
Analysis of Spotted Microarray Data

John Maindonald

Centre for Mathematics & its Applications, Australian National University

The example data will be for spotted (two-channel) microarrays. Exactly the same approaches
are relevant to spotted oligonucleotides.

1 Spotted Microarray Methodology & Tools

Each array (“slide”) typically compares expression in genes from one “sample” (type of cell) with
expression in genes from another “sample”. The common dyes are Cy5 (“red”) and Cy3 (“green”).

Steps in the process of getting microarray intensity measurements are:

1. cDNA samples are obtained by reverse transcription, one for each of the two mRNA samples.
One sample is labeled with “red” dye and one with “green” dye.

2. The samples are mixed and hybridized onto the slide.

3. An image analyser is used to give separate images of the “red” and “green” signals. Think of
these as much like digital camera images, but with just two frequencies. The resolution may
be 15-30 pixels per spot.

4. Image analysis software is used to extract various statistical summaries of the images of the
spots and of their surroundings. This involves:

(a) Determination of spot boundaries.

(b) Determination, for each spot, of “red” (R) and “green” (G) signals. Most software offers
a choice of alternative summaries of the spot pixel intensities. Typically an average
(mean or median) is taken.

(c) Determination, for each spot, of “red” (Rb) and “green” (Gb) backgrounds.

(d) Determination of one or more quality measures. These may include: spot size, spot
shape (round spots are best, if this is what the printer was supposed to provide), spot
intensity and the range of intensity values.

The spots that are of interest are those where is a consistent difference between the red and the
green signals. It is usual to take either log(R)-log(G) or log(R-Rb)-log(G-Gb), apply a correction
for dye bias, and use this as a measure of differential expression. This leads to a logratio (M) that
can be used for further analysis.

Visual checks of the spatial distribution of the separate statistical summaries can be highly
revealing. Below, we will obtain spatial plots for each of R (red), Rb (red background), G (green),
Gb (green background), M (logratio) and one or more spot quality measures.

1.1 Scanning and Image Analysis

The images with which we will work are from an Affymetrix TM 428 scanner. Image analysis
was performed using the CSIRO Spot image analysis software. There are six “.spot” files, one for
each of six replications of the experiment. Information about the three slides (each with dyeswap
repeats) is in the file coralTargets.txt. The file dk coral-annotated.gal holds identication
information about the genes on the slides, and about the layout on the slides. 1

Here are the contents of the file coralTargets.txt

1Note: Users of Axon scanners are likely to work with the accompanying GenePix image analysis software.
This gives files that have the suffix “.gpr”. Other combinations of scanner and image analysis software will yield

1

SlideNumber FileName Cy3 Cy5

221a coral551.spot post pre

221b coral552.spot pre post

223a coral553.spot post pre

223b coral554.spot pre post

224a coral555.spot post pre

224b coral556.spot pre post

Note that:

pre = pre-settlement, i.e., before the larvae have settled

post = post-settlement, i.e., after settlement onto the substrate.

1.2 Plotting and Analysis Software

The limma package, written by Dr Gordon Smyth and colleagues at WEHI, will be used here. It
is reasonably straightforward to use, does a good job of initial data exploration, and offers state
of the art abilities for analysis of differential expression.

Additionally, three functions from the DAAGbio package will be used.

2 Getting Started

For a new project, a good first step is to start a new textitworking directory, to be used for that
project. Files that hold data that are to be analysed will be copied to that directory, and output
files will by default go there.

As a minimum, copy the following files to your working directory: coral551.spot, coral552.spot,
coral553.spot, coral554.spot, coral555.spot, coral556.spot, files coralTargets.txt, Spot-
Types.txt and dk coral-annotated.gal. It will also be a good idea to copy across the script
file marray-notes.R, which holds the R scripts.

Note: As of version 0.6 of DAAGbio, the six “.spot” files coral551.spot, . . . , coral556.spot
are stored in a compressed format, reducing them to a little over 40% of their original size. They
have been created by typing, on a Unix or Unix-like command line:
gzip -9 coral55?.spot
They were then renamed back to *.spot. The R file-reading abilities that are used by read.maimages()

are, from R version 2.10.0 and onwards, able to process such files.

Attaching the limma package

Start an R session. From the command line, type

> library(limma)

Help for limma Type help.start(). After some time a browser window should open. You
might want to take a brief look at the User’s Guide for limma. Click on Packages, then on limma,
then on Overview, then on LIMMA User’s Guide (pdf)

files that hold broadly equivalent information, but formatted and labeled differently. ANU users may encounter
the combination of Affymetrix TM 428 scanner and Jaguar image analysis software that is available at the RSBS
Proteomics and Microarray facility. Jaguar places records in the output file in an order that is different from that
used by Spot and GenePix.

2

2.1 Reading Data into R

As a first step, read into R the information about the half-slides, from the file coralTargets.txt.
Here is how:2

> targets <- readTargets("coralTargets.txt")

> targets$FileName

The first command gets the targets information. The names of the files are stored in the FileName
column.3 To see the complete information that has been input: targets, type:

> targets

Next, the function read.maimages() (from the limma package) will be used to read in the
data. This function puts all the information from the separate files into a single data structure,
here called coralRG. Use of a name that has the final RG is not compulsory, but serves as a useful
reminder that the structure has information on the red signal and red background (R and Rb), and
on the green signal and green background (G and Gb).

> coralRG <- read.maimages(targets$FileName, source = "spot", other.columns = list(area = "area",

+ badspot = "badspot"))

The other.columns information is an optional extra, which it is however useful to use to read in
quality measures.

Various summary information can be obtained for the different half-slides and measures. Foe
example:

> summary(coralRG$other$area)

However these may not mean much, until you have been working with microarray data for a while.
Graphs are in general more helpful. For example, here is a graph that will help in judging the
extent to which spots are close to the expected 100 units of area.

> plot(density(coralRG$other$area[, 1]))

The limma package does actually allow for the use of area as a measure of quality, with information
from spots that are larger or smaller than the optimum given a reduced weight in the analysis.

Sequence annotation and related information

Next, additional information will be tagged on to the coralRG structure, first gene annotation
information that is read from the .gal file, and then information on the way that the half-slides
were printed that can be deduced from the gene annotation file.

> coralRG$genes <- readGAL()

> coralRG$printer <- getLayout(coralRG$genes)

> coralRG$printer

These half slides were printed in a 4 by 4 layout, corresponding to the 4 by 4 layout of the
printhead. Each tip printed an array of 16 rows by 12 columns. To see the order in which the
spots were printed, attach the DAAGbio package, and run the function plotprintseq(), thus:
and enter:

> library(DAAGbio)

2Note: The above assumes that tabs have been used as separators, when the file coralTargets.txt was created.
I have created a second targets file – coralTargsp.txt, in which the separators are spaces. For this, enter:
targets <- readTargets("coralTargsp.txt", sep="")

3## Another way to get the file names is to enter

fnames <- dir(pattern="\\.spot")

Finds all files whose names end in ".spot''

3

As of version 0.6 of DAAGbio, the '.spot' files in the

inst/doc subdirectory are stored in a compressed format.

The vignette marray-notes.pdf demonstrates the use of

the limma function read.maimages() to read these files.

This requires R version 2.10.0 or later.

> plotprintseq()

The Spot Types File

This is optional, but strongly recommended. Spots can be grouped into at least four categories
– there are “genes” (really, partial gene sequences), negative controls, blanks and differentially
expressed controls. Genes may or may not be differentially expressed, the next three categories
should not show evidence of differential expression, and the differentially expressed controls should
mostly show evidence of differential expression. Plots that label points according to their types
can be beautiful, insightful and, if they find nothing amiss, reassuring.

Here is what the file looks like (note that tabs must be used as separators, for the code below
to work without modification):

SpotType ID Name Color

gene * * black

negative * [1-9]* brown

blank * - yellow

diff-exp ctl * DH* blue

Any color in the long list given by the function colors() is acceptable. Try for example royalblue or

hotpink for calibration spots. They are much less effective. You could use coral in place of black for the

“gene”!!

The following extracts the spot type information from the file, and appends it to the data
structure that I have called coralRG:

> spottypes <- readSpotTypes()

> coralRG$genes$Status <- controlStatus(spottypes, coralRG)

Matching patterns for: ID Name

Found 3072 gene

Found 7 negative

Found 30 blank

Found 21 diff-exp ctl

Setting attributes: values Color

3 Plots

3.1 Spatial Plots

These plots use colour scales to summarize, on a layout that reflects the actual layout of the slide,
information on the spots. The idea is to check for any strong spatial patterns that might indicate
some lack of uniformity that has resulted from the printing (e.g., one print tip printing differently
from the others), or from uneven conditions in the hybridization chamber. There may be surface
features, perhaps due to a hair or to the mishandling of one corner of the slide, this may show up
on the plot.

What is finally important is of course the effect on the log-ratios (the M-values). Some un-
evenness in the separate foreground and background intensities can be tolerated, providing that
it leads to much the same proportional change in both channels.

There are two possibilities – to use imageplot() from limma, or to use my function imgplot()

that is included in the DAAGbio package; see the appendux. Here are plots that use imageplot():

4

> imageplot(log2(coralRG$Rb[, 1] + 1), layout = coralRG$printer,

+ low = "white", high = "red")

This should be repeated for each different half-slide, for both red and green, and similarly for the
green background. To get the plot for the second half-slide, type:

> imageplot(log2(coralRG$Rb[, 2] + 1), layout = coralRG$printer,

+ low = "white", high = "red")

The plots can be obtained all six at once, in a three rows by two columns layout. For this, use
the function xplot(), included in the DAAGbio package.

As an example, to get the six plots for the red channel on the screen, type:

x11(width=7.5, height=11)

xplot(data = coralRG$R, layout = coralRG$printer, FUN=imageplot)

(Under Macintosh OSX with the Aqua GUI, specify quartz(width=7.5, height=11) to use the
quartz device. It is also possible to send the output to a hard copy. Type, e.g.:

quartz(width=7.5, height=11)

xplot(data = coralRG$R, layout = coralRG$printer, FUN=imageplot,

device=pdf)

Other possibilities for device are device="ps", device="png", device="jpeg" and device="bmp".
For device="png" and device="jpeg" the parameters width and height will need to be specified,
in pixels, in the call to sixplot().

3.2 MA plots & Normalization

In this overview, the default background correction will be used, in which the background is in
each case subtracted from the corresponding measured signal.4

At this point normalization is an issue. The Cy3 channel (“green”) typically shows up with
higher intensity than the Cy5 channel (“red”). The measure of differential expression is

M = log(redintensity) − log(greenintensity) = log(
redintensity

greenintensity
)

First, check what happens if we do not normalize. Try the following:

> plotMA(coralRG, array = 1)

This plots the unnormalized log-ratios (the M-values) against the the averages of the log-intensities
for the two separate channels, i.e., against what are called the A-values.

To see all six arrays in a single plot, precede the six plots (first with array=1, then array=1,
. . .) with:

oldpar <- par(mfrow=c(3,2), mar=c(5.1, 4.1, 1.1, 0.6))

When done with the 3 by 2 layout, be sure to type

par(oldpar) # This returns to the original settings.

In some of the plots, the dye bias is rather strongly density dependent.
It is also possible to do the following:

> rawMA <- normalizeWithinArrays(coralRG, method = "none")

> plotPrintTipLoess(rawMA, array = 1)

4For image files from Spot, this usually works fairly well. GenePix gives image files in which the intensities can
be much too high. There are alternative to subtracting off the background that may be desirable, perhaps ignoring
it altogether.

5

A different curve is fitted for each of the print tip groups. There does seem to be some difference
in dye bias between the different print tip groups.

Next, we apply print tip loess normalization, and check the MA plots:

> MA <- normalizeWithinArrays(coralRG, method = "printtiploess")

> plotPrintTipLoess(MA)

Next, we check whether normalization seems required between arrays:

> boxplot(MA$M ~ col(MA$M), names = colnames(MA$M))

(If you do not understand boxplots, there is a good explanation at: http://davidmlane.com/

hyperstat/A38393.html)
As the arrays seem to have different spreads of M-values, we scale normalize between arrays,

and repeat the boxplot:

> nMA <- normalizeBetweenArrays(MA)

> boxplot(nMA$M ~ col(nMA$M), names = colnames(nMA$M))

The scaling ensures that the medians, and the upper and lower quartiles, agree across the different
slides.

Checks on the Differentially Expressed Controls

The differentially expressed controls ought to show similar evidence of differential expression on
all sets of results. Do they?

We extract the M-values for the differentially expressed controls from the total data.

> wanted <- coralRG$genes$Status == "diff-exp ctl"

> rawdeM <- rawMA$M[wanted,]

> pairs(rawdeM)

The differentially expresed controls line up remarkably well across the different half-slides. Notice
that half-slide 5 is the odd one out. (Why is the correlation sometimes positive and sometimes
negative? What is the pattern?)

We now repeat this exercise with the normalized data:

> wanted <- coralRG$genes$Status == "diff-exp ctl"

> deM <- nMA$M[wanted,]

> pairs(rawdeM)

controls from the other half-slides line up beautifully.
[Dear me! Every family of more than two or three has a misfit. We’ll banish half-slide 5 from our
assemblage, at least until we can think of something better to do with it.]

More plots

Use imageplot() with the M-values on all these half-slides, and look especially at half-slide 5,
thus:

> imageplot(nMA$M[, 5], layout = coralRG$printer)

Something bad clearly happened to the left side of this half-slide!

6

4 Tests for Differential Expression

We fit a simple statistical model that allows for the possible effect of the dye swap, and which
we can use as the basis for checks for differential expression. Recall that M = log(redintensity) −
log(greenintensity). Here is how this connects with treatments:

Slide 221a 221b 223a 223b 224a 224b
log(pre/post) log(post/pre) log(pre/post) log(post/pre) log(pre/post) log(post/pre)

Xply by -1 1 -1 1 0 1

Results for the first and third half-slide are multiplied by -1, so that log(pre/post) (which equals
log(pre) − log(post) becomes log(post/pre). The 0 for the fifth half-slide will omit it altogether.
This is achieved by placing these numbers into a “design vector”.

> design <- c(-1, 1, -1, 1, 0, 1)

Fitting the statistical model

To fit a model that reflects this design, specify:

> fit <- lmFit(nMA, design)

This basically gives t-test results for all the different spots. Any attempt at interpretation has to
take account of the large number of tests that have been performed. Also, because there are just
5 sets of usable M-values, the variances that are used in the denominators of the t-statistics, and
hence the t-statistics themselves, are more unstable than is desirable.

The calculations that now follow take us into much more speculative territory, where different
software uses different approaches. My view is that the calculations that are demonstrated are
close to the best that are at present available: They do three things:

• They use information from the variances for all spots, combining this with the spot-specific
information, to get more stable t-statistics.

• They make an adjustment for the multiplicity of tests, leading to adjusted t-statistics that
can pretty much be compared with the usual one-sample t-critical values.
[There are many ways to do this. Also the function requires a prior estimate of the proportion
of genes that are differentially expressed, by default set to 0.01, i.e. there is a large element
of subjective judgment.]

• For each gene they give an odds ratio (B = Bayes factor) that it is differentially expressed.
[This relies on the same prior estimate of the proportion of genes that are differentially
expressed.]

From the fit object, we calculate empirical Bayes moderated t-statistics and do a qq-plot:

> efit <- eBayes(fit)

> qqt(efit$t, df = efit$df.prior + efit$df.residual, pch = 16,

+ cex = 0.2)

the plot. Those that lie off this (below it on the left, or above it on the right) are most likely to
be differentially expressed. 5

Next we print out a table that shows the top 50 differentially expressed genes, in order of the
moderated t-statistic values:

> options(digits = 3)

> topvals <- topTable(efit, number = 50)

> topvals

5If the results from the different genes were independent, the line on which most of the “genes” lie would be a
45◦ line, with a slope of 1.0. If you wish, type abline(0, 1, col="red") to put in such a line anyway. The line on
which most of the genes lie has a much steeper slope than this 45◦ line.

7

We store the results in topvals prior to displaying them, as they will be used later. Notice that
an adjusted p-value of 0.05 corresponds to a B-statistic of about 3.6. This may be a reasonably
cut-off point.

The order of genes on the list is much more secure than the B-values and P -values. The extent
to which the statistics are affected by the prior probability will be demonstrated in the exercise
below.

Here is another type of plot:

> plot(efit$coef, efit$lods, pch = 16, cex = 0.2, xlab = "log(fold change)",

+ ylab = "log(odds)")

> ord <- order(efit$lods, decreasing = TRUE)

> top8 <- ord[1:8]

> text(efit$coef[top8], efit$lods[top8], labels = coralRG$genes[top8,

+ "Name"], cex = 0.8, col = "blue")

Exercise: Change the prior probability to 0.02, i.e.

efit.02 <- eBayes(fit, prop=0.02)

topTable(efit.02, number = 50)

Observe what difference this makes to the list. Try also prob=0.1. A good way to see the effect
is to plot the P.Value or B from the separate fits, one against the other:

efit.1 <- eBayes(fit, prop=0.1)

B.1 <- topTable(efit.1, number = 3072)$B

B.01 <- topvals$B

points(B.01, B.1, col="gray")

Do the equivalent plots for P.Value.

5 More refined analyses

5.1 Reading Data into R, with weight information incorporated

Read the data in, with weighting information included:

> coral2RG <- read.maimages(targets$FileName, source = "spot",

+ wt.fun = wtarea(100))

> coral2RG$genes <- readGAL()

> coral2RG$printer <- getLayout(coral2RG$genes)

The weights will be used automatically by functions that operate on coral2RG.

5.2 MA plots & Normalization

Apply print tip loess normalization, and check the MA plots:

> MA2 <- normalizeWithinArrays(coral2RG, method = "printtiploess")

> plotPrintTipLoess(MA2)

then scale normalize between arrays, and repeat the boxplot:

> boxplot(MA2$M ~ col(MA2$M), names = colnames(MA2$M))

> nMA2 <- normalizeBetweenArrays(MA2)

> boxplot(nMA2$M ~ col(nMA2$M), names = colnames(nMA2$M))

8

Slide 5, again!

Use imageplot() with the M-values on all these half-slides, and look especially at half-slide 5,
thus:

> imageplot(nMA2$M[, 5], layout = coral2RG$printer)

Use of the quality information has not made much difference to this plot:

Fitting the statistical model

To fit a model that reflects this design, specify:

> design <- c(-1, 1, -1, 1, 0, 1)

> fit2 <- lmFit(nMA2, design)

From the fit object, we calculate empirical Bayes moderated t-statistics and do a qq-plot:

> efit2 <- eBayes(fit2)

> qqt(efit2$t, df = efit2$df.prior + efit2$df.residual, pch = 16,

+ cex = 0.2)

Next we print out a table that shows the top 50 differentially expressed genes, in order of the
moderated t-statistic values:

> options(digits = 3)

> topTable(efit2, number = 50)

Now see what different the use of weights has made to the list (the vector topvals was found
earlier):

> topvals2 <- topTable(efit2, number = 50)

> cbind(row.names(topvals), row.names(topvals2))

Now check how many of the genes are in common across both lists:

> sum(row.names(topvals) %in% row.names(topvals2))

Appendix

Installation of the R software

First install R (2.4.0 or later). (Versions are available for Unix, Linux, Windows and Macintosh
OS X.)

Install the limma and DAAGbio packages. This can be done from an R session
EITHER click the Packages menu item, then on Install Package(s) from local zip files..., etc.
OR click the Packages menu item, then on Install Package(s) from Bioconductor, etc.
[On the Mac OS X Aqua GUI for R, click on Packages & Data, then Package Installer, set the
repository to BioConductor (binaries), click on Get List, etc.]

For installation from the command line, see the Bioconductor site (http://www.bioconductor.
org/) for instructions.

5.3 imgplot() as an alternative to imageplot()

The function imgplot() gives a display that is a bit different from imageplot(). Try:

> imgplot(coralRG$R[, 1], layout = coralRG$printer)

By default, this shows just the smallest 5% of intensities and the largest 5% of intensities.
Use these to look for parts of the half-slide that all show a consistent difference from the rest

of the half-slide. Remember however that what is important is the pattern that appears after
background correction (if any), normalization and the calculation of the M-values.

9

How was this document produced

The document marray-wkshp05.Rnw can be copied into the working directory. Then from
within an R session, enter:

library(tools)

Sweave("marray-notes.Rnw")

This produces a LATEX document that can then be processed through the LATEX document prepa-
ration system to give a postscript or pdf file.

This is a great way to document your eventual analyses. Changes to the code in the .Rnw
document are automatically reflected in the LATEX document that comes from Sweave(). See
help(Sweave) for information on documentation.

References

Smythe, G., Thorne, T., and Wettenhall, J. 2004. limma: Linear Models for Microarray
Data User’s Guide. This document is included with limma distributions.

Beare, R. and Buckley, M. 2004. Spot:cDNA Microarray Image Analysis Users Guide. Avail-
able from http://spot.cmis.csiro.au/spot/spotmanual.php.

Acknowledgements

Many thanks to Gaby Samuels, Eldon Ball, David Hayward and Rob Saint (Centre for Molecular
Genetics of Development) for permission to use the coral data for this workshop. The associ-
ated research was supported by ARC grants DP0343727 (John Maindonald), S4116004 (Lauretta
Grasso, Gaby Samuels, Eldon Ball, David Hayward and Rob Saint, through CMGD). Conrad
Burden did a marvelous job of checking these notes for mistakes.

10

