5667 0.9910 2.477 0.2337 3.6908 0.05471

3 -0.2288 0.7955 0.5103 1.240 0.2265 1.0209 0.31232

2 -0.1967 0.8214 0.5561 1.213 0.1990 0.9772 0.32288

If the integer specified in print() is larger than or equal to the number of SNPs in the

input matrix, the statistics for all SNPs are displayed in the order of their appearance in

this matrix.

> print(tdt.out, 10)

Genotypic TDT Based on 3 Pseudo Controls

Model Type: Additive

Coef OR Lower Upper SE Statistic p-Value

1 -0.04256 0.9583 0.6396 1.436 0.2063 0.04255 0.83658

2 -0.19671 0.8214 0.5561 1.213 0.1990 0.97724 0.32288

3 -0.22884 0.7955 0.5103 1.240 0.2265 1.02085 0.31232

4 -0.13353 0.8750 0.5783 1.324 0.2113 0.39941 0.52740

5 0.09764 1.1026 0.7148 1.701 0.2211 0.19497 0.65881

6 0.44895 1.5667 0.9910 2.477 0.2337 3.69084 0.05471

Since the genetic mode of inheritance is typically unknown, it might be beneficial to use

the maximum over the gTDT statistics for an additive, a dominant, and a recessive effect

as test statistic, which can be done using the function colTDTmaxStat()

> max.stat <- colTDTmaxStat(mat.test)

> max.stat

Maximum Genotypic TDT Statistic

Top 5 SNPs:

Max-Statistic Additive Dominant Recessive

SNP6 5.1295 3.6908 1.14571 5.12953

SNP2 3.1569 0.9772 0.04811 3.15688

SNP3 2.7150 1.0209 2.71503 0.76851

SNP4 0.6990 0.3994 0.69897 0.01234

SNP5 0.2156 0.1950 0.07337 0.21555

This function just computes the MAX gTDT statistic, i.e. the maximum over the three

gTDT statistics, since in contrast to these gTDT statistics, which under the null hypoth-

esis follow an asymptotic χ2
1-distribution, the null distribution of the MAX gTDT statistic

9

is unknown, and must therefore be estimated by a (time-consuming) permutation proce-

dure. To also determine permutation-based p-values, colTDTmaxTest() can be applied

to a matrix in genotype matrix. For example,

> max.out <- colTDTmaxTest(mat.test, perm=1000)

computes p-values for the six SNPs in mat.test based on 1000 permutations of the

case-pseudo-control status.

> max.out

Maximum Genotypic TDT

Top 5 SNPs:

Max-Statistic Additive Dominant Recessive p-Value

SNP6 5.1295 3.6908 1.14571 5.12953 0.054

SNP2 3.1569 0.9772 0.04811 3.15688 0.154

SNP3 2.7150 1.0209 2.71503 0.76851 0.209

SNP4 0.6990 0.3994 0.69897 0.01234 0.665

SNP5 0.2156 0.1950 0.07337 0.21555 0.902

All two-way interactions comprised a matrix in genotype format can be tested using the

function colTDT2way(). Since both the gTDT for two-way interactions and the likelihood

ratio test of Cordell et al. (2004) assume that the two considered loci are unlinked, the

testing might fail, i.e. the fitting of the conditional logistic regression might not work

properly, if the two SNPs are in (strong) LD. (Another reason why the fitting might

not work properly is that the minor allele frequencies of both SNPs are very small.)

Therefore, colTDT2way() provides an argument called genes that allows specifying which

SNP belongs to which LD-block, gene, or genetic region. If genes is not specified, the

interactions between all m(m − 1)/2 pairs of the m SNPs in a matrix are tested. If

specified, only the interactions between SNPs showing different values of genes are tested.

If we thus assume that the first two SNPs in mat.test belong to gene G1 and the other

four SNPs to G2

> genes <- paste("G", rep(1:2, c(2,4)), sep="")

> genes

10

[1] "G1" "G1" "G2" "G2" "G2" "G2"

then only the four interactions between SNP1 and each SNP from gene G2, as well as the

four interactions between SNP2 and each SNP from gene G2 are tested, when calling

> tdt2.out <- colTDT2way(mat.test, genes=genes)

> tdt2.out

Genotypic TDT for Epistatic Interactions (Using 15 Pseudo Controls)

Top 5 SNP Interactions (Likelihood Ratio Test):

LL (with IAs) LL (w/o IAs) Statistic P-Value Genes

SNP1 : SNP5 -269.5 -277.0 15.069 0.004561 G1 : G2

SNP2 : SNP4 -270.3 -275.0 9.528 0.049167 G1 : G2

SNP1 : SNP3 -273.0 -275.2 4.440 0.349724 G1 : G2

SNP2 : SNP5 -273.3 -275.3 3.871 0.423763 G1 : G2

SNP2 : SNP6 -271.2 -272.6 2.805 0.591008 G1 : G2

Again, by default the top five SNP interactions are shown. The statistics for all eight

interactions can be displayed by calling

> print(tdt2.out, 8)

Genotypic TDT for Epistatic Interactions (Using 15 Pseudo Controls)

Likelihood Ratio Test:

LL (with IAs) LL (w/o IAs) Statistic P-Value Genes

SNP1 : SNP3 -273.0 -275.2 4.440 0.349724 G1 : G2

SNP1 : SNP4 -275.9 -276.8 1.653 0.799239 G1 : G2

SNP1 : SNP5 -269.5 -277.0 15.069 0.004561 G1 : G2

SNP1 : SNP6 -273.3 -274.3 2.050 0.726494 G1 : G2

SNP2 : SNP3 -273.0 -273.4 0.778 0.941371 G1 : G2

SNP2 : SNP4 -270.3 -275.0 9.528 0.049167 G1 : G2

SNP2 : SNP5 -273.3 -275.3 3.871 0.423763 G1 : G2

SNP2 : SNP6 -271.2 -272.6 2.805 0.591008 G1 : G2

In genetic association studies, it is often also of interest to test gene-environment inter-

actions, where most of the usually considered environmental variables are binary. The R

package trio therefore also provides a function called colGxE to test the interactions

between each of the SNPs comprised by a matrix in genotype format and a binary envi-

ronmental variable with values zero and one. If we, for example, assume that the children

in the first 50 trios comprised by (the first 150 rows of) mat.test are girls, and the

remaining 50 are boys,

11

> sex <- rep(0:1, e=50)

then we can test the interactions between the six SNPs in mat.test and the environmental

variable “sex" by

> gxe.out <- colGxE(mat.test, sex)

> gxe.out

Genotypic TDT for GxE Interactions with Binary E

Model Type: Additive

Top 5 GxE Interactions:

Coef OR Lower Upper SE Statistic p-value

SNP2 0.5849 1.7949 0.8134 3.961 0.4038 2.0982 0.1475

SNP1 -0.4257 0.6533 0.2896 1.474 0.4151 1.0518 0.3051

SNP6 -0.3878 0.6786 0.2697 1.708 0.4708 0.6783 0.4102

SNP4 0.2624 1.3000 0.5668 2.982 0.4235 0.3838 0.5356

SNP5 0.2007 1.2222 0.5129 2.912 0.4430 0.2052 0.6506

Effects of the SNPs in the Corresponding GxE Models:

Coef OR Lower Upper SE Statistic p-value

SNP2 -0.5108 0.6000 0.3345 1.076 0.2981 2.9356 0.08665

SNP1 0.1744 1.1905 0.6664 2.127 0.2960 0.3469 0.55585

SNP6 0.6242 1.8667 0.9970 3.495 0.3200 3.8051 0.05110

SNP4 -0.2624 0.7692 0.4294 1.378 0.2974 0.7781 0.37771

SNP5 0.0000 1.0000 0.5462 1.831 0.3086 0.0000 1.00000

In this situation, a conditional logistic regression model β1G+β2(G×E) is fitted for each

SNP, where G is a variable coding for an additive effect of the SNP, and G × E is the

corresponding gene-environment interaction. Analogously to the other gTDT functions, a

dominant or a recessive effect can also be considered by changing the argument model of

colGxE. The output contains the same statistics as, for example, colTDT for both β1 and

β2, where the statistics for β2 are printed first, as these are here the effects of interest.

The printing of the statistics for the testing of G can be avoided by calling

> print(gxe.out, onlyGxE=TRUE)

Genotypic TDT for GxE Interactions with Binary E

Model Type: Additive

12

Top 5 GxE Interactions:

Coef OR Lower Upper SE Statistic p-value

SNP2 0.5849 1.7949 0.8134 3.961 0.4038 2.0982 0.1475

SNP1 -0.4257 0.6533 0.2896 1.474 0.4151 1.0518 0.3051

SNP6 -0.3878 0.6786 0.2697 1.708 0.4708 0.6783 0.4102

SNP4 0.2624 1.3000 0.5668 2.982 0.4235 0.3838 0.5356

SNP5 0.2007 1.2222 0.5129 2.912 0.4430 0.2052 0.6506

4 Generating data for trio logic regression input

If interactions of a higher order than two are of interest, trio logic regression can be used

to detect disease-associated SNP interactions of any order.

To generate data that can be used as input in trio logic regression, the sequential applica-

tion of two functions is required. The function trio.check() evaluates whether or not

Mendelian errors are present in the data (stored either in linkage or in genotype format,

see Section 4.1). If no Mendelian inconsistencies are detected, this function creates an

object that is passed to the function trio(). The latter function then generates a matrix

of the genotype information for the affected probands and the inferred pseudo-controls,

taking the observed LD structure into account. Missing data are imputed in the process.

The user, however, has to supply the information for the lengths of the LD blocks. A

function called findLDblocks() for identifying LD blocks, and thus, for specifying the

length of the blocks is therefore also contained in this package (see Section 5). Given the

lengths of the LD blocks, the haplotype frequencies can be estimated, using the function

haplo.em() in the haplo.stat package.

4.1 Supported file formats and elementary data processing

In this section, we show how to generate data suitable for input to trio logic regression from

complete pedigree data without Mendelian errors. The function trio.check() requires

13

that the trio data are already available as a data frame or matrix, either in linkage/ped

format (the default), or in genotype format (for reading a ped file into R, see Section 3).

The first function used is always trio.check(). Unless otherwise specified, this function

assumes that the data are in linkage format. If no Mendelian inconsistencies in the data

provided are identified, trio.check() creates an object that can be processed in the

subsequent analysis with this package. The genotype information for each SNP will be

converted into a single variable, denoting the number of variant alleles.

If we thus would like to check whether the data frame trio.ped1 contains Mendelian

errors, we call

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.ped1)

> str(trio.tmp, max=1)

List of 2

$ trio :'data.frame': 300 obs. of 12 variables:

$ errors: NULL

> trio.tmp$trio[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 2 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

Taking the LD structure of the SNPs into account is imperative when creating the geno-

types for the pseudo-controls. This requires information on the LD blocks. However,

there are many ways to delineate this block structure, and in the absence of a consensus

what the best approach is, researchers have different preferences, and thus, results can be

different. In the function findLDblocks(), a modified version of the method of Gabriel

et al. (2002) has been implemented, which can be used to specify the block structure by

> table(foundBlocks$blocks}

14

if foundBlocks is the output of findLDblocks() (for details, see Section 5).

The function trio(), which operates on an output object of trio.check(), accepts the

block length information as an argument (in the following, we assume that the block

structure is given by c(1, 4, 2, 3), i.e. the first block consists only of the first SNP,

the second block of the next four SNPs, the third of the following two SNPs, and the

last block of the remaining three SNPs). If this argument is not specified, a uniform

block length of 1 (i.e. no LD structure) is assumed. If the haplotype frequencies are not

specified, they are estimated from the parents’ genotypes (more information on this in the

following sections). The function trio() then returns a list that contains the genotype

information in binary format, suitable as input for trio logic regression: bin is a matrix

with the conditional logistic regression response in the first columns, and each SNP as

two binary variables using dominant and recessive coding. The list element miss contains

information about missing values in the original data, and freq contains information on

the estimated haplotype frequencies.

> trio.bin <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> str(trio.bin, max=1)

List of 3

$ bin : num [1:400, 1:21] 3 0 0 0 3 0 0 0 3 0 ...

..- attr(*, "dimnames")=List of 2

$ miss: NULL

$ freq:'data.frame': 19 obs. of 3 variables:

> trio.bin$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 1 0 1 0 1 0 1 0

[3,] 0 0 0 1 0 0 0 0 0 1 1

[4,] 0 0 0 1 0 0 0 0 0 1 1

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 1 0 1 0 1 0 1 0

[7,] 0 0 0 1 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 1 0 0 0 0 0 0 0 0 0

15

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 1 0

[7,] 1 0 0 0 0 0 0 0 0 0

[8,] 1 0 0 0 0 0 0 0 1 0

As mentioned above, the trio package also accommodates trio genotype data. The object

trio.gen1, available in the R package, is an example of such a data set. Equivalent to

trio.ped1 used above, it contains information for 10 SNPs in 100 trios. When used in

trio.check(), the argument is.linkage needs to be set to FALSE. The output from

this function is then identical to the one shown derived from the linkage file, and can be

passed to the function trio().

> data(trio.data)

> str(trio.gen1)

'data.frame': 300 obs. of 12 variables:

$ famid: int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ snp1 : int 0 0 0 0 0 0 0 0 0 1 ...

$ snp2 : int 0 2 1 0 2 1 0 0 0 0 ...

$ snp3 : int 1 0 1 2 0 1 0 1 0 1 ...

$ snp4 : int 1 0 1 2 0 1 0 1 0 1 ...

$ snp5 : int 1 2 1 0 2 1 1 0 0 0 ...

$ snp6 : int 1 0 1 2 0 1 0 1 0 1 ...

$ snp7 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp8 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp9 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp10: int 0 0 0 1 0 0 0 0 0 1 ...

> trio.gen1[1:10,1:12]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 2 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

7 10003 1 0 0 0 0 1 0 0 0 0 0

8 10003 2 0 0 1 1 0 1 0 0 0 0

9 10003 3 0 0 0 0 0 0 0 0 0 0

10 10004 1 1 0 1 1 0 1 0 0 0 1

> trio.tmp <- trio.check(dat=trio.gen1, is.linkage=F)

> trio.bin <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3))

16

4.2 Missing genotype information

Missing genotypes in ped(igree) files are typically encoded using the integer 0. The data

files can be processed as before if they contain such missing values:

> data(trio.data)

> str(trio.ped2)

'data.frame': 300 obs. of 26 variables:

$ famid : int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ fatid : int 0 0 1 0 0 1 0 0 1 0 ...

$ motid : int 0 0 2 0 0 2 0 0 2 0 ...

$ sex : int 1 2 2 1 2 1 1 2 1 1 ...

$ affected: int 0 0 2 0 0 2 0 0 2 0 ...

$ snp1_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp1_2 : int 1 1 1 1 1 1 1 1 1 2 ...

$ snp2_1 : int 1 0 1 1 2 1 1 1 1 1 ...

$ snp2_2 : int 1 0 2 1 2 2 1 1 1 1 ...

$ snp3_1 : int 1 1 1 2 0 1 1 1 1 1 ...

$ snp3_2 : int 2 1 2 2 0 2 1 2 1 2 ...

$ snp4_1 : int 1 0 1 2 1 1 1 1 1 1 ...

$ snp4_2 : int 2 0 2 2 1 2 1 2 1 2 ...

$ snp5_1 : int 1 2 1 1 2 1 1 1 1 1 ...

$ snp5_2 : int 2 2 2 1 2 2 2 1 1 1 ...

$ snp6_1 : int 1 1 1 0 1 1 1 1 1 1 ...

$ snp6_2 : int 2 1 2 0 1 2 1 2 1 2 ...

$ snp7_1 : int 1 1 1 1 1 1 1 1 0 1 ...

$ snp7_2 : int 1 1 1 1 1 1 1 1 0 1 ...

$ snp8_1 : int 1 1 1 1 0 1 1 1 0 1 ...

$ snp8_2 : int 1 1 1 1 0 1 1 1 0 1 ...

$ snp9_1 : int 1 1 1 1 1 1 1 0 1 1 ...

$ snp9_2 : int 1 1 1 1 1 1 1 0 1 1 ...

$ snp10_1 : int 1 1 1 1 1 1 1 1 1 1 ...

$ snp10_2 : int 1 1 1 2 1 1 1 1 1 2 ...

> trio.tmp <- trio.check(dat=trio.ped2)

> trio.tmp$trio[1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 NA 0 NA 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 NA 0 0 0 1

5 10002 2 0 2 NA 0 2 0 0 NA 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

17

Since trio logic regression requires complete data, the function trio() also performs an

imputation of the missing genotypes. The imputation is based on estimated haplotypes,

using the block length information specified by the user. In a later section we demonstrate

how this imputation can be run more efficiently when haplotype frequency estimates are

already available.

> trio.bin <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> trio.bin$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 0 0 1 0 1 0 1 0

[3,] 0 0 0 1 0 0 0 0 0 1 1

[4,] 0 0 0 0 0 0 0 0 0 1 1

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 1 0 1 0 1 0 1 0

[7,] 0 0 0 1 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0

[3,] 1 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0 0 0

[7,] 1 0 0 0 0 0 0 0 1 0

[8,] 0 0 0 0 0 0 0 0 1 0

Missing data in genotypes files should be encoded using NA, the conventional symbol in

R to indicate missing values.

> data(trio.data)

> str(trio.gen2)

'data.frame': 300 obs. of 12 variables:

$ famid: int 10001 10001 10001 10002 10002 10002 10003 10003 10003 10004 ...

$ pid : int 1 2 3 1 2 3 1 2 3 1 ...

$ snp1 : int 0 0 0 0 0 0 0 0 0 1 ...

$ snp2 : int 0 2 1 NA NA 1 0 0 0 0 ...

$ snp3 : int 1 NA 1 2 0 1 0 NA 0 1 ...

$ snp4 : int 1 0 1 NA 0 1 0 1 0 1 ...

$ snp5 : int 1 2 1 0 2 1 1 NA 0 0 ...

$ snp6 : int 1 0 1 NA 0 1 0 1 0 1 ...

$ snp7 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp8 : int 0 0 NA 0 0 0 0 NA 0 0 ...

18

$ snp9 : int 0 0 0 0 0 0 0 0 0 0 ...

$ snp10: int 0 0 0 1 0 0 0 0 0 1 ...

> trio.tmp <- trio.check(dat=trio.gen2, is.linkage=FALSE)

> trio.bin <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3))

> trio.bin$bin[1:8,]

y snp1.D snp1.R snp2.D snp2.R snp3.D snp3.R snp4.D snp4.R snp5.D snp5.R

[1,] 3 0 0 1 0 1 0 1 0 1 0

[2,] 0 0 0 1 0 0 0 0 0 1 1

[3,] 0 0 0 1 0 1 0 1 0 1 0

[4,] 0 0 0 1 0 0 0 0 0 1 1

[5,] 3 0 0 1 0 1 0 1 0 1 0

[6,] 0 0 0 0 0 1 0 1 0 1 0

[7,] 0 0 0 0 0 1 0 1 0 1 0

[8,] 0 0 0 1 0 1 0 1 0 1 0

snp6.D snp6.R snp7.D snp7.R snp8.D snp8.R snp9.D snp9.R snp10.D snp10.R

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 1 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0

[5,] 1 0 0 0 0 0 0 0 0 0

[6,] 1 0 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 0 0 1 0

[8,] 0 0 0 0 0 0 0 0 1 0

As the user might also be interested in the completed genotype data in the original format

(genotype or linkage file), the function trio() also allows for this option by using the

argument logic = FALSE. In the resulting object, the matrix bin is then replaced by the

data frame trio, and miss and freq are also returned.

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.gen2, is.linkage=FALSE)

> trio.imp <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3), logic=FALSE)

> str(trio.imp, max=1)

List of 3

$ trio:'data.frame': 300 obs. of 12 variables:

$ miss:'data.frame': 250 obs. of 5 variables:

$ freq:'data.frame': 19 obs. of 3 variables:

> trio.imp$miss[c(1:6),]

famid pid snp r c

1 10001 2 3 2 5

2 10001 3 8 3 10

3 10002 1 2 4 4

19

4 10002 1 4 4 6

5 10002 1 6 4 8

6 10002 2 2 5 4

> print(trio.gen2[1:6,])

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 NA 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 NA 0 0

4 10002 1 0 NA 2 NA 0 NA 0 0 0 1

5 10002 2 0 NA 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

> print(trio.imp$trio[1:6,])

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 1 0 0 0 1

5 10002 2 0 1 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

The same applies to pedigree data:

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.ped2)

> trio.imp <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3), logic=FALSE)

4.3 Mendelian errors

To delineate the genotype information for the pseudo-controls, the trio data must not

contain any Mendelian errors. The function trio.check() returns a warning, and an R

object with relevant information when Mendelian errors are encountered is created.

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.ped.err)

[1] "Found Mendelian error(s)."

> str(trio.tmp, max=1)

20

List of 3

$ trio : NULL

$ errors :'data.frame': 4 obs. of 5 variables:

$ trio.err:'data.frame': 300 obs. of 12 variables:

> trio.tmp$errors

trio famid snp r c

1 1 10001 9 1 11

2 1 10001 10 1 12

3 2 10002 10 4 12

4 3 10003 10 7 12

In this data set, trio 1, for example, contains two Mendelian errors, in SNPs 9 and 10.

> trio.tmp$trio.err[1:3, c(1,2, 11:12)]

famid pid snp9 snp10

1 10001 1 0 1

2 10001 2 0 2

3 10001 3 2 0

> trio.ped.err[1:3,c(1:2, 23:26)]

famid pid snp9_1 snp9_2 snp10_1 snp10_2

1 10001 1 1 1 1 2

2 10001 2 1 1 2 2

3 10001 3 2 2 1 1

It is the user’s responsibility to find the cause for the Mendelian errors and correct those,

if possible. However, Mendelian inconsistencies are often due to genotyping errors and

thus, it might not be possible to correct those in a very straight-forward manner. In this

instance, the user might want to encode the genotypes that cause theses Mendelian errors

in some of the trios as missing data. The argument replace = TRUE in trio.check()

allows for this possibility. The resulting missing data can then be imputed as described in

the previous section.

> trio.rep <- trio.check(dat=trio.ped.err, replace=TRUE)

> str(trio.rep, max=1)

List of 2

$ trio :'data.frame': 300 obs. of 12 variables:

$ errors: NULL

21

> trio.rep$trio[1:3,11:12]

snp9 snp10

1 NA NA

2 NA NA

3 NA NA

The same option is available for data in genotype format with Mendelian inconsistencies.

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.gen.err, is.linkage=FALSE)

[1] "Found Mendelian error(s)."

> trio.tmp$errors

trio famid snp r c

1 1 2001 5 1 7

2 2 2002 5 4 7

> trio.tmp$trio.err[1:6, c(1,2,7), drop=F]

famid pid snp5

6 2001 1 0

7 2001 2 0

5 2001 3 1

9 2002 1 1

10 2002 2 0

8 2002 3 2

> trio.rep <- trio.check(dat=trio.gen.err, is.linkage=FALSE, replace=TRUE)

> trio.rep$trio[1:6,c(1,2,7)]

famid pid snp5

6 2001 1 NA

7 2001 2 NA

5 2001 3 NA

9 2002 1 NA

10 2002 2 NA

8 2002 3 NA

4.4 Using haplotype frequencies

As mentioned above, when estimates for the haplotype frequencies are already available,

they can be used in the imputation of missing data and the delineation of the pseudo-

controls. In case there are blocks of length one, i.e. SNPs not belonging to any LD

22

blocks, the minor allele frequencies of those SNPs are supplied. In this case, no haplotype

estimation is required when the function trio() is run, which can result in substantial

time savings.

As an example for the format of a file containing haplotype frequency estimates and SNP

minor allele frequencies, the object freq.hap is available in the R package:

> data(trio.data)

> str(freq.hap)

'data.frame': 20 obs. of 3 variables:

$ key : int 1 1 2 2 2 2 2 2 2 3 ...

$ hap : int 1 2 1111 1112 1121 1221 1222 2112 2222 11 ...

$ freq: num 0.8 0.2 0.33734 0.20593 0.0024 ...

> freq.hap[1:6,]

key hap freq

1 1 1 0.800000000

2 1 2 0.200000000

3 2 1111 0.337339745

4 2 1112 0.205929486

5 2 1121 0.002403846

6 2 1221 0.368589742

We can now impute the missing genotypes using these underlying haplotype frequencies.

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.gen2, is.linkage=FALSE)

> trio.imp <- trio(trio.dat=trio.tmp, freq=freq.hap, logic=FALSE)

> str(trio.imp, max=1)

List of 3

$ trio:'data.frame': 300 obs. of 12 variables:

$ miss:'data.frame': 250 obs. of 5 variables:

$ freq:'data.frame': 20 obs. of 3 variables:

> print(trio.gen2[1:6,])

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 NA 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 NA 0 0

4 10002 1 0 NA 2 NA 0 NA 0 0 0 1

5 10002 2 0 NA 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

23

> print(trio.imp$trio[1:6,])

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

1 10001 1 0 0 1 1 1 1 0 0 0 0

2 10001 2 0 2 0 0 2 0 0 0 0 0

3 10001 3 0 1 1 1 1 1 0 0 0 0

4 10002 1 0 0 2 2 0 2 0 0 0 1

5 10002 2 0 1 0 0 2 0 0 0 0 0

6 10002 3 0 1 1 1 1 1 0 0 0 0

4.5 Trio Logic Regression

Trio logic regression can be applied to case-parent trio data using the standard R function

logreg (available in the R package LogicReg) to perform a logic regression by employing

a plug-in provided by the R package trio. However, this requires to modify and recompile

LogicReg, which can be done in the following way:

1. Download the package source for LogicReg from http://cran.r-project.org/

web/packages/LogicReg/index.html.

2. Extract this package.

3. Replace the file My_own_scoring.f available in the subdirectory src of LogicReg

by the file My_own_scoring.f provided in the subdirectory plugin of the R package

trio.

4. Recompile the modified LogicReg by applying R CMD build to it (for details

on how to check and build R packages, see http://cran.r-project.org/doc/

manuals/R-exts.html).

5. Install this recompiled package.

After installing and loading this recompiled package, trio logic regression can be applied

to trio.bin or to trio.imp (see Sections 4.2 and 4.3) by

24

http://cran.r-project.org/web/packages/LogicReg/index.html
http://cran.r-project.org/web/packages/LogicReg/index.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html

> library(LogicReg)

> resp <- trio.bin$bin[,1]

> bin <- trio.bin$bin[,-1]

> triolr.out <- logreg(resp=resp, bin=bin, type=0, ntrees=1, ...)

where the . . . should indicate that all other arguments of logreg such as select (type

of model selection) and nleaves (the maximum number of leaves that the logic tree in

the trio logic regression model is allowed to have) need to be or can be specified as in a

typical logic regression analysis. One restriction is that in trio logic regression currently

just one logic tree can be grown, and therefore, ntrees needs to be set to 1.

Adding the trio logic regression plug-in to LogicReg allows making use of almost all

the features implemented in logreg. The only exceptions are the two permutation tests

provided by logreg. The standard implementation for performing these null-model and

conditional permutation tests cannot be applied to case-parent trio data, as the special

structure of these data must be taken into account by the permutation method. Therefore,

the R package trio provides a function called trio.permTest that can be used to

apply null-model test with, for example, 20 permutations to the case-parent trio data in

trio.bin by calling

> trio.permTest(triolr.out, n.perm=20)

and the conditional permutation test can be performed by

> trio.permTest(triolr.out, conditional=TRUE, n.perm=20)

5 Detection of LD blocks

For the estimation of the haplotype structure that might be used in the R function trio(),

this package also includes functions for the fast computation of the pairwise D′ and r2

25

values for hundreds or thousands of SNPs, and for the identification of LD blocks in

these genotype data using a modified version of the algorithm proposed by Gabriel et al.

(2002). For the latter, it is assumed that the SNPs are ordered by their position on the

chromosomes.

These functions are not restricted to trio data, but can also be applied to population-

based data. The only argument of these functions specifically included for trio data

is parentsOnly. If set to TRUE, only the genotypes of the parents are used in the

determination of the pairwise values of the LD measures and the estimation of the LD

blocks. Furthermore, each parent is only considered once so that parents with more than

one offspring do not bias the estimations. If trio data is used as input, the functions

assume that the matrix containing the SNP data is in genotype format.

Here, we consider a simulated matrix LDdata from a population-based study. Thus, all

subjects are assumed to be unrelated. This matrix contains simulated genotype data for

10 LD blocks each consisting of 5 SNPs each typed on 500 subjects. The pairwise D′

and r2 values for the SNPs in this matrix can be computed by

> data(trio.data)

> ld.out <- getLD(LDdata, asMatrix=TRUE)

where by the default these values are stored in vectors to save memory. If asMatrix is

set to TRUE, the values will be stored in matrices. The pairwise LD values for the first 10

SNPs (rounded to the second digit) can be displayed by

> round(ld.out$Dprime[1:10,1:10], 2)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 NA NA NA NA NA NA NA NA NA NA

S2 0.99 NA NA NA NA NA NA NA NA NA

S3 0.98 1.00 NA NA NA NA NA NA NA NA

S4 0.98 0.99 1.00 NA NA NA NA NA NA NA

S5 0.97 0.98 0.99 1.00 NA NA NA NA NA NA

S6 0.09 0.06 0.05 0.05 0.04 NA NA NA NA NA

S7 0.11 0.09 0.08 0.08 0.07 0.99 NA NA NA NA

S8 0.13 0.11 0.10 0.10 0.09 0.99 1.00 NA NA NA

S9 0.14 0.11 0.10 0.11 0.10 0.99 1.00 1.00 NA NA

S10 0.16 0.13 0.11 0.12 0.11 0.97 0.98 0.98 1 NA

26

Figure 1: Pairwise r2 values for the SNPs from LDdata.

> round(ld.out$rSquare[1:10,1:10], 2)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 NA NA NA NA NA NA NA NA NA NA

S2 0.97 NA NA NA NA NA NA NA NA NA

S3 0.94 0.97 NA NA NA NA NA NA NA NA

S4 0.93 0.96 1.00 NA NA NA NA NA NA NA

S5 0.91 0.94 0.98 0.98 NA NA NA NA NA NA

S6 0.00 0.00 0.00 0.00 0 NA NA NA NA NA

S7 0.00 0.00 0.00 0.00 0 0.97 NA NA NA NA

S8 0.00 0.00 0.00 0.00 0 0.95 0.98 NA NA NA

S9 0.00 0.00 0.00 0.00 0 0.93 0.96 0.98 NA NA

S10 0.00 0.00 0.00 0.00 0 0.91 0.94 0.96 0.98 NA

and the pairwise LD plot for all SNPs can be generated by

> plot(ld.out)

(see Figure 1). This figure shows the r2-values. The D′ values can be plotted by

> plot(ld.out, "Dprime")

27

Figure 2: LD blocks as found by the modified algorithm of Gabriel et al. (2002). The
borders of the LD blocks are marked by red lines. The color for the LD between each pair
of SNPs is defined by the three categories used by Gabriel et al. (2002) to define the LD
blocks.

(not shown).

The LD blocks in genotype data can be identified using the modified algorithm of Gabriel

et al. (2002) by calling

> blocks <- findLDblocks(LDdata)

> blocks

Found 10 LD blocks containing between 5 and 5 SNPs.

0 of the 50 SNPs do not belong to a LD block.

Used Parameter:

Strong LD: C_L >= 0.7 and C_U >= 0.98

Recombination: C_U < 0.9

(C_L and C_U are the lower and upper bound of

the 90%-confidence intervals for D')
LD blocks: Ratio >= 9

Alternatively, the output of getLD() can be used when addVarN has been set to TRUE in

getLD() to store additional information on the pairwise LD values.

> ld.out2 <- getLD(LDdata, addVarN=TRUE)

28

> blocks2 <- findLDblocks(ld.out2)

> blocks2

Found 10 LD blocks containing between 5 and 5 SNPs.

0 of the 50 SNPs do not belong to a LD block.

Used Parameter:

Strong LD: C_L >= 0.7 and C_U >= 0.98

Recombination: C_U < 0.9

(C_L and C_U are the lower and upper bound of

the 90%-confidence intervals for D')
LD blocks: Ratio >= 9

The blocks can also be plotted by

> plot(blocks)

(see Figure 2). In this figure, the borders of the LD blocks are marked by red lines. By

default, the three categories used by the algorithm of Gabriel et al. (2002) to define the

LD blocks are displayed. Since this algorithm is based on the D′ values, it is also possible

to show these values in the LD (block) plot.

> plot(blocks, "Dprime")

(see Figure 3).

As mentioned in Section 4, the haplotype structure required by trio() can be obtained

by

> hap <- as.vector(table(blocks$blocks))

> hap

[1] 5 5 5 5 5 5 5 5 5 5

29

Figure 3: LD blocks as found by the modified algorithm of Gabriel et al. (2002). The
borders of the LD blocks are marked by red lines. The darker the field for each pair of
SNPs, the larger is the D′ value for the corresponding SNP pair.

6 Simulation

The function trio.sim() simulates case-parents trio data when the disease risk of chil-

dren is specified by (possibly higher-order) SNP interactions. The mating tables and

the respective sampling probabilities depend on the haplotype frequencies (or SNP mi-

nor allele frequencies when the SNP does not belong to a block). This information is

specified in the freq argument of the function trio.sim(). The probability of disease

is assumed to be described by the logistic term logit(p) = α + β × Interaction, where

α = logit (prev) = log(prev

1−prev) and β = log(OR). The arguments interaction, prev

and OR, are specified in the function trio.sim(). Generating the mating tables and the

respective sampling probabilities, in particular for higher order interactions, can be very

CPU and memory intensive. We show how this information, once it has been generated,

can be used for future simulations, and thus, speed up the simulations dramatically.

30

6.1 A basic example

We use the built-in object simuBkMap in a basic example to show how to simulate case-

parent trios when the disease risk depends on (possibly higher order) SNP interactions.

This file contains haplotype frequency information on 15 blocks with a total of 45 loci.

In this example, we specify that the children with two variant alleles on SNP1 and two

variant alleles on SNP5 have a higher disease risk. We assume that prev = 0.001 and

OR = 2 in the logistic model specifying disease risk, and simulate a single replicate of 20

trios total.

> data(trio.data)

> str(simuBkMap)

'data.frame': 66 obs. of 3 variables:

$ key : Factor w/ 15 levels "10-1","10-10",..: 1 1 1 8 8 8 8 9 9 9 ...

$ hap : int 11 21 22 121 122 111 222 21 22 12 ...

$ freq: num 0.099 0.228 0.673 0.006 0.026 0.1 0.867 0.079 0.441 0.48 ...

> simuBkMap[1:7,]

key hap freq

1 10-1 11 0.099

2 10-1 21 0.228

3 10-1 22 0.673

4 10-2 121 0.006

5 10-2 122 0.026

6 10-2 111 0.100

7 10-2 222 0.867

> sim <- trio.sim(freq=simuBkMap, interaction="1R and 5R", prev=.001, OR=2,

+ n=20, rep=1)

> str(sim)

List of 1

$: num [1:60, 1:47] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:47] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6, 1:12]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

[1,] 1 1 2 2 2 2 2 0 2 2 1 1

[2,] 1 2 2 2 1 1 1 1 2 2 2 0

31

[3,] 1 3 2 2 2 2 2 0 2 2 1 0

[4,] 2 1 0 0 2 2 2 1 1 1 0 2

[5,] 2 2 2 2 2 2 2 1 2 2 2 0

[6,] 2 3 1 1 2 2 2 1 2 1 1 1

6.2 Using estimated haplotype frequencies

In this example we estimate the haplotype frequencies in the built-in data set trio.gen1,

which contains genotypes for 10 SNPs in 100 trios. These estimated frequencies are then

used to simulate 20 trios for the above specified disease risk model.

> data(trio.data)

> trio.tmp <- trio.check(dat=trio.gen1, is.linkage=FALSE)

> trio.impu <- trio(trio.dat=trio.tmp, blocks=c(1,4,2,3), logic=TRUE)

> str(trio.impu, max=2)

List of 3

$ bin : num [1:400, 1:21] 3 0 0 0 3 0 0 0 3 0 ...

..- attr(*, "dimnames")=List of 2

$ miss: NULL

$ freq:'data.frame': 19 obs. of 3 variables:

..$ key :Class 'AsIs' chr [1:19] "ch-1" "ch-1" "ch-h2" "ch-h2" ...

..$ hap : num [1:19] 1 2 1111 1112 1121 ...

..$ freq: num [1:19] 0.9425 0.0575 0.325 0.2225 0.0075 ...

> trio.impu$freq[1:7,]

key hap freq

1 ch-1 1 9.425000e-01

2 ch-1 2 5.750000e-02

3 ch-h2 1111 3.250000e-01

4 ch-h2 1112 2.225000e-01

5 ch-h2 1121 7.500000e-03

6 ch-h2 1221 3.350000e-01

7 ch-h2 1222 3.509438e-09

> sim <- trio.sim(freq=trio.impu$freq, interaction="1R and 5R", prev=.001, OR=2,

+ n=20, rep=1)

> str(sim)

List of 1

$: num [1:60, 1:12] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:12] "famid" "pid" "snp1" "snp2" ...

32

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

[1,] 1 1 0 0 1 1 1 1 0 0 0 1

[2,] 1 2 0 1 1 1 1 0 0 0 0 1

[3,] 1 3 0 1 1 1 1 0 0 0 0 0

[4,] 2 1 0 0 0 0 0 0 1 0 0 1

[5,] 2 2 0 0 2 2 0 2 0 0 0 2

[6,] 2 3 0 0 1 1 0 1 1 0 0 2

As before, the object containing the haplotype frequency information can also be generated

from external haplotype frequencies and SNP minor allele frequencies. In the following

example we specify the haplotype frequencies, and generate two replicates of ten trios

each.

> data(trio.data)

> sim <- trio.sim(freq=freq.hap, interaction="1R or 4D", prev=.001, OR=2,

+ n=10, rep=2)

> str(sim)

List of 2

$: num [1:30, 1:12] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:12] "famid" "pid" "snp1" "snp2" ...

$: num [1:30, 1:12] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:12] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

[1,] 1 1 0 0 0 0 0 1 0 0 0 0

[2,] 1 2 0 0 0 0 1 1 0 0 0 0

[3,] 1 3 0 0 0 0 0 0 0 0 0 0

[4,] 2 1 1 0 1 1 1 0 0 0 0 0

[5,] 2 2 0 0 2 2 0 2 1 0 0 0

[6,] 2 3 0 0 1 1 1 1 0 0 0 0

6.3 Using step-stones

Generating the mating tables and the respective sampling probabilities necessary to simu-

late case-parent trios can be very time consuming for interaction models involving three or

33

more SNPs. In simulation studies, many replicates of similar data are usually required, and

generating these sampling probabilities in each instance would be a large and avoidable

computational burden (CPU and memory). The sampling probabilities depend foremost

on the interaction term and the underlying haplotype frequencies, and as long as these

remain constant in the simulation study, the mating table information and the sampling

probabilities can be “recycled.” This is done by storing the relevant information (denoted

as “step-stone”) as a binary R file in the working directory, and loading the binary file again

in future simulations, speeding up the simulation process dramatically. It is even possible

to change the parameters prev and OR in these additional simulations, as the sampling

probabilities can be adjusted accordingly.

In the following example, we first simulate case-parent trios using a three-SNP interaction

risk model, and save the step-stone object. We then simulate additional trios with a

different parameter OR, using the previously generated information.

> data(trio.data)

> sim <- trio.sim(freq=freq.hap, interaction="1R or (6R and 10D)", prev=.001,

+ OR=2, n=10, rep=1)

> str(sim)

List of 1

$: num [1:30, 1:12] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:12] "famid" "pid" "snp1" "snp2" ...

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

[1,] 1 1 2 0 1 1 0 0 0 0 0 1

[2,] 1 2 0 0 1 1 0 1 1 0 0 0

[3,] 1 3 1 0 2 2 0 1 1 0 0 0

[4,] 2 1 0 2 0 0 2 0 0 0 0 0

[5,] 2 2 0 0 1 1 1 0 0 0 0 1

[6,] 2 3 0 1 1 1 1 0 0 0 0 1

> sim <- trio.sim(freq=freq.hap, interaction="1R or (6R and 10D)", prev=.001,

+ OR=3, n=10, rep=1, step.save="step3way")

> str(sim, max=1)

34

List of 1

$: num [1:30, 1:12] 1 1 1 2 2 2 3 3 3 4 ...

..- attr(*, "dimnames")=List of 2

> sim[[1]][1:6,]

famid pid snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

[1,] 1 1 0 0 1 1 0 0 0 0 1 0

[2,] 1 2 1 0 1 1 0 1 1 0 0 0

[3,] 1 3 0 0 1 1 0 1 1 0 0 0

[4,] 2 1 0 0 1 1 0 0 0 0 0 0

[5,] 2 2 0 0 0 0 1 1 0 0 0 0

[6,] 2 3 0 0 1 1 0 1 0 0 0 0

Acknowledgments

Support was provided by NIH grants R01 DK061662 and R01 HL090577, and by DFG

grant SCHW 1508/1-1 and SCHW 1508/2-1.

References

Cordell, H.J. (2002). Epistasis: What it means, what it doesn’t mean, and statistical

methods to detect it in humans. Hum. Mol. Genet., 11, 2463–2468.

Cordell, H.J., Barratt, B.J., and Clayton, D.G. (2004). Case/pseudocontrol analysis in

genetic association studies: A unified framework for detection of genotype and hap-

lotype associations, gene-gene and gene-environment interactions, and parent-of-origin

effects. Genet. Epidemiol., 26, 167–185.

Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins,

J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo,

A., Cooper, R., Ward, R., Lander, E.S., Daly, M.J., and Altshuler, D. (2002). The

structure of haplotype blocks in the human genome. Science, 296, 2225–2229.

35

Li, Q., Fallin, M.D., Louis, T.A., Lasseter, V.K., McGrath, J.A., Avramopoulos, D.,

Wolyniec, P.S., Valle, D., Liang, K.Y., Pulver, A.E., and Ruczinski, I. (2010). Detec-

tion of SNP-SNP interactions in trios of parents with schizophrenic children. Genet.

Epidemiol., 34, 396–406.

Schaid, D.J. (1996). General score tests for associations of genetic markers with disease

using cases and their parents. Genet. Epidemiol., 13, 423–449.

36

	Introduction
	Preparing data for the genotypic TDTs
	Testing SNPs, pairs of SNPs, and GxE interactions
	Generating data for trio logic regression input
	Supported file formats and elementary data processing
	Missing genotype information
	Mendelian errors
	Using haplotype frequencies
	Trio Logic Regression

	Detection of LD blocks
	Simulation
	A basic example
	Using estimated haplotype frequencies
	Using step-stones

