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1 Introduction

CNVassoc allows users to perform association analysis between CNVs and
disease incorporating uncertainty of CNV genotype. This document pro-
vides an overview on the usage of the CNVassoc package. For more detailed
information on the model and assumption please refer to article [3] and its
supplementary material. We illustrate how to analyze CNV data by using
some real data sets. The first data set belongs to a case-control study where
peak intensities from MLPA assays were obtained for two different genes.
The second example corresponds to the Neve dataset [6] that is available at
Bioconductor. The data consists of 50 CGH arrays of 1MB resolution for
patients diagnosed with breast cancer. All datasets are available directly
from the CNVassoc package. Finally, we show examples with Poisson and
Weibull-distributed phenotypes

Start by loading the package CNVassoc:

> library(CNVassoc)

by using mclust, invoked on its own or through another package,

you accept the license agreement in the mclust LICENSE file

and at http://www.stat.washington.edu/mclust/license.txt

and some required libraries

> library(xtable)
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2 CNV from a single probe

2.1 The data

In order to illustrate how to assess association between CNV and disease, we
use a data set including 360 cases and 291 controls. Data is to be published
soon as described in [3]. The data contains peaks intensities for two genes
arising from an MLPA assay. Note that Illumina or Affymetrix data, where
log2 ratios are available instead of peak intensities, can be analyzed in the
same way as we are illustrating.

The MLPA data set contains case control status as well as two simu-
lated covariates (quanti and cov) that have been generated for illustrative
purposes (e.g., association between a quantitative trait and CNV or how to
adjust for covariates). To load the MLPA data just type

> data(dataMLPA)

> head(dataMLPA)

id casco Gene1 Gene2 PCR.Gene1 PCR.Gene2 quanti cov

1 H238 1 0.51 0.5385080 wt wt -0.61 10.83

2 H238 1 0.45 0.6392029 wt wt -0.13 10.69

3 H239 1 0.00 0.4831572 del wt -0.57 9.63

4 H239 1 0.00 0.4640072 del wt -1.40 9.87

5 H276 1 0.00 0.0000000 del del 0.83 10.25

6 H276 1 0.00 0.0000000 del del -2.07 10.40

First, we look at the distribution of peak intensities for each of the two
genes analyzed: see Figure 1.

Figure 1 shows the signals for Gene 1 and Gene 2. For both genes it is
clear that there are 3 clusters corresponding to 0, 1 and 2 copies. However,
the three peaks for Gene 2 are not so well separated as those of Gene 1
(the underlying distributions overlap much more). This fact leads to more
uncertainty when inferring the copy number status for each individual. This
will be illustrated in the next section.

In the CNVassoc package, a function called plotSignal has been imple-
mented to plot the peak intensities for a gene. To illustrate this, a plot of
the intensities of Gene 2 for each individual, distinguishing between cases
and controls, can be performed by typing (see figure 2)

> plotSignal(dataMLPA$Gene2, case.control = dataMLPA$casco)

or, similarly but correlating the peak intensities with a quantitative pheno-
type (see figure 3) type
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Figure 1: Signal distributions for Gene 1 and Gene 2

> plotSignal(dataMLPA$Gene2, case.control = dataMLPA$quanti)

In figure 3, the quantitative phenotype is plotted on the x-axis, instead
of distinguishing points by shape, as in figure 2.

Also, it is possible to specify the number of cutoff points and place them
interactively via locator on the previous plot, in order to infer the copy
number status in a naive way. (More sophisticated ways of inferring copy
number status will be dealt with in subsequent sections). To place 2 cutoff
points, thereby defining 3 copy number status values or clusters, (note use
of argument n=2) and store them as cutpoints:

\dontrun{

cutpoints<-plotSignal(dataMLPA$Gene2,case.control=dataMLPA$casco,n=2)

}
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Figure 2: Signal distribution for Gene 2 using plotSignal

The plot generated in figure 4, is similar to that of 2, but using colours
to distinguish copy number status values inferred from the cutoff points.

In this example, the cutoff points have been placed at:

> cutpoints

[1] 0.08470221 0.40485249

These stored cutoff points will be used in the following sections.
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Figure 3: Signal distribution for Gene 2 using plotSignal
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2.2 Inferring copy number status from signal data

2.2.1 From univariate signal intensity

The cnv function is used to infer the copy number status for each subject
using the quantitative signal for an individual probe. This signal can be
obtained from any platform (MLPA, Illumina, . . .).

This function assumes a normal mixture model as other authors have
proposed in the context of aCGH [7, 10]. It should be pointed out that in
some instances, the intensity distributions (see Gene 1 in Figure 1) for a
null allele are expected to be equal to 0. Due to experimental noise these
intensities can deviate slightly from this theoretical value. For these cases,
the normal mixture model fails because the underlying distribution of indi-
viduals with 0 copies is not normal. In these situations we fit a modified
mixture model (see [3] for further details).

Figure 1 presents two different scenarios. For Gene 1 there are clearly
three different status values, but for Gene 2 the situation is not so clear.

Function cnv provides various arguments to cope with all these issues.
The calling for Gene 1 can be done by executing

> CNV.1 <- cnv(x = dataMLPA$Gene1, threshold.0 = 0.06, num.class = 3,

+ mix.method = "mixdist")

The argument threshold.0=0.06 indicates that individuals with peak
intensities lower than 0.06 will have 0 copies. Since there are three underly-
ing copy number status values, we set argument num.class to 3. Argument
mix.method indicates what algorithm to use in estimating the normal mix-
ture model. "mixdist" uses a combination of a Newton-type method and
the EM algorithm implemented in the mixdist library, while "mclust" uses
the EM algotithm implemented in the Mclust library.

When the exact number of components for the mixture model is un-
known (which may be the case for Gene 2), the function uses the Bayesian
Information Criteria (BIC) to select the number of components. This is per-
formed when the argument num.class is missing. In this case the function
estimates the mixture model admitting from 2 up to 6 copy number status
values.

> CNV.2 <- cnv(x = dataMLPA$Gene2, threshold.0 = 0.01, mix.method = "mixdist")

As we can see, the best model has a copy number status of 3. This result,
obtained by using BIC, is as expected because we already know that this
gene has 0, 1 and 2 copies (see [3]).

8



2.2.2 From other algorithms

The result of applying function cnv is an object of class cnv that, among
other things, contains the posterior probabilities matrix for each individual.
This information is then used in the association analysis where the uncer-
tainty is taken into account. Posterior probabilities from any other calling
algorithms can also be encapsulated in a cnv object to be further used in
the analysis.

To illustrate this, we will use the posterior probability matrix that has
been computed when inferring copy number for Gene 2 by using the normal
mixture model. This information is saved as an attribute for an object of
class cnv. A function called getProbs has been implemented to simplify
accessing this attribute. Thus the probability matrix can be saved in an
object probs.2 like this:

> probs.2 <- getProbs(CNV.2)

Imagine that probs.2 contains posterior probabilities obtained from
some calling algorithm such as CANARY (from PLINK) or GCHcall (this
will be further illustrated in Section 3). In this case, we create the object of
class cnv that will be used in the association step by typing

> CNV.2probs <- cnv(probs.2)

2.2.3 From predetermined thresholds

Inferring copy number status for Gene 2 from previously specified threshold
points (stored in vector cutpoints) can be done using the same cnv function
but setting the argument cutoffs to cutpoints.

> CNV.2th <- cnv(x = dataMLPA$Gene2, cutoffs = cutpoints)

Now, the inferred copy number object CNV.2th contains the same infor-
mation as it would if it had been created directly from probabilities.

2.3 Summarizing information

We have implemented two generic functions for an object of class cnv. The
generic print function gives the results on inferred copy number status. It
includes the means, variances and proportions of copy number clusters as
well as the p value corresponding to the goodness-of-fit test for the selected
number of classes.

9



> CNV.1

Inferred copy number variant by a quantitative signal

Method: function mix {package: mixdist}

-. Number of individuals: 651

-. Copies 0, 1, 2

-. Estimated means: 0, 0.2543, 0.4958

-. Estimated variances: 0, 9e-04, 0.0012

-. Estimated proportions: 0.6544, 0.3088, 0.0369

-. Goodness-of-fit test: p-value= 0.6615318

and for Gene 2

> CNV.2

Inferred copy number variant by a quantitative signal

Method: function mix {package: mixdist}

-. Number of individuals: 651

-. Copies 0, 1, 2

-. Estimated means: 0, 0.2435, 0.4469

-. Estimated variances: 0, 0.0041, 0.0095

-. Estimated proportions: 0.1306, 0.4187, 0.4507

-. Goodness-of-fit test: p-value= 0.4887659

-. Note: number of classes has been selected using the best BIC

This report differs slightly when the object was created from only pos-
terior probabilities:

> CNV.2probs

-. Copy number variant

Input data: called probabilities

-. Number of individuals: 651

-. Copies 0, 1, 2

-. Estimated proportions: 0.1306, 0.4187, 0.4507

Figure 5 shows the result of invoking the generic plot function on these
objects.
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> pdf("./figures/fig2a.pdf")

> plot(CNV.1, case.control = dataMLPA$casco, main = "Gene 1")

> dev.off()

pdf

2

> pdf("./figures/fig2b.pdf")

> plot(CNV.2, case.control = dataMLPA$casco, main = "Gene 2")

> dev.off()

pdf
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Figure 5: Signal distribution by case control, and inferred number of copies

In figure 5 the signal is coloured by the inferred (most probable) copy
number, while cases and controls are distinguished by shape. This last option
is specified by the argument case.control. On the right side of the plot,
a density function of signal distribution is drawn. The p-value of goodness-
of-fit test is the same as this described in the beginning of this section. It
indicates whether the assumed normal mixture model (with a given number
of components) is correct or not. Notice that for both genes the intensity
data fits our the model well (goodness-of-fit p-values > 0.1).
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The action of plot when only posterior probabilities are available gives
a different result (Figure 6). Two barplots are created for cases and controls
(when argument case.control is used). Both are split by the copy number
frequency.
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Figure 6: Estimated copy number frequencies for Gene 1 and Gene 2
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2.4 Measuring uncertainty in inferring copy number status

The function getQualityScore uses information from an object of class cnv
to compute a value that indicates how much the underlying copy number
distribution (peak intensities) are mixed or overlapped. The more separated
these peaks are (less uncertainty), the larger the quality score is.

Three measures of uncertainty are currently implemented. The first one
is the same as that defined in the CNVtools package, the second is the
estimated probabilty of good classification (PGC), and the third is defined
as the the proportion of individuals with a confidence score (described in
[4]) bigger than 0.1.
To choose PGC method type

> CNVassoc::getQualityScore(CNV.1, type = "class")

--Probability of good classification: 0.9999816

> CNVassoc::getQualityScore(CNV.2, type = "class")

--Probability of good classification: 0.9118054

To choose the measure defined in the CNVtools package:

> CNVassoc::getQualityScore(CNV.1, type = "CNVtools")

--CNVtools Quality Score: 25.16849

> CNVassoc::getQualityScore(CNV.2, type = "CNVtools")

--CNVtools Quality Score: 3.057171

And to choose the third measure:

> CNVassoc::getQualityScore(CNV.1, type = "CANARY")

--Probability to have a 'CANARY confidence index' > 0.1 : 0

> CNVassoc::getQualityScore(CNV.2, type = "CANARY")

--Probability to have a 'CANARY confidence index' > 0.1 : 0.3024652
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It is clear that in Gene 1 there is much less uncertainty, because the
PGC is greater than 99%, the measure of CNVtools package is higher than
25 (CNVtools recommends a quality score of 4 or larger), or the ”CANARY”
measure is almost 0. This fact can also be seen in Figure 5 where the un-
derlying distributions of signal intensity are very well separated. On the
other hand, the PGC for Gene 2 is 91.3%, and the CNVtools package value
is about 3 indicating that more uncertainty is present, and the ”CANARY”
type measure for Gene 2 tells that up to 30% of individuals have a poor con-
fidence score. When cnv object has been created directly from probabilities
(obtained from any other calling algorithm), only type="CANARY" method
can be computed. In [5], it is suggested that, when proportion of individuals
with confidence score > 0.1 is greater than 10%, this particular CNV should
be removed from the analysis under a best-guess strategy in performing the
association test.

2.5 Assessing associations between CNV and disease

The function CNVassoc carries out association analysis between CNV and
disease. This function incorporates calling uncertainty by using a latent
class model as described in [3]. The function can analyze both binary and
quantitative traits. In the first case, a linear regression is performed, and,
in the second, a logistic regression. The regression model can be selected by
using the argument case.control. Nonetheless, the program automatically
detects whether or not a quantitative trait is being analyzed so it need not
be specified.

The function also allows the user to fit a model with additive or mul-
tiplicative effects of CNV. This can be set through the argument model.
Possible values are ”add” for an additive effect or ”mul” for a multiplicative
effect.

The function CNVassoc returns an object of class CNVassoc. This class
of object has some properties in common with objects of class glm, such as
coef or summary among others.

2.5.1 Modelling association

The effect of a given CNV on case/control status (casco variable) can be
fitted by typing

> model1mul <- CNVassoc(casco ~ CNV.1, data = dataMLPA, model = "mul")

> model2mul <- CNVassoc(casco ~ CNV.2, data = dataMLPA, model = "mul")
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By default, a short summary is printed (similar to glm objects)

> model1mul

Call: CNVassoc(formula = casco ~ CNV.1, data = dataMLPA, model = "mul")

Coefficients:

CNV0 CNV1 CNV2

CNVmult 0.0281709 0.5187566 1.0989109

Number of individuals: 651

Number of estimated parameters: 3

Deviance: 883.03

> model2mul

Call: CNVassoc(formula = casco ~ CNV.2, data = dataMLPA, model = "mul")

Coefficients:

CNV0 CNV1 CNV2

CNVmult 1.0520923 0.3122567 -0.0970782

Number of individuals: 651

Number of estimated parameters: 3

Deviance: 876.396

Note that the coefficients are a matrix with one row per variable and
a column for each distinct copy number status. In this model, because
there are no covariates and the CNV has a multiplicative effect, there is just
one row (one intercept) and this is different among columns (copy number
status).

By using the generic function summary we can obtain a more exhaustive
output. In particular the odds ratio and its confidence intervals are printed
as well as its p-value.

> summary(model1mul)

Call:

CNVassoc(formula = casco ~ CNV.1, data = dataMLPA, model = "mul")

Deviance: 883.0297
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Number of parameters: 3

Number of individuals: 651

Coefficients:

OR lower.lim upper.lim SE stat pvalue

CNV0 1.0000

CNV1 1.6333 1.1588 2.3020 0.1751 2.8017 0.005

CNV2 2.9175 1.1359 7.4937 0.4813 2.2247 0.026

(Dispersion parameter for binomial family taken to be 1 )

Covariance between coefficients:

CNV0 CNV1 CNV2

CNV0 0.0094 0.0000 0.0000

CNV1 0.0213 0.0000

CNV2 0.2223

> summary(model2mul)

Call:

CNVassoc(formula = casco ~ CNV.2, data = dataMLPA, model = "mul")

Deviance: 876.396

Number of parameters: 3

Number of individuals: 651

Coefficients:

OR lower.lim upper.lim SE stat pvalue

CNV0 1.0000

CNV1 0.4772 0.2742 0.8304 0.2827 -2.6172 0.009

CNV2 0.3169 0.1834 0.5477 0.2791 -4.1169 3.84e-05

(Dispersion parameter for binomial family taken to be 1 )

Covariance between coefficients:

CNV0 CNV1 CNV2

CNV0 0.0613 0.0000 0.0000

CNV1 0.0186 -0.0032

CNV2 0.0166
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By default, CNVassoc treats the response variable as a binary phenotype
coded as 0/1. Since CNVassoc can handle other distributions such as Poisson
or Weibull, the family argument must be specified when the response is not
distributed as a bernoulli. For instance, to deal with a normally distributed
response variable, specify family="gaussian"

The following example presents the case of analyzing a quantitative nor-
mally distributed trait and adjusting the association by other covariates:

> mod<-CNVassoc(quanti ~ CNV.2 + cov, family = "gaussian", data = dataMLPA, model = 'add', emsteps=10)

> mod

Call: CNVassoc(formula = quanti ~ CNV.2 + cov, data = dataMLPA, model = "add", family = "gaussian", emsteps = 10)

Coefficients:

CNV0 CNV1 CNV2

intercept -0.1403761 -0.1403761 -0.1403761

CNVadd -0.0792367 -0.0792367 -0.0792367

cov 0.0241877 0.0241877 0.0241877

Number of individuals: 651

Number of estimated parameters: 4

Deviance: 1824.57

Notice that in this case, we use new argument called emsteps. This is
necessary for computational reasons. Initially performing some preliminary
steps using the EM algorithm makes it easier to maximize the likelihood
function using the Newton-Raphson procedure. In general, it is enough to
perform a few iterations (no more than 10). As usual, the model is then
summarized by typing

> summary(mod)

Call:

CNVassoc(formula = quanti ~ CNV.2 + cov, data = dataMLPA, model = "add",

family = "gaussian", emsteps = 10)

Deviance: 1824.573

Number of parameters: 4

Number of individuals: 651

Coefficients:
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beta lower.lim upper.lim SE stat pvalue

(Intercept) -0.14038 -0.90687 0.62612 0.39108 -0.35895 0.720

trend -0.07924 -0.19714 0.03866 0.06015 -1.31722 0.188

cov 0.02419 -0.05068 0.09906 0.03820 0.63321 0.527

(Dispersion parameter estimation for gaussian family is 0.9650261 )

Covariance between coefficients:

intercept CNVadd cov

intercept 0.1529 -0.0041 -0.0146

CNVadd 0.0036 -0.0001

cov 0.0015

Remember that for quantitative traits we obtain mean differences instead
of odds ratios.

2.5.2 Testing associations

In the previous analysis we obtained p values corresponding to the compar-
ison between every copy number status versus the reference (zero copies).
Nonetheless, we are normally interested in testing the overall effect of CNV
on disease. We have implemented the Wald test and the likelihood ratio
test (LRT) to perform such omnibus testing. Both are available through
the function CNVtest which requires an object of class CNVassoc as the in-
put. To specify the type of test, set the argument type to "Wald" or "LRT",
respectively. For Gene 1,

> CNVtest(model1mul, type = "Wald")

----CNV Wald test----

Chi= 11.55332 (df= 2 ) , pvalue= 0.003099052

> CNVtest(model1mul, type = "LRT")

----CNV Likelihood Ratio Test----

Chi= 12.12081 (df= 2 ) , pvalue= 0.002333458

and for Gene 2,

> CNVtest(model2mul, type = "Wald")
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----CNV Wald test----

Chi= 17.32966 (df= 2 ) , pvalue= 0.0001725492

> CNVtest(model2mul, type = "LRT")

----CNV Likelihood Ratio Test----

Chi= 18.75453 (df= 2 ) , pvalue= 8.462633e-05

Other generic functions like logLik, coef, summary or update can be
applied to an object of class CNVassoc to get more information.

For a multiplicative CNV effect model and for a binary traits, it is pos-
sible to change the reference category of copy number status. This can be
done by using the argument ref when executing the summary function. For
example, if we want to one copy as the reference category just type:

> coef(summary(model1mul, ref = 2))

OR lower.lim upper.lim SE stat pvalue

CNV1 1.0000000 NA NA NA NA NA

CNV0 0.6122677 0.4344016 0.8629612 0.1751053 -2.801661 0.005084028

CNV2 1.7863140 0.6790498 4.6990928 0.4934862 1.175624 0.239745087

The same kind of results can be obtained if we assume an additive effect
of CNV on the trait. In this case we need to set the model argument to
"add"

> model2add <- CNVassoc(casco ~ CNV.2, data = dataMLPA, model = "add")

> model2add

Call: CNVassoc(formula = casco ~ CNV.2, data = dataMLPA, model = "add")

Coefficients:

CNV0 CNV1 CNV2

intercept 0.932028 0.932028 0.932028

CNVadd -0.537731 -0.537731 -0.537731

Number of individuals: 651

Number of estimated parameters: 2

Deviance: 877.061
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Notice that under an additive CNV effect the structure of coefficients are
different from the multiplicative CNV effect. Now there are two rows, one
for intercept and the other one for the slope (change of risk in increasing
by one copy). These two values remain constant for every column (copy
number status).

> summary(model2add)

Call:

CNVassoc(formula = casco ~ CNV.2, data = dataMLPA, model = "add")

Deviance: 877.0606

Number of parameters: 2

Number of individuals: 651

Coefficients:

OR lower.lim upper.lim SE stat pvalue

trend 0.5841 0.4530 0.7530 0.1296 -4.1477 3.36e-05

(Dispersion parameter for binomial family taken to be 1 )

Covariance between coefficients:

intercept CNVadd

intercept 0.0374 -0.0228

CNVadd 0.0168

Finally, one might be interested in testing the additive effect. To do this,
one can compare both additive and multiplicative models. It is straightfor-
ward to see that the additive model is a particular case of the multiplicative
one, and therefore the first is nested in the second one.

To compare two nested models we use the generic function anova (NOTE:
it is only implemented for comparing two models, both fitted with the
CNVassoc function).

> anova(model2mul, model2add)

--- Likelihood ratio test comparing 2 CNVassoc models:

Model 1 call: CNVassoc(formula = casco ~ CNV.2, data = dataMLPA, model = "mul")
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Model 2 call: CNVassoc(formula = casco ~ CNV.2, data = dataMLPA, model = "add")

Chi= 0.6645798 (df= 1 ) p-value= 0.4149477

Note: the 2 models must be nested, and this function doesn't check this!

The likelihood ratio test is performed. In this case the p-value is not
significant, indicating that an additive CNV effect can be assumed. In any
case, one should consider the power of this test before making conclusions.

3 CNV from aCGH

The analysis of aCGH data requires taking additional steps into account, due
to the dependency across probes and the fact that CNVs are not measured
with a unique probe. Table 1 shows four steps we recommend for the analysis
of this kind of data. First, posterior probabilities should be obtained with
an algorithm that considers probe correlation. We use, in particular, the
CGHcall R program which includes a mixture model to infer CNV status
[10]. Second, we build blocks/regions of consecutive clones with similar
signatures. To perform this step the CGHregions R library was used [11].
Third, the association between the CNV status of blocks and the trait is
assessed by incorporating the uncertainty probabilities in CNVassoc function.
And fourth, corrections for multiple comparisons must be performed. We use
the Benjamini-Hochberg(BH) correction [2]. This is a widely used method
for control of FDR that is robust in the scenarios commonly found in genomic
data [9].

Table 1: Steps to assess association between CNVs and traits for aCGH

Step 1. Use any aCGH calling procedure that provides posterior
probabilities (uncertainty) (CGHcall)

Step 2. Build blocks/regions of consecutive probes with similar
signatures (CGHregions)

Step 3. Use the signature that occurs most in a block to perform
association(multiCNVassoc)

Step 4. Correct for multiple testing considering dependency
among signatures (getPvalBH)
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To illustrate, we apply these steps to the breast cancer data studied
by Neve et al. [6]. The data consists of CGH arrays of 1MB resolution
and is available from Bioconductor http://www.bioconductor.org/. The
authors chose the 50 samples that could be matched to the name tokens of
caArrayDB data (June 9th 2007). In this example the association between
strogen receptor positivity (dichotomous variable; 0: negative, 1: positive)
and CNVs was tested. The original data set contained 2621 probes which
were reduced to 459 blocks after the application of CGHcall and CGHregions

functions as we illustrate bellow.
The data is saved in an object called NeveData. This object is a list

with two components. The first component corresponds to a dataframe
containing 2621 rows and 54 columns with aCGH data (4 columns for the
annotation and 50 log2ratio intensities). The second component is a vector
with the phenotype analyzed (strogen receptor posistivity). The data can
be loaded as usual

> data(NeveData)

> intensities <- NeveData$data

> pheno <- NeveData$pheno

The calling can be performed using CGHcall package by using the fol-
lowing instructions:

\dontrun{

######################################################

### chunk number 1: Class of aCGH data

######################################################

library(CGHcall)

Neve <- cghRaw(intensities)

######################################################

### chunk number 2: Preprocessing

######################################################

cghdata <- preprocess(Neve, maxmiss=30, nchrom=22)

######################################################

### chunk number 3: Normalization

######################################################

norm.cghdata <- normalize(cghdata, method="median", smoothOutliers=TRUE)

######################################################
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### chunk number 4: Segmentation

######################################################

seg.cghdata <- segmentData(norm.cghdata, method="DNAcopy")

######################################################

### chunk number 5: Calling

######################################################

NeveCalled <- CGHcall(seg.cghdata)

}

This process takes about 20 minutes, but to avoid wasting your time, we
have saved the final object of class cghCall that can be loaded as

> data(NeveCalled)

We can then obtain the posterior probabilities. CGHcall function does
not estimates the underlying number of copies for each segment but assigns
the underlying status: loss, normal or gain. For each segment and for each
individual we obtain three posterior probabilities corresponding to each of
these three statuses. This is done by executing

> probs <- getProbs(NeveCalled)

This is a dataframe that looks like this:

> probs[1:5, 1:7]

Clone Chromo BPstart BPend X600MPE X600MPE.1 X600MPE.2

RP11-82D16 RP11-82D16 1 2008651 2008651 0.022 0.932 0.046

RP11-62M23 RP11-62M23 1 3367844 3367844 0.022 0.932 0.046

RP11-111O5 RP11-111O5 1 4261844 4261844 0.022 0.932 0.046

RMC01P070 RMC01P070 1 5918606 5918606 0.022 0.932 0.046

RP11-51B4 RP11-51B4 1 6068980 6068980 0.022 0.932 0.046

This table can be read as following. The probability that the individual
X600MOE is normal for the signature RP11-82D16 is 0.932, while the proba-
bility of having a gain is 0.046 and 0.022 of having a loss.

In order to determine the regions that are recurrent or common among
samples, we use the CGHregions function that takes an object of class
cghCall (e.g. object NeveCalled in our case). This algorithm reduces the
initial table to a smaller matrix that contains regions rather than individual
probes. The regions consist of consequtive clones with similar signatures
[11]. This can be done by executing
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\dontrun{

library(CGHregions)

NeveRegions <- CGHregions(NeveCalled)

}

This process takes about 3 minutes. We have stored the result in the object
NeveRegions that can be loaded as usual

> data(NeveRegions)

Now we have to get the posterior probabilities for each block/region.
This can be done by typing

> probsRegions <- getProbsRegions(probs, NeveRegions, intensities)

Finally, the association analysis between each region and the strogen
receptor positivity can be analyzed by using the multiCNVassoc function.
This function repeatedly calls CNVassoc returning the p-value of association
for each block/region

> pvals <- multiCNVassoc(probsRegions, formula = "pheno~CNV", model = "mult",

+ num.copies = 0:2, cnv.tol = 0.01)

Notice that the arguments of multiCNVassoc function are the same as
those of CNVassoc. In this example, we have set the argument num.copies
equal to 0, 1, and 2 that corresponds to loss, normal, gain status used
in the CGHcall function.

Multiple comparisons can be addressed by using the Benjamini & Hochberg
approach [2]. The function getPvalBH produces the FDR-adjusted p-values

> pvalsBH <- getPvalBH(pvals)

> head(pvalsBH)

region pval pval.BH

1 319 2.891862e-06 0.001324473

2 318 1.633799e-05 0.002494267

3 320 1.576279e-05 0.002494267

4 316 8.998845e-05 0.010303677

5 9 2.865773e-04 0.011217002

6 298 2.027325e-04 0.011217002

Table 6 in [3] can be obtained by typing
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> cumsum(table(cut(pvalsBH[, 2], c(-Inf, 1e-05, 1e-04, 0.001, 0.01,

+ 0.05))))

(-Inf,1e-05] (1e-05,0.0001] (0.0001,0.001] (0.001,0.01] (0.01,0.05]

1 4 27 64 117

4 Illumina data

In this section an example set of data from ILLUMINA will be analyzed.
This data is included in the CNVassoc package, and is the same one as
analyzed in the CNVtools package vignette [8]. The goal of this section will
be to compare the results yielded by CNVtools in fitting the association
model with those obtained with the CNVassoc function.

A first look at the data

> data(A112)

> head(A112)

subject cohort SNP0 SNP1 SNP2 SNP3

1 WTCCC01-11474A1 58C -0.12647400 -0.1214220 -0.1423570 0.0449446

2 WTCCC01-11474A2 58C -0.21574200 0.0265778 -0.0964269 0.0617480

3 WTCCC01-11474A3 58C -0.00150499 0.0820076 -0.2853430 0.1589580

4 WTCCC01-11474A4 58C -0.05538290 -0.1691450 -0.0592800 0.0264289

5 WTCCC01-11474A5 58C -0.12926900 0.2014540 -0.8474870 -0.2647420

6 WTCCC01-11474A6 58C -0.06209860 0.1826130 0.1245160 -0.1731720

SNP4 SNP5 SNP6 SNP7 SNP8 SNP9

1 0.0259435 0.1351870 0.0746991 0.40581000 -0.18601600 0.0990579

2 0.1521360 -0.0445652 -0.3751110 -0.39122600 0.10114500 0.1816270

3 0.0320422 0.1823220 0.0699921 0.29014900 0.00885492 -0.0387201

4 -0.0208353 -0.2740840 0.0310302 0.20566300 0.12842100 -0.2219500

5 -0.0502723 -0.2150250 -0.2254730 0.00162372 0.08069250 0.0562238

6 -0.0870918 -0.0902743 -0.0634414 -0.80391700 0.37845800 -0.1880560

SNP10 SNP11 SNP12 SNP13 SNP14 SNP15 SNP16

1 -0.1969750 0.0448241 -0.0193997 0.13117800 -0.163383 0.1545760 0.0253607

2 0.0688791 -0.1166620 0.0217019 -0.05719720 -0.138044 -0.0554405 -0.0536655

3 0.1131100 0.0609800 0.2402140 0.23635400 -0.111235 0.5082330 0.0272966

4 -0.2299260 0.0198905 -0.3210060 0.14955900 -0.534339 -0.7596830 -0.1940050

5 -0.0636589 -0.0433160 -0.5579070 0.13913000 -0.778225 -0.9224910 0.0343805

6 -0.1368910 -0.0779523 0.1212290 0.00857489 0.179257 -0.0675581 -0.1812210

SNP17 SNP18 SNP19 SNP20 SNP21 SNP22 SNP23

1 -0.0560689 -0.0751385 -0.485160 -0.0288187 -0.1945410 -0.0456346 0.0929479

2 0.1212250 0.1018410 -0.200404 -0.1797650 -0.0456029 0.2835270 -0.0813351

3 -0.1532160 -0.1135340 0.183407 -0.0960403 0.1230410 -0.1076840 -0.0180287

4 -0.1035420 0.1661650 -0.318173 -0.7149550 -0.7436040 -0.2483910 -0.2552810

5 -0.0130905 0.1538550 -0.589194 -0.4773230 -0.6345150 0.1788480 -0.4428020

6 -0.1676740 0.3261350 -0.199970 0.0908316 0.1268390 0.1787620 0.1138070

SNP24 SNP25 SNP26 SNP27 SNP28 SNP29 SNP30

1 -0.222375 -0.368043 -0.1448800 -0.00706918 0.0356588 -0.346104000 -0.1318280

2 -0.143908 -0.105819 -0.2330800 -0.07807670 0.0980952 -0.152811000 0.0728393

3 0.401502 0.240364 -0.1334340 -0.00942116 -0.0514102 -0.254315000 0.0708932

4 -0.106774 0.203908 0.3008000 -0.24017000 0.1681400 0.298436000 0.1303020

5 -0.124996 -0.191220 -0.1863940 -0.08408520 -0.2589270 -0.000203031 -0.0516899

6 -0.228779 -0.409863 0.0208064 0.01472170 0.2187790 -0.384239000 -0.0265277

SNP31 SNP32

1 0.0140277 0.0583939

2 -0.2176910 0.0172098

3 -0.1251580 -0.1050300

4 -0.0139433 0.0432413

5 0.0381275 -0.0992932

6 -0.2410430 -0.0577618
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In this case, intstead of having just one signal, a considerable number of
them define a single gene. In CNVtools vignette [8] these are all summarized
using principal components analysis, and the first component is taken in
order to obtain one signal value per individual. The following steps to obtain
peak intensities are the same as in [8].

To begin, load CNVtools package, since some function from it will be used
to execute some previous steps in order to mimic the analysis performed in
[8]:

> library(CNVtools)

4.1 Preparing signal data

The raw signal from all probes of the data is subtracted typing

> raw.signal <- as.matrix(A112[, -c(1, 2)])

> dimnames(raw.signal)[[1]] <- A112$subject

Then, the unidimensional data is summarized using principal component
techinque from raw signal data

> pca.signal <- apply.pca(raw.signal)

In the article on CNVtools [1] it is suggested not to use this summa-
rized intensity, pca.signal, directly. Instead, the probability of occurrence
of each of the 3 copy number status values (loss, normal and gain) is esti-
mated after fitting a normal-mixture model to pca.signal using the func-
tion CNVtest.binary from CNVtools package.

> ncomp <- 3

> batches <- factor(A112$cohort)

> sample <- factor(A112$subject)

> fit.pca <- CNVtest.binary(signal = pca.signal, sample = sample,

+ batch = batches, ncomp = ncomp, n.H0 = 3, n.H1 = 0, model.var = "~ strata(cn)")

and after this, a linear discriminant analysis on raw signal data and these
probabilities is performed

> pca.posterior <- as.matrix((fit.pca$posterior.H0)[, paste("P",

+ seq(1:ncomp), sep = "")])

> dimnames(pca.posterior)[[1]] <- (fit.pca$posterior.H0)$subject

> ldf.signal <- apply.ldf(raw.signal, pca.posterior)
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4.2 Inferring copy number status considering batch effect

Once all signal probe intensities from the same gene have been summarized
(ldf.signal), regardless of the techinque used, a normal mixture model is
fitted using function cnv as already explained in Section 2. A possible batch
effect in inferring copy number status has been considered, as mentioned in
[1]. Therefore, and in order to better mimic the example as presented in
CNVtools vignette [8], copy number status is inferred taking into account
the batches, simply by incorporating an argument to function cnv, called
batches:

> CNV<-cnv(ldf.signal, batches=batches, num.class=3, mix="mclust")

> CNV

Inferred copy number variant by a quantitative signal

Method: function Mclust {package: mclust}

-. Number of individuals: 2593

-. Copies 1, 2, 3

-. Estimated means:

CNV 1 CNV 2 CNV 3

58C -1.9703 -0.2361 0.7752

NBS -2.1398 -0.1708 0.9074

-. Estimated variances:

CNV 1 CNV 2 CNV 3

58C 0.0941 0.0941 0.0941

NBS 0.0847 0.0847 0.0847

-. Estimated proportions: 0.1524, 0.4973, 0.3503

In this case, the method ”mclust” has been used in order to make the
mixture model converge. Thus, a normal mixture is fitted separately per
batch, and copy number status probability is updated pooling the copy
number frequency among all batches. Notice that although specific means
and variances are estimated per batch, only one pooled set of copy number
frequencies is produced.

Also note that plot behaves slightly differently for CNV estimated tak-
ing into account the batch effect, drawing specific density curves and mean
lines for each batch (see figure 7)
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Figure 7: Signal distribution and inferred number of copies by batch
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4.3 Association model: comparison with results from CN-

Vtools

Now, the same batch variable will be the response as in [8], and an associ-
ation model considering and additive effect test will be fitted. Since there
are only 2 batches, a logistic regression will be performed. To compute the
Likelihood Ratio Test on CNV:

> trait <- ifelse(A112$cohort == "58C", 0, 1)

> fit <- CNVassoc(trait ~ CNV, model = "add")

> CNVtest(fit, "LRT")

----CNV Likelihood Ratio Test----

Chi= 1.812607 (df= 1 ) , pvalue= 0.1781959

This results in a χ2 = 1.81 which does not differ greatly from the one
given in CNVtools vignette [8] (1.55), neither being statistically significant.

And if a multiplicative model is assumed,

> fit <- CNVassoc(trait ~ CNV)

> CNVtest(fit, "LRT")

----CNV Likelihood Ratio Test----

Chi= 2.860062 (df= 2 ) , pvalue= 0.2393015

a χ2 of 2.86 is obtained, similar to that in CNVtools-vignette [8] (3.11).
Again, neither is statistically significant.

4.3.1 Power and computation time of CNVassoc and CNVtools

We simulated, under the same conditions as used by [1], a range of scenarios
with different sample sizes, probe signal intensity distributions, etc., in or-
der to explore the behavior of both methods when the copy number signals
are not clearly separated. We observe that both methods performed well
although CNVassoc outperforms CNVtools in the case of having a moder-
ate number of individuals (e.g. 500) , see figures 8 and 9. However, we
encounter and important problem of practical relevance related to conver-
gence. CNVtools frequently fails to converge with moderate sample sizes:
with 500 cases and 500 controls and Q = 3 1, CNVtools failed to converge

1Q is the measure of uncertainty in inferring copy number status defined by CNVtools
package (obtained by specifiyng the argument type="CNVtools" in getQualityScore func-
tion)
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N = 2000 N = 500
Q CNVassoc CNVtools CNVassoc CNVtools

6.0 0 0 0 15
5.5 0 0 0 20
5.0 0 0 0 65
4.5 0 0 0 92
4.2 0 0 0 187
4.0 0 0 0 246
3.7 0 0 0 294
3.5 0 1 0 299
3.2 0 13 212 389
3.0 0 65 331 400

Table 2: Number of failed convergence simulations out of 500 using CNVassoc and
CNVtools according to inferring copy number uncertainty Q and number of cases
N .

in more than 75% of the simulations and this failure rate reached 86% when
Q = 2.5. Even with much larger sample sizes (2,000 cases and 2,000 controls)
CNVtools failed to converge in 38% of the simulations when Q = 2.5. In
constrast, CNVassoc converged in all scenarios with large sample size (2,000
and 2,000 controls) and with moderate sample sizes (500 cases and 500 con-
trols) CNVassoc did not fail under low/moderate uncertainty Q ≥ 3.5 and
failed but much less than CNVtools when Q ≤ 3, see table 2. Thus, for
many studies being analyzed currently, CNVtools simply cannot provide a
solution. When a solution is reached, the high rate of failure to converge
raises questions about possible biases and imprecision of the results and, in
any case, the solution is unlikely to be powerful enough to detect an associ-
ation between copy number and phenotype.

We have also observed a marked difference in the speed of each proce-
dure: when analyzing 10,000 CNVs in 2,000 cases and 2,000 controls, and
with a Q = 4, CNVtools took 1 day and 17 hours to complete the analysis,
whereas CNVassoc took just 90 minutes; with Q = 3, CNVtools took 6 days
and 16 hours, but CNVassoc took only 2 hours.
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size (N) under an scenario where the power to decect associated CNV is 90% if no
inferring copy number uncertainty was present.
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5 Imputed data (SNPTEST format)

In this section we will show how CNVassoc can also be used to analyse
SNP data when the SNPs have been imputed or genotyped with some de-
gree of error. Notice that the same procedure can be applied to analyze data
from Birdsuite/Canary software (developed by Broad Institute and available
on http://www.broadinstitute.org/). An example from SNPTEST software
(available on http://www.stats.ox.ac.uk/ marchini/software/gwas/snptest.html)
has been incorporated in the CNVassoc package, but in the same format as
used by IMPUTE software (downloable from SNPTEST website). IMPUTE
is a program to infer a set non observed SNPs from other that have been
genotyped, using linkage desequilibrium and other information, usually from
the HapMap project (http://snp.cshl.org/). The data of the following ex-
ample can be downloaded freely from the SNPTEST software website, and
consists of a set of 500 cases and 500 controls, and 100 SNPs. For all of the
SNPs the probabilities of each genotype is given, not the genotype itself,
simulating having been obtained from IMPUTE. The names of the SNPs
have been masked, as also the name of the disease.

Let’s load the data. There are 2 data frames, one for cases and the other
for controls

> data(SNPTEST)

> dim(cases)

[1] 100 1505

> dim(controls)

[1] 100 1505

> cases[1:10, 1:11]

V1 V2 V3 V4 V5 V6 V7 V8 V9

1 1 1 1000 A T 0.9959626125 0.0023620260 0.0016753615 0.992634932

2 2 2 2000 A T 0.0765213302 0.0073893102 0.9160893596 0.027811741

3 3 3 3000 A T 0.0050670931 0.0020722897 0.9928606172 0.009646064

4 4 4 4000 A T 0.9920997158 0.0003108851 0.0075893991 0.012288000

5 5 5 5000 A T 0.0048796013 0.0283927739 0.9667276249 0.990459821

6 6 6 6000 A T 0.0029449045 0.9965970143 0.0004580812 0.993531065

7 7 7 7000 A T 0.9844537961 0.0147126387 0.0008335652 0.003635098

8 8 8 8000 A T 0.0002854996 0.0019421881 0.9977723123 0.005000345

9 9 9 9000 A T 0.0052202003 0.0037747406 0.9910050592 0.003845385

10 10 10 10000 A T 0.0145463505 0.9603995477 0.0250541018 0.010122825

V10 V11

33

http://www.broadinstitute.org/
http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html
http://snp.cshl.org/


1 0.0003516265 7.013442e-03

2 0.0086429180 9.635453e-01

3 0.0026860830 9.876679e-01

4 0.9815783730 6.133627e-03

5 0.0092745162 2.656632e-04

6 0.0023760942 4.092840e-03

7 0.9945822710 1.782631e-03

8 0.0024962428 9.925034e-01

9 0.0011333510 9.950213e-01

10 0.9898094554 6.771937e-05

> controls[1:10, 1:11]

V1 V2 V3 V4 V5 V6 V7 V8 V9

1 1 1 1000 A T 9.822425e-01 0.003358295 0.014399242 0.9910275077

2 2 2 2000 A T 1.333922e-02 0.969099360 0.017561421 0.0070884674

3 3 3 3000 A T 3.989599e-03 0.004256366 0.991754036 0.0014208265

4 4 4 4000 A T 3.406932e-03 0.007333515 0.989259553 0.0006075389

5 5 5 5000 A T 9.881081e-01 0.010474830 0.001417104 0.9828012172

6 6 6 6000 A T 3.595319e-03 0.990430376 0.005974305 0.0003284885

7 7 7 7000 A T 6.072451e-05 0.997494894 0.002444382 0.0034642921

8 8 8 8000 A T 6.322546e-03 0.006265613 0.987411841 0.0016109147

9 9 9 9000 A T 3.073608e-04 0.007901964 0.991790675 0.0160832317

10 10 10 10000 A T 9.748969e-03 0.978622828 0.011628203 0.0076508106

V10 V11

1 0.001110983 0.007861509

2 0.028424366 0.964487167

3 0.984644304 0.013934870

4 0.997842168 0.001550293

5 0.011371321 0.005827462

6 0.995963534 0.003707978

7 0.989251393 0.007284314

8 0.006935266 0.991453820

9 0.981741626 0.002175142

10 0.973590298 0.018758891

The structure of the data is as follows:

� every row is a SNP

� the first 3 columns are the SNP identification codes,

� the 4th and 5th are the alleles.

� columns 6 through to the end provide the probabilities of each geno-
type, each group of 3 columns corresponds to one individual.

For example, the first individual in the data set of cases has probabilities
of 0.996, 0.0024 and 0.0017 of having the genotypes for the first SNP of AA,
AT and TT respectively. And the second individual has a probabilities of
0.0278, 0.0086 and 0.9635 of having the genotypes for the second SNP of
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AA, AT and TT respectively.

Of course, cases and controls must have the same number of rows, be-
cause the i-th row of cases and the i-th row of controls correspond to the
same SNP.

First in order to use CNVassoc certain preliminary data management
steps are needed. The goal is to have one matrix of probabilities with 3
columns corresponding to the 3 genotypes and 1000 individuals (500 cases
plus 500 controls), for each of the 100 SNPs.

> nSNP <- nrow(cases)

> probs <- lapply(1:nSNP, function(i) {

+ snpi.cases <- matrix(as.double(cases[i, 6:ncol(cases)]),

+ ncol = 3, byrow = TRUE)

+ snpi.controls <- matrix(as.double(controls[i, 6:ncol(controls)]),

+ ncol = 3, byrow = TRUE)

+ return(rbind(snpi.cases, snpi.controls))

+ })

Now probs is a list of 100 components, each one containing the proba-
bility matrix of each SNP, and the first 500 rows of each matrix refers to the
cases and the rest to the controls.

In this point, we can use multiCNVassoc as shown in section 3, to per-
form an association test of each SNP with case control status. But first, a
casecontrol variable must be defined, which, in this example, will be a simple
vector of 500 ones and 500 zeros.

> casecon <- rep(1:0, c(500, 500))

Now, we have the data ready to fit a model. For example, to compute
the association p-value between every SNP and case control status assuming
an additive effect:

> pvals <- multiCNVassoc(probs, formula = "casecon~CNV", model = "add",

+ num.copies = 0:2, cnv.tol = 0.001)

And, as in section 3, it is necessary to correct for multiple tests:

> pvalsBH <- getPvalBH(pvals)

> head(pvalsBH)
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region pval pval.BH

1 1 0.29083371 0.8400958

2 3 0.13235295 0.8400958

3 5 0.08296301 0.8400958

4 6 0.18826664 0.8400958

5 7 0.24967318 0.8400958

6 9 0.30321197 0.8400958

A frecuency tabulation of how many SNP achieve different levels of sig-
nificance is obtained by:

> table(cut(pvalsBH[, 2], c(-Inf, 0.001, 0.01, 0.05, 0.1, Inf)))

(-Inf,0.001] (0.001,0.01] (0.01,0.05] (0.05,0.1] (0.1, Inf]

0 0 2 7 91

From these results, no SNP appears to be associated with case control
status.

6 Other phenotype distributions

The examples of the previous section dealt with continuous normally dis-
tributed phenotypes, and binary traits. However, there are situations where
we may be interested in associating CNV with a phenotype that is not nor-
mally distributed, or which is not a binary trait.

6.1 Poisson distributed phenotype

One example of a phenotype that doesn’t fit with previous examples is a
counting process, that could be the number of times that a patient replapses
from a specific cancer. This could be modelled with a Poisson distribution.

CNVassoc incorporates the possibility to fit a Poisson distribution by
specifying family=”poisson”. Also, CNVassoc has a function to simulate
CNV data and Poisson phenotype. Therefore, in this section simulated data
from this function will be analysed.

Data for 4000 individuals has been simulated under the following sce-
nario:

� CNV copy number of 0, 1 and 2 with probabilities of 0.25, 0.5 and
0.25 respectively,
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� CNV intensity signal means of 0, 1 and 2 for 0, 1 and 2 copies respec-
tively,

� CNV intensity signal standard deviation of 0.4 for each copy,

� an additive effect with a risk ratio of 1.7 for each increment in copy
number status,

� incidence of 0.12 of relapsing among individuals with zero copies (which
means a probability of 0.6737 of having at least one relapse).

> set.seed(123456)

> rr <- 1.7

> incid0 <- 0.12

> lambda <- c(incid0, incid0 * rr, incid0 * rr^2)

> dsim <- simCNVdataPois(n = 4000, mu.surrog = 0:2, sd.surrog = rep(0.4,

+ 3), w = c(0.25, 0.5, 0.25), lambda = lambda)

> head(dsim)

resp cnv surrog

446 0 1 0.1626554

2214 0 2 1.1287803

3535 1 3 1.4992945

3579 1 3 1.9024086

678 0 1 -0.2533025

2813 2 2 0.4879491

The result is a data frame with 3 variables, and as many rows as indi-
viduals. The description of these variables is:

� resp: response, distributed as a Poisson given the copy number status,

� cnv: the real copy number status, which, in practice, will be unknown
and not considered in testing the association,

� surrog: the CNV intensity signal.

First an object of class cnv is obtained fitting a normal mixture to the
intensity signal, as in section ... Note that to make the normal mixture
converge ”mclust” method is specified:

> CNV <- cnv(dsim$surrog, mix = "mclust")

> CNV
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Inferred copy number variant by a quantitative signal

Method: function Mclust {package: mclust}

-. Number of individuals: 4000

-. Copies 1, 2, 3

-. Estimated means: 0.0141, 0.9774, 1.9636

-. Estimated variances: 0.1631, 0.1631, 0.1631

-. Estimated proportions: 0.2479, 0.4804, 0.2717

-. Note: number of classes has been selected using the best BIC

Then, an association model with CNV and the phenotype assuming an
additive effect is performed as usual, but specifying family="poisson" in
the call to function CNVassoc:

> fit <- CNVassoc(resp ~ CNV, data = dsim, family = "poisson",

+ model = "add")

> coef(summary(fit))

RR lower.lim upper.lim SE stat pvalue

trend 1.613005 1.450285 1.793982 0.05425561 8.811971 0

The same generic functions are appliable as for normal and binary traits.
Note that, now, summary prints ”RR” instead of ”OR”.

We can compare this to the ”gold standard” model, where the phenotype
is regressed to the true copy number status:

> fit.gold <- glm(resp ~ cnv, data = dsim, family = "poisson")

> table.gold <- c(exp(c(coef(fit.gold)[2], confint(fit.gold)[2,

+ ])), coef(summary(fit.gold))[2, 4])

> names(table.gold) <- c("RR", "lower", "upper", "p-value")

> table.gold

RR lower upper p-value

1.701183e+00 1.547603e+00 1.871468e+00 5.752637e-28

The confidence interval of the estimate contains the true relative risk,
and the ”gold standard” model gives similar results as the one fitted using
CNVassoc function (latent class model).
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Because the data has been simulated from a fixed scenario, we may be
interested in comparing with an estimation made under a naive strategy, i.e.
compared to fitting a standard log-linear Poisson model assigning the most
probable copy number to each individual (best guess approach):

> fit.naive <- glm(resp ~ CNV, data = dsim, family = "poisson")

> table.naive <- c(exp(c(coef(fit.naive)[2], confint(fit.naive)[2,

+ ])), coef(summary(fit.naive))[2, 4])

> names(table.naive) <- c("RR", "lower", "upper", "p-value")

> table.naive

RR lower upper p-value

1.555179e+00 1.415058e+00 1.710412e+00 6.646768e-20

To sum up, table 3 gives the relative risk estimated under different mod-
els (gold standard, latent class and naive):

RR lower upper

Gold 1.70 1.55 1.87
LC 1.61 1.45 1.79

Naive 1.56 1.42 1.71

Table 3: Comparison of RR estimated by the gold standard model, a latent
class model (LC) and naive approach

6.2 Weibull distributed phenotype

Similarly to a Poisson distributed phenotype, we may be interested in fit-
ting data that comes from a followed cohort, where we want to estimate
associations of time to death or onset of a particular disease with copy num-
ber variant. Probably some individuals will be censored, i.e. at the end of
follow-up they are alive or free of disease. As for classical survival analysis is
important to take into account these censored individuals and not to remove
them from the analysis.

Function CNVassoc can handle this situation, simply by specifying family=”weibull”
rather than poisson or gaussian. In considering censoring status, function
Surv must be invoked in the left hand term of the formula argument (as for
coxph function for example).
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In this subsection we illustrate how to fit a model with time to event,
possibly censored, by fitting simulated data, in a similar manner to the
previous subsection (Poisson distributed phenotype), and using function
simCNVdataWeibull implemented in the CNVassoc package.

The following scenario has been simulated for 5000 individuals:

� CNV copy number of 0, 1 and 2 with probabilities of 0.25, 0.5 and
0.25 respectively,

� CNV intensity signal means of 0, 1 and 2 for 0, 1 and 2 copies respec-
tively,

� CNV intensity signal standard deviation of 0.4 for each copy,

� an additive effect with a hazard ratio of 1.5 for each increment of copy
number status

� shape parameter of the weibull distribution equal to one,

� disease incidence equal to 0.05 (per person-year) among the population
with zero copies.

� proportion of non-censored individuals (who suffered the disease dur-
ing the study) of 10%.

> set.seed(123456)

> n <- 5000

> w <- c(0.25, 0.5, 0.25)

> mu.surrog <- 0:2

> sd.surrog <- rep(0.4, 3)

> hr <- 1.5

> incid0 <- 0.05

> lambda <- c(incid0, incid0 * hr, incid0 * hr^2)

> shape <- 1

> scale <- lambda^(-1/shape)

> perc.obs <- 0.1

> time.cens <- qweibull(perc.obs, mean(shape), mean(scale))

> dsim <- simCNVdataWeibull(n, mu.surrog, sd.surrog, w, lambda,

+ shape, time.cens)

> head(dsim)
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resp cens cnv surrog

739 1.482852 0 1 0.1436988

1282 1.482852 0 2 0.8899417

1339 1.482852 0 2 1.6149953

872 1.482852 0 1 -0.2586166

3718 1.482852 0 2 1.2688898

123 1.482852 0 1 -0.9089759

The result is a data frame with 4 variables (one additional variable,
compared to the Poisson example, that corresponds to censoring indicator),
and, as before, as many rows as individuals:

� resp: time to disease (weibull distributed) or censoring (end of follow-
up),

� cens: censoring indicator (0: without disease at the end of follow-up
period, 1: with disease within the follow-up period),

� cnv: the real copy number status, which, in practice, will be unknown
and not considered in testing the association,

� surrog: the CNV intensity signal.

As before, the CNV signal is fitted under a normal mixture distribution
with function cnv and specifying the ”mclust” method:

> CNV <- cnv(dsim$surrog, mix = "mclust")

> CNV

Inferred copy number variant by a quantitative signal

Method: function Mclust {package: mclust}

-. Number of individuals: 5000

-. Copies 1, 2, 3

-. Estimated means: 0.0081, 0.9805, 1.9833

-. Estimated variances: 0.1663, 0.1663, 0.1663

-. Estimated proportions: 0.2439, 0.4947, 0.2615

-. Note: number of classes has been selected using the best BIC

Then, an association model with CNV and the phenotype assuming an
additive effect is performed as usual, this time specifying family="weibull",
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and introducing the censored status using function Surv in the left hand side
of the formula argument: CNVassoc function:

> fit <- CNVassoc(Surv(resp, cens) ~ CNV, data = dsim, family = "weibull",

+ model = "add")

> coef(summary(fit))

HR lower.lim upper.lim SE stat pvalue

trend 1.385556 1.205619 1.592348 0.07097498 4.594595 4.335896e-06

Again, the same generic functions are applicable as for normal, binary
traits and poisson distributed phenotype. Note that, now, summary prints
”HR” instead of ”OR” (binary) or ”RR” (poisson).
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