DOBAD Package: EM Algorithm on a Partially
Observed Linear Birth-Death Process

Charles Doss

June 2010

In this Sweave vignette, we will do estimation and confidence intervals for the rates in the

restricted-immigration BDI model.

Part 1

Estimating Rates for Linear

Birth-Death Process via EM
Algorithm

We are demonstrating the use of the DOBAD package’s capability to do Maximum-Likelihood
estimation of the rate parameters for a linear Birth-Death-Immigration (BDI) chain, given
partial observations, via the Expectation-Maximization (EM) algorithm. Call the chain
{X(t)}+>0, and its birth rate A and its death rate u. We fix § € R and constrain v, the
immigration rate, to be v = GA. We call this model the restricted-immigration model. We

will denote 6 = (A, p). The observed data is the value of the process at a finite number of

discrete time points. That is, for some fixed times 0 = tg,ty,...,%,, we see the state of the
process, X (t;). Thus the data, D, is 2 parts: a vector of the times t;, 7 = 0,...,n and a vector
of states at each of those times, s;, for i = 0,...,n (where X (¢;) = s;. In order to use the EM

algorithm, we need to be able to calculate F(N; | Xy = a, X7 = b), BE(N;|Xo = a, X7 = b),
and E(Rr|X, = a, X7 = b), where N\ is the number of jumps up in the time interval [0, 77,
Ny is the number of jumps down in the time interval [0, 7], and Ry is the total holding time
in the interval [0,7] (i.e. Ry = Y .-, idr(i) where dp(i) is the time spent in state ¢ in the

interval [0, 7). We do this via the generating functions.
> library(DOBAD)

We will set up the true parameters and a true chain, and then “observe” it partially, and see

how the EM does on that data. First, we set up the true parameters.

> set.seed(1155)

> initstate = 4

>T =38

>L <- 0.5

>mu <- 0.6

> beta.immig <- 1.2

> dr <- le-06

> n.fft <- 1024

> trueParams <- c(L, mu)

> names (trueParams) <- c("lambda", '"mu'")

Now we get the “truth” and then observe the “data” as well as calculate some information
about both.

> dat <- birth.death.simulant(t = T, lambda = L, m = mu, nu = L *

+ beta.immig, X0 = initstate)

> fullSummary <- BDsummaryStats(dat)

> fullSummary

Nplus Nminus Holdtime
7.00000 8.00000 7.79114

\

names (fullSummary) <- c("Nplus", "Nminus", "Holdtime")

> MLEs.FullyObserved <- M.step.SC(EMsuffStats = fullSummary, T = T,

+

beta.immig = beta.immig)

\

partialData <- getPartialData(sort(runif (10, 0, T)), dat)

\

observedSummary <- BDsummaryStats.PO(partialData)

\

observedSummary

Nplus Nminus Holdtime
3.000000 2.000000 3.960782

observedSummary is some measure of the information we’re missing. The MLE under partial
observations aspires to be as close to the MLE if the full data were observed, ie MLEs . FullyObserved

Now we run the actual EM algorithm.

The variable initParamMat gets good initial values to start with. We begin the EM with

those values here; however, we only run two iterations and then we cheat and restart the EM

very close to the optimal values (which we have computed ahead of time). The point is that

for the confidence intervals to be accurate, or even to compute at all, the estimates must be

reasonable, but we also want this vignette to finish relatively quickly. (If the estimates are

not close to the MLE, when we try to compute the confidence interval we can try to take a

square root of a negative.)

You may (and perhaps should) modify the number of iterations to see the EM actually at

work.

> iters <- 2

observedSummary,

= dr,

> tol <- 0.001

> initParamMat <- getInitParams(numInitParams = 1, summary.PO

+ T =T, beta.immig = beta.immig, diffScale = 100 * dr)

> EMtime <- system.time(estimators.hist <- EM.BD.SC(initParamMat = initParamMat,
+ M = iters, beta.immig = beta.immig, dat = partialData, dr

+ n.fft = n.fft, tol = tol))[3]

lambdahat muhat

0.2212262 0.5049508
[1] "The 1 just finished and the new estimators are"
lambdahat muhat
0.2847723 0.5595372
[1] "The 2 just finished and the new estimators are"
lambdahat muhat

0.3124456 0.6276225

> initParamMat <- matrix(c(0.41, 0.86), nrow = 1)
> names (initParamMat) <- c("lambdahat", "muhat")

> iters <- 1

> EMtime <- system.time(estimators.hist <- EM.BD.SC(initParamMat = initParamMat,

+ M = iters, beta.immig = beta.immig, dat = partialData, dr = dr,

+ n.fft = n.fft, tol = tol))[3]

lambdahat muhat

0.41 0.86
[1] "The 1 just finished and the new estimators are"
lambdahat muhat

0.4079572 0.8643212

> EMtime

elapsed
39.275

> estimators.hist

[,1] [,2]
[1,] 0.4100000 0.8600000
[2,] 0.4079572 0.8643212

> Lhat <- estimators.hist[iters + 1, 1]

> Lhat

[1] 0.4079572

> Mhat <- estimators.hist[iters + 1, 2]

> Mhat

[1] 0.8643212

> MLEs.FullyObserved

lambdahat muhat

0.4025038 1.0268073

Part 11

Frequentist Confidence Intervals

We are demonstrating the use of the DOBAD package’s capability to form asymptotic confidence

intervals of the MLEs from the EM algorithm, on a partially observed linear birth-death

markov chain. We estimate the information matrix using the method for partially-observed

data from Louis (1982). Note that this requires that the estimates for A and p are accurate!

>

+

IY.a <- getBDinform.PO(partialData, Lhat = Lhat, Mhat = Mhat,

beta.immig = beta.immig, delta = 0.001)

> print(IY.a)

[,1] [,2]

[1,] 21.074748 -6.152115

[2,] -6.152115 3.606642

>

>

zScr <- 1.96

Iinv <- solve(IY.a)

Ldist <- sqrt(Iinv[1, 1]) * zScr
Mdist <- sqrt(Iinv[2, 2]) * zScr
CI.L <- c(Lhat - Ldist, Lhat + Ldist)
CI.L

[1] -0.1946027 1.0105171

>

>

CI.M <- c(Mhat - Mdist, Mhat + Mdist)
CI.M

[1] -0.592244 2.320886

References

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.

Journal of the Royal Statistical Society, Series B 44, 226-233.

