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Abstract

LaplacesDemon, usually referred to as Laplace’s Demon, is a contributed R package
for Bayesian inference, and is freely available on the Comprehensive R Archive Network
(CRAN). Laplace’s Demon allows Laplace Approximation and the choice of four MCMC
algorithms to update a Bayesian model according to a user-specified model function. The
user-specified model function enables Bayesian inference for any model form, provided the
user specifies, or approximates, the likelihood. Laplace’s Demon also attempts to assist
the user by creating and offering R code, based on a previous model update, that can
be copy/pasted and executed. Posterior predictive checks and many other features are
included as well. Laplace’s Demon seeks to be generalizable and user-friendly to Bayesians,
especially Laplacians.
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Bayesian inference is named after Reverend Thomas Bayes (1702-1761) for developing Bayes’
theorem, which was published posthumously after his death (Bayes and Price 1763). This
was the first instance of what would be called inverse probability1.

Unaware of Bayes, Pierre-Simon Laplace (1749-1827) independently developed Bayes’ theo-
rem and first published his version in 1774, eleven years after Bayes, in one of Laplace’s first
major works (Laplace 1774, p. 366–367). In 1812, Laplace introduced a host of new ideas
and mathematical techniques in his book, Theorie Analytique des Probabilites, (Laplace 1812).
Before Laplace, probability theory was solely concerned with developing a mathematical anal-
ysis of games of chance. Laplace applied probabilistic ideas to many scientific and practical
problems. Although Laplace is not the father of probability, Laplace may be considered the
father of the field of probability.

1‘Inverse probability’ refers to assigning a probability distribution to an unobserved variable, and is in
essence, probability in the opposite direction of the usual sense. Bayes’ theorem has been referred to as “the
principle of inverse probability”. Terminology has changed, and the term ‘Bayesian probability’ has displaced
‘inverse probability’. The adjective “Bayesian” was introduced by R. A. Fisher as a derogatory term.
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In 1814, Laplace published his “Essai Philosophique sur les Probabilites”, which introduced a
mathematical system of inductive reasoning based on probability (Laplace 1814). In it, the
Bayesian interpretation of probability was developed independently by Laplace, much more
thoroughly than Bayes, so some“Bayesians”refer to Bayesian inference as Laplacian inference.
This is a translation of a quote in the introduction to this work:

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes”
(Laplace 1814).

The ‘intellect’ has been referred to by future biographers as Laplace’s Demon. In this quote,
Laplace expresses his philosophical belief in hard determinism and his wish for a computational
machine that is capable of estimating the universe.

This article is an introduction to an R (R Development Core Team 2011) package called
LaplacesDemon (Hall 2011), which was designed without consideration for hard determinism,
but instead with a lofty goal toward facilitating high-dimensional Bayesian (or Laplacian)
inference2, posing as its own intellect that is capable of impressive analysis. The LaplacesDe-
mon R package is often referred to as Laplace’s Demon. This article guides the user through
installation, data, specifying a model, initial values, updating Laplace’s Demon, summarizing
and plotting output, posterior predictive checks, general suggestions, discusses independence
and observability, covers details of the algorithm, software comparisons, discusses large data
sets and speed, and explains future goals.

Herein, it is assumed that the reader has basic familiarity with Bayesian inference, numerical
approximation, and R. If any part of this assumption is violated, then suggested sources in-
clude the vignette entitled “Bayesian Inference” that comes with the LaplacesDemon package,
Gelman, Carlin, Stern, and Rubin (2004), and Crawley (2007).

1. Installation

To obtain Laplace’s Demon, simply open R and install the LaplacesDemon package from a
CRAN mirror:

> install.packages("LaplacesDemon")

A goal in developing Laplace’s Demon was to minimize reliance on other packages or software.
Therefore, the usual dep=TRUE argument does not need to be used, because LaplacesDemon
does not depend on anything other than base R. Once installed, simply use the library or
require function in R to activate the LaplacesDemon package and load its functions into
memory:

2Even though the LaplacesDemon package is dedicated to Bayesian inference, frequentist inference may be
used instead with the same functions by omitting the prior distributions and maximizing the likelihood.
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> library(LaplacesDemon)

LaplacesDemon: Software for Bayesian Inference

``Probability theory is nothing but common sense reduced to

calculation'' (Pierre-Simon Laplace, 1814).

Laplace's Demon is ready for you.

2. Data

Laplace’s Demon requires data that is specified in a list. As an example, there is a data set
called demonsnacks that is provided with the LaplacesDemon package. For no good reason,
other than to provide an example, the log of Calories will be fit as an additive, linear function
of the remaining variables. Since an intercept will be included, a vector of 1’s is inserted into
design matrix X.

> data(demonsnacks)

> N <- NROW(demonsnacks)

> J <- NCOL(demonsnacks)

> y <- log(demonsnacks$Calories)

> X <- cbind(1, as.matrix(demonsnacks[, c(1, 3:10)]))

> for (j in 2:J) {

+ X[, j] <- CenterScale(X[, j])

+ }

> mon.names <- c("LP", "sigma")

> parm.names <- parm.names(list(beta = rep(0, J), log.sigma = 0))

> MyData <- list(J = J, X = X, mon.names = mon.names, parm.names = parm.names,

+ y = y)

There are J=10 independent variables (including the intercept), one for each column in design
matrix X. However, there are 11 parameters, since the residual variance, σ2, must be included
as well. The reason why it is called log.sigma will be explained later. Each parameter must
have a name specified in the vector parm.names, and parameter names must be included with
the data. This is using a function called parm.names. Also, note that each predictor has
been centered and scaled, as per Gelman (2008). Laplace’s Demon provides a CenterScale

function to center and scale predictors3.

Laplace’s Demon will consider using Laplace Approximation, and part of this consideration
includes determining the sample size. The user must specify the number of observations in
the data as either a scalar n or N. If these are not found by the LaplaceApproximation or
LaplacesDemon functions, then it will attempt to determine sample size as the number of
rows in y or Y.

3Centering and scaling a predictor is x.cs <- (x - mean(x)) / (2*sd(x)).
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3. Specifying a Model

Laplace’s Demon is capable with any Bayesian model for which the likelihood is specified4.
To use Laplace’s Demon, the user must specify a model. Let’s consider a linear regression
model, which is often denoted as:

y ∼ N (µ, σ2)

µ = Xβ

The dependent variable, y, is normally distributed according to expectation vector µ and
scalar variance σ2, and expectation vector µ is equal to the inner product of design matrix X
and parameter vector β.

For a Bayesian model, the notation for the residual variance, σ2, has often been replaced
with the inverse of the residual precision, τ−1. Here, σ2 will be used. Prior probabilities are
specified for β and σ (the standard deviation, rather than the variance):

βj ∼ N (0, 1000), j = 1, . . . , J

σ ∼ HC(25)

Each of the J β parameters is assigned an uninformative5 prior probability distribution that is
normally-distributed according to µ = 0 and σ2 = 1000. The large variance or small precision
indicates a lot of uncertainty about each β, and is hence an uninformative distribution. The
residual standard deviation σ is half-Cauchy-distributed according to its hyperparameter,
scale=25.

To specify a model, the user must create a function called Model. Here is an example for a
linear regression model:

> Model <- function(parm, Data) {

+ beta <- parm[1:Data$J]

+ sigma <- exp(parm[Data$J + 1])

+ beta.prior <- dnorm(beta, 0, sqrt(1000), log = TRUE)

+ sigma.prior <- dhalfcauchy(sigma, 25, log = TRUE)

+ mu <- tcrossprod(beta, Data$X)

+ LL <- sum(dnorm(Data$y, mu, sigma, log = TRUE))

+ LP <- LL + sum(beta.prior) + sigma.prior

+ Modelout <- list(LP = LP, Dev = -2 * LL, Monitor = c(LP,

+ sigma), yhat = mu, parm = parm)

+ return(Modelout)

+ }

4Examples of more than 50 Bayesian models may be found in the “Examples” vignette that comes with the
LaplacesDemon package. Likelihood-free estimation is also possible by approximating the likelihood, such as
in Approximate Bayesian Computation (ABC).

5‘Non-informative’ may be more widely used than ’uninformative’, but here that is considered poor English,
such as saying something is ‘non-correct’ when there’s a word for that . . . ‘incorrect’.
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Laplace’s Demon iteratively maximizes the logarithm of the unnormalized joint posterior
density as specified in this Model function. In Bayesian inference, the logarithm of the unnor-
malized joint posterior density is proportional to the sum of the log-likelihood and logarithm
of the prior densities:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

where Θ is a set of parameters, y is the data, ∝ means ‘proportional to’6, p(Θ|y) is the joint
posterior density, p(y|Θ) is the likelihood, and p(Θ) is the set of prior densities.

During each iteration in which Laplace’s Demon is maximizing the logarithm of the unnormal-
ized joint posterior density, Laplace’s Demon passes two arguments to Model: parm and Data,
where parm is short for the set of parameters, and Data is a list of data. These arguments are
specified in the beginning of the function:

Model <- function(parm, Data)

Then, the Model function is evaluated and the logarithm of the unnormalized joint posterior
density is calculated as LP, and returned to Laplace’s Demon in a list called Modelout, along
with the deviance (Dev), a vector (Monitor) of any variables desired to be monitored in
addition to the parameters, yrep (yhat) or replicates of y, and the parameter vector parm.
All arguments must be returned. Even if there is no desire to observe the deviance and any
monitored variable, a scalar must be placed in the second position of the Modelout list, and
at least one element of a vector for a monitored variable. This can be seen in the end of the
function:

LP <- LL + sum(beta.prior) + sigma.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma),

yhat=mu, parm=parm)

return(Modelout)

The rest of the function specifies the parameters, log of the prior densities, and calculates
the log-likelihood. Since design matrix X has J=10 column vectors (including the intercept),
there are 10 beta parameters and a sigma parameter for the residual standard deviation.

Since Laplace’s Demon passes a vector of parameters called parm to Model, the function
needs to know which parameter is associated with which element of parm. For this, the vector
beta is declared, and then each element of beta is populated with the value associated in
the corresponding element of parm. The reason why sigma is exponentiated will, again, be
explained later.

beta <- parm[1:Data$J]

sigma <- exp(parm[Data$J+1])

To work with the log of the prior densities and according to the assigned names of the
parameters and hyperparameters, they are specified as follows:

beta.prior <- dnorm(beta, 0, sqrt(1000), log=TRUE)

sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

It is important to reparameterize all parameters to be real-valued. For example, a positive-
only parameter such as variance should be allowed to range from −∞ to ∞, and be trans-

6For those unfamiliar with ∝, this symbol simply means that two quantities are proportional if they vary
in such a way that one is a constant multiplier of the other. This is due to an unspecified constant of
proportionality in the equation. Here, this can be treated as ‘equal to’.
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formed in the Model function with the exp function, which will force it to positive values.
A parameter θ that needs to be bounded in the model, such as in the interval [1,5], can be
transformed to that range with a logistic function, such as 1+4[exp(θ)/(exp(θ)+1)]. Alterna-
tively, each parameter may be constrained in the Model function, such as with the interval

function. Laplace’s Demon will attempt to increase or decrease the value of each parameter
to maximize LP, without consideration for the distributional form of the parameter. In the
above example, the residual standard deviation sigma receives a half-Cauchy distributed prior
of the form:

σ ∼ HC(25)

In this specification, sigma cannot be negative. By reparameterizing sigma as

sigma <- exp(parm[Data$J+1])

Laplace’s Demon will increase or decrease parm[Data$J+1], which is effectively log(sigma).
Now it is possible for Laplace’s Demon to decrease log(sigma) below zero without causing
an error or violating its half-Cauchy distributed specification.

Finally, everything is put together to calculate LP, the logarithm of the unnormalized joint
posterior density. The expectation vector mu is the inner product of the vector beta and the
transpose of the design matrix, Data$X. Expectation vector mu, vector Data$y, and scalar
sigma are used to estimate the sum of the log-likelihoods, where:

y ∼ N (µ, σ2)

and as noted before, the logarithm of the unnormalized joint posterior density is:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

mu <- tcrossprod(beta, Data$X)

LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE)

LP <- LL + sum(beta.prior) + sigma.prior

Specifying the model in the Model function is the most involved aspect for the user of Laplace’s
Demon. But it has been designed so it is also incredibly flexible, allowing a wide variety of
Bayesian models to be specified. Missing values are also easy to estimate (see the “Examples”
vignette).

4. Initial Values

Laplace’s Demon requires a vector of initial values for the parameters. Each initial value
is a starting point for the estimation of a parameter. When all initial values are set to
zero, Laplace’s Demon will optimize initial values using a conjugate gradient algorithm in
the LaplaceApproximation function. Laplace Approximation is asymptotic with respect to
sample size, so it is inappropriate in this example with a sample size of 39 and 11 parameters.
Laplace’s Demon will not use Laplace Approximation when the sample size is not at least five
times the number of parameters. Otherwise, the user may prefer to optimize initial values
in the LaplaceApproximation function before using the LaplacesDemon function. When
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Laplace’s Demon receives initial values that are not all set to zero, it will begin to update
each parameter.

In this example, there are 11 parameters. With no prior knowledge, it is a good idea either
to randomize each initial value within an interval, say -3 to 3, or set all of them equal to
zero and let the LaplaceApproximation function optimize the initial values, provided there
is sufficient sample size. Here, the LaplaceApproximation function will be introduced in
the LaplacesDemon function, so the first 10 parameters, the beta parameters, have been set
equal to zero, and the remaining parameter, log.sigma, has been set equal to log(1), which
is equal to zero. This visually reminds me that I am working with the log of sigma, rather
than sigma, and is merely a personal preference. The order of the elements of the vector of
initial values must match the order of the parameters associated with each element of parm
passed to the Model function.

> Initial.Values <- c(rep(0, J), log(1))

5. Laplace’s Demon

Compared to specifying the model in the Model function, the actual use of Laplace’s Demon
is very easy. Since Laplace’s Demon is stochastic, or involves pseudo-random numbers, it’s a
good idea to set a ‘seed’ for pseudo-random number generation, so results can be reproduced.
Pick any number you like, but there’s only one number appropriate for a demon7:

> set.seed(666)

As with any R package, the user can learn about a function by using the help function
and including the name of the desired function. To learn the details of the LaplacesDemon
function, enter:

> help(LaplacesDemon)

Here is one of many possible ways to begin:

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 900, Covar = NULL,

+ DR = 1, Initial.Values, Iterations = 10000, Periodicity = 10,

+ Status = 1000, Thinning = 10)

In this example, an output object called Fit will be created as a result of using the Laplaces-
Demon function. Fit is an object of class demonoid, which means that since it has been
assigned a customized class, other functions have been custom-designed to work with it.
Laplace’s Demon offers Laplace Approximation and four MCMC algorithms (which are ex-
plained in section 11). The above example did not use Laplace Approximation due to small
sample size, and instead used the Delayed Rejection Adaptive Metropolis (DRAM) algorithm
for updating.

7Demonic references are used only to add flavor to the software and its use, and in no way endorse beliefs
in demons. This specific pseudo-random seed is often referred to, jokingly, as the ‘demon seed’.
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This example tells the LaplacesDemon function to maximize the first component in the list
output from the user-specified Model function, given a data set called Data, and according to
several settings.

� The Adaptive=900 argument indicates that a non-adaptive MCMC algorithm will begin,
and that it will become adaptive at the 900th iteration. Beginning with the 900th
iteration, the MCMC algorithm will estimate the proposal variance or covariance based
on the history of the chains.

� The Covar=NULL argument indicates that a user-specified variance vector or covariance
matrix has not been supplied, so the algorithm will begin with its own estimate.

� The DR=1 argument indicates that delayed rejection will occur, such that when a pro-
posal is rejected, an additional proposal will be attempted, thus potentially delaying
rejection of proposals.

� The Initial.Values argument requires a vector of initial values for the parameters.

� The Iterations=10000 argument indicates that the LaplacesDemon function will up-
date 10,000 times before completion.

� The Periodicity=10 argument indicates that once adaptation begins, the algorithm
will adapt every 10 iterations.

� The Status=1000 argument indicates that a status message will be printed to the R
console every 1,000 iterations.

� Finally, the Thinning=10 argument indicates that only every nth iteration will be re-
tained in the output, and in this case, every 10th iteration will be retained.

By running the LaplacesDemon function, the following output was obtained:

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 900, Covar = NULL,

+ DR = 1, Initial.Values, Iterations = 10000, Periodicity = 10,

+ Status = 1000, Thinning = 10)

Laplace's Demon was called on Sun Oct 2 13:05:39 2011

Performing initial checks...

Algorithm: Delayed Rejection Adaptive Metropolis

Laplace's Demon is beginning to update...

Iteration: 1000, Proposal: Multivariate

Iteration: 2000, Proposal: Multivariate

Iteration: 3000, Proposal: Multivariate

Iteration: 4000, Proposal: Multivariate

Iteration: 5000, Proposal: Multivariate

Iteration: 6000, Proposal: Multivariate

Iteration: 7000, Proposal: Multivariate
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Iteration: 8000, Proposal: Multivariate

Iteration: 9000, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Creating Output

Laplace's Demon has finished.

Laplace’s Demon finished quickly, though it had a small data set (N=39), few parameters
(K=11), and the model was very simple. At each status of 1000 iterations, the proposal was
multivariate, so it did not have to resort to single-component proposals. The output object,
Fit, was created as a list. As with any R object, use str() to examine its structure:

> str(Fit)

To access any of these values in the output object Fit, simply append a dollar sign and the
name of the component. For example, here is how to access the observed acceptance rate:

> Fit$Acceptance.Rate

[1] 0.3098

6. Summarizing Output

The output object, Fit, has many components. The (copious) contents of Fit can be printed
to the screen with the usual R functions:

> Fit

> print(Fit)

Both return the same output, which is:

> Fit

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 900, Covar = NULL,

DR = 1, Initial.Values = Initial.Values, Iterations = 10000,

Periodicity = 10, Status = 1000, Thinning = 10)

Acceptance Rate: 0.3098

Adaptive: 900

Algorithm: Delayed Rejection Adaptive Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
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[1] 0.08455135 0.06651354 0.44405792 0.26473941 0.13025956 0.05335009

[7] 0.13046451 0.08367160 0.13312048 0.28243715 0.02832220

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 94.714 86.939

pD 8623.997 123.577

DIC 8718.710 210.516

Delayed Rejection (DR): 1

Initial Values:

[1] 0 0 0 0 0 0 0 0 0 0 0

Iterations: 10000

Log(Marginal Likelihood): NA

Minutes of run-time: 0.29

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 10

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 301

Recommended Burn-In of Un-thinned Samples: 3010

Recommended Thinning: 280

Status is displayed every 1000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 10

Summary of All Samples

Mean SD MCSE ESS LB

beta[1] 4.9883587 0.4198169 0.06106423 47.26569 4.6496986

beta[2] -0.4586643 0.3568350 0.02598660 188.55415 -1.1569673

beta[3] -0.4699650 0.9385360 0.08183581 131.52707 -2.4648023

beta[4] -0.0243241 0.7272354 0.06253795 135.22681 -1.4920584

beta[5] -0.3976742 0.5040661 0.03957248 162.25139 -1.3702860

beta[6] -0.4945990 0.3227069 0.01851768 303.69898 -1.0864305

beta[7] 2.2995157 0.5069884 0.03691111 188.66090 1.3055595

beta[8] 0.6365851 0.4069304 0.02834086 206.16477 -0.1674040

beta[9] -0.2606857 0.5109132 0.04311193 140.44271 -1.2542463

beta[10] 1.6293691 0.7484949 0.07986923 87.82512 0.1807337

log.sigma -0.3537363 0.2311960 0.03081725 56.28244 -0.6138484

Deviance 94.7137295 131.3316158 7.71728098 289.60760 73.3766875
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LP -94.7754631 65.6664497 3.85878628 289.59137 -128.6801676

sigma 0.7421042 0.3996368 0.05179764 59.52661 0.5058286

Median UB

beta[1] 5.036027059 5.269213918

beta[2] -0.460612366 0.275103279

beta[3] -0.474619477 1.341343058

beta[4] -0.008943934 1.366729547

beta[5] -0.399333645 0.617275600

beta[6] -0.500263950 0.079923228

beta[7] 2.317191232 3.330379444

beta[8] 0.636632082 1.476951176

beta[9] -0.260298995 0.674791650

beta[10] 1.622834531 3.084998541

log.sigma -0.381872538 -0.005642328

Deviance 82.325599382 162.525733351

LP -88.581414468 -84.104397038

sigma 0.680273835 1.138040074

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0452164 0.1209224 0.004886365 612.4092 4.8183569 5.04429637

beta[2] -0.4671705 0.3626808 0.028336287 163.8187 -1.1968524 -0.46441583

beta[3] -0.3692309 0.9048893 0.075864466 142.2703 -2.0777775 -0.41493101

beta[4] -0.0938737 0.7137761 0.056098580 161.8901 -1.5789661 -0.06584369

beta[5] -0.3307827 0.5285388 0.045642283 134.0970 -1.3343019 -0.32294631

beta[6] -0.4764229 0.2892152 0.020386227 201.2652 -1.0340627 -0.47390391

beta[7] 2.3047324 0.5034679 0.039984174 158.5504 1.3984978 2.30820182

beta[8] 0.6231165 0.4194543 0.033060651 160.9706 -0.2304077 0.62648569

beta[9] -0.2492006 0.5146298 0.040653599 160.2477 -1.2330966 -0.27251875

beta[10] 1.5464835 0.7636212 0.062942080 147.1885 0.1393432 1.54110602

log.sigma -0.3705254 0.1321553 0.009543010 191.7778 -0.6107904 -0.37449456

Deviance 86.9389279 15.7211098 0.594202098 700.0000 74.2382550 82.80023276

LP -90.8877241 7.8613667 0.297131732 700.0000 -111.8142447 -88.81699766

sigma 0.7014016 0.1253897 0.008305580 227.9206 0.5067230 0.68266718

UB

beta[1] 5.2715971

beta[2] 0.2425978

beta[3] 1.3843414

beta[4] 1.2143440

beta[5] 0.7439408

beta[6] 0.0765831

beta[7] 3.3820399

beta[8] 1.4883015

beta[9] 0.6859437

beta[10] 3.0234399

log.sigma -0.1063204
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Deviance 128.7923598

LP -84.5347748

sigma 0.9929525

Several components are labeled as NOT SHOWN HERE, due to their size, such as the covariance
matrix Covar or the stationary posterior samples Posterior2. As usual, these can be printed
to the screen by appending a dollar sign, followed by the desired component, such as:

> Fit$Posterior2

Although a lot can be learned from the above output, notice that it completed 10000 iterations
of 11 variables in 0.29 minutes. Of course this was fast, since there were only 39 records, and
the form of the specified model was simple. As discussed later, Laplace’s Demon does better
than most other MCMC software with large numbers of records, such as 100,000 (see section
13).

In R, there is usually a summary function associated with each class of output object. The
summary function usually summarizes the output. For example, with frequentist models, the
summary function usually creates a table of parameter estimates, complete with p-values.

Since this is not a frequentist package, p-values are not part of any table with the LaplacesDemon
function, and the marginal posterior distributions of the parameters and other variables have
already been summarized in Fit, there is no point to have an associated summary function.
Going one more step toward useability, LaplacesDemon has a Consort function, where the
user consorts with Laplace’s Demon about the output object.

Consorting with Laplace’s Demon produces two kinds of output. The first section is identical
to print(Fit), but by consorting with Laplace’s Demon, it also produces a second section
called Demonic Suggestion.

> Consort(Fit)

#############################################################

# Consort with Laplace's Demon #

#############################################################

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 900, Covar = NULL,

DR = 1, Initial.Values = Initial.Values, Iterations = 10000,

Periodicity = 10, Status = 1000, Thinning = 10)

Acceptance Rate: 0.3098

Adaptive: 900

Algorithm: Delayed Rejection Adaptive Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

[1] 0.08455135 0.06651354 0.44405792 0.26473941 0.13025956 0.05335009

[7] 0.13046451 0.08367160 0.13312048 0.28243715 0.02832220

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):
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All Stationary

Dbar 94.714 86.939

pD 8623.997 123.577

DIC 8718.710 210.516

Delayed Rejection (DR): 1

Initial Values:

[1] 0 0 0 0 0 0 0 0 0 0 0

Iterations: 10000

Log(Marginal Likelihood): NA

Minutes of run-time: 0.29

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 10

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 301

Recommended Burn-In of Un-thinned Samples: 3010

Recommended Thinning: 280

Status is displayed every 1000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 10

Summary of All Samples

Mean SD MCSE ESS LB

beta[1] 4.9883587 0.4198169 0.06106423 47.26569 4.6496986

beta[2] -0.4586643 0.3568350 0.02598660 188.55415 -1.1569673

beta[3] -0.4699650 0.9385360 0.08183581 131.52707 -2.4648023

beta[4] -0.0243241 0.7272354 0.06253795 135.22681 -1.4920584

beta[5] -0.3976742 0.5040661 0.03957248 162.25139 -1.3702860

beta[6] -0.4945990 0.3227069 0.01851768 303.69898 -1.0864305

beta[7] 2.2995157 0.5069884 0.03691111 188.66090 1.3055595

beta[8] 0.6365851 0.4069304 0.02834086 206.16477 -0.1674040

beta[9] -0.2606857 0.5109132 0.04311193 140.44271 -1.2542463

beta[10] 1.6293691 0.7484949 0.07986923 87.82512 0.1807337

log.sigma -0.3537363 0.2311960 0.03081725 56.28244 -0.6138484

Deviance 94.7137295 131.3316158 7.71728098 289.60760 73.3766875

LP -94.7754631 65.6664497 3.85878628 289.59137 -128.6801676

sigma 0.7421042 0.3996368 0.05179764 59.52661 0.5058286

Median UB

beta[1] 5.036027059 5.269213918

beta[2] -0.460612366 0.275103279
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beta[3] -0.474619477 1.341343058

beta[4] -0.008943934 1.366729547

beta[5] -0.399333645 0.617275600

beta[6] -0.500263950 0.079923228

beta[7] 2.317191232 3.330379444

beta[8] 0.636632082 1.476951176

beta[9] -0.260298995 0.674791650

beta[10] 1.622834531 3.084998541

log.sigma -0.381872538 -0.005642328

Deviance 82.325599382 162.525733351

LP -88.581414468 -84.104397038

sigma 0.680273835 1.138040074

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0452164 0.1209224 0.004886365 612.4092 4.8183569 5.04429637

beta[2] -0.4671705 0.3626808 0.028336287 163.8187 -1.1968524 -0.46441583

beta[3] -0.3692309 0.9048893 0.075864466 142.2703 -2.0777775 -0.41493101

beta[4] -0.0938737 0.7137761 0.056098580 161.8901 -1.5789661 -0.06584369

beta[5] -0.3307827 0.5285388 0.045642283 134.0970 -1.3343019 -0.32294631

beta[6] -0.4764229 0.2892152 0.020386227 201.2652 -1.0340627 -0.47390391

beta[7] 2.3047324 0.5034679 0.039984174 158.5504 1.3984978 2.30820182

beta[8] 0.6231165 0.4194543 0.033060651 160.9706 -0.2304077 0.62648569

beta[9] -0.2492006 0.5146298 0.040653599 160.2477 -1.2330966 -0.27251875

beta[10] 1.5464835 0.7636212 0.062942080 147.1885 0.1393432 1.54110602

log.sigma -0.3705254 0.1321553 0.009543010 191.7778 -0.6107904 -0.37449456

Deviance 86.9389279 15.7211098 0.594202098 700.0000 74.2382550 82.80023276

LP -90.8877241 7.8613667 0.297131732 700.0000 -111.8142447 -88.81699766

sigma 0.7014016 0.1253897 0.008305580 227.9206 0.5067230 0.68266718

UB

beta[1] 5.2715971

beta[2] 0.2425978

beta[3] 1.3843414

beta[4] 1.2143440

beta[5] 0.7439408

beta[6] 0.0765831

beta[7] 3.3820399

beta[8] 1.4883015

beta[9] 0.6859437

beta[10] 3.0234399

log.sigma -0.1063204

Deviance 128.7923598

LP -84.5347748

sigma 0.9929525

Demonic Suggestion
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Due to the combination of the following conditions,

1. Delayed Rejection Adaptive Metropolis

2. The acceptance rate (0.3098) is within the interval [0.15,0.5].

3. At least one target MCSE is >= 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

301 iterations.

Laplace's Demon has not been appeased, and suggests

copy/pasting the following R code into the R console,

and running it.

Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples,]

Fit <- LaplacesDemon(Model, Data=MyData, Adaptive=36,

Covar=Fit$Covar, DR=0, Initial.Values, Iterations=280000,

Periodicity=904, Status=34482, Thinning=280)

Laplace's Demon is finished consorting.

The Demonic Suggestion is a very helpful section of output. When Laplace’s Demon was
developed initially in late 2010, there were not to my knowledge any tools of Bayesian inference
that make suggestions to the user.

Before making its Demonic Suggestion, Laplace’s Demon considers and presents five condi-
tions: the algorithm, acceptance rate, Monte Carlo standard error (MCSE), effective sample
size (ESS), and stationarity. There are 48 combinations of these five conditions, though many
combinations lead to the same conclusions. In addition to these conditions, there are other
suggested values, such as a recommended number of iterations or values for the Periodicity

and Status arguments. The suggested value for Status is seeking to print a status message
every minute when the expected time is longer than a minute, and is based on the time in
minutes it took, the number of iterations, and the recommended number of iterations. This
estimate is fairly accurate for non-adaptive algorithms, and is hard to estimate for adaptive
algorithms. But, back to the really helpful part. . .

If these five conditions are unsatisfactory, then Laplace’s Demon is not appeased, and suggests
it should continue updating, and that the user should copy/paste and execute its suggested R
code. Here are the criteria it measures against. The final algorithm must be non-adaptive, so
that the Markov property holds (this is covered in section 11). The acceptance rate is consid-
ered satisfactory if it is within the interval [15%,50%]8. MCSE is considered satisfactory for
each target distribution if it is less than 6.27% of the standard deviation of the target distri-
bution. This allows the true mean to be within 5% of the area under a Gaussian distribution

8While Spiegelhalter, Thomas, Best, and Lunn (2003) recommend updating until the acceptance rate is
within the interval [20%,40%], and Roberts and Rosenthal (2001) suggest [10%,40%], the interval recommended
here is [15%,50%].
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around the estimated mean. ESS is considered satisfactory for each target distribution if it is
at least 100, which is usually enough to describe 95% probability intervals. And finally, each
variable must be estimated as stationary.

Notice that since stationarity has been estimated beginning with the 301st iteration, the
suggested R code changes from Adaptive=900 to Adaptive=0. The suggestion is to abandon
the adaptive MCMC algorithm in favor of a non-adaptive algorithm, specifically a Random-
Walk Metropolis (RWM). It is also replacing the initial values with the latest values of the
parameter chains, and is suggesting to begin with the latest covariance matrix. Some of
the arguments in the suggested R code seem excessive, such as Iterations=280000 and
Thinning=280. For the sake of the example and saving the reader from a few pages of
output, the suggested R code will not be run and the following will be run instead:

> Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples, ]

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 0, Covar = Fit$Covar,

+ DR = 0, Initial.Values, Iterations = 290000, Periodicity = 0,

+ Status = 10000, Thinning = 290)

Laplace's Demon was called on Sun Oct 2 13:05:56 2011

Performing initial checks...

Adaptation will not occur due to the Adaptive argument.

Adaptation will not occur due to the Periodicity argument.

Algorithm: Random-Walk Metropolis

Laplace's Demon is beginning to update...

Iteration: 10000, Proposal: Single-Component

Iteration: 20000, Proposal: Multivariate

Iteration: 30000, Proposal: Multivariate

Iteration: 40000, Proposal: Multivariate

Iteration: 50000, Proposal: Multivariate

Iteration: 60000, Proposal: Multivariate

Iteration: 70000, Proposal: Multivariate

Iteration: 80000, Proposal: Multivariate

Iteration: 90000, Proposal: Multivariate

Iteration: 100000, Proposal: Multivariate

Iteration: 110000, Proposal: Multivariate

Iteration: 120000, Proposal: Multivariate

Iteration: 130000, Proposal: Multivariate

Iteration: 140000, Proposal: Multivariate

Iteration: 150000, Proposal: Multivariate

Iteration: 160000, Proposal: Multivariate

Iteration: 170000, Proposal: Multivariate

Iteration: 180000, Proposal: Multivariate

Iteration: 190000, Proposal: Multivariate

Iteration: 200000, Proposal: Multivariate

Iteration: 210000, Proposal: Multivariate

Iteration: 220000, Proposal: Multivariate
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Iteration: 230000, Proposal: Multivariate

Iteration: 240000, Proposal: Multivariate

Iteration: 250000, Proposal: Multivariate

Iteration: 260000, Proposal: Multivariate

Iteration: 270000, Proposal: Multivariate

Iteration: 280000, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Estimating Log of the Marginal Likelihood

Creating Output

Laplace's Demon has finished.

Next, the user consorts with Laplace’s Demon:

> Consort(Fit)

#############################################################

# Consort with Laplace's Demon #

#############################################################

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 0, Covar = Fit$Covar,

DR = 0, Initial.Values = Initial.Values, Iterations = 290000,

Periodicity = 0, Status = 10000, Thinning = 290)

Acceptance Rate: 0.1806

Adaptive: 290001

Algorithm: Random-Walk Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

[1] 0.08455135 0.06651354 0.44405792 0.26473941 0.13025956 0.05335009

[7] 0.13046451 0.08367160 0.13312048 0.28243715 0.02832220

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 82.055 82.128

pD 15.054 14.740

DIC 97.109 96.869

Delayed Rejection (DR): 0

Initial Values:

beta[1] beta[2] beta[3] beta[4] beta[5] beta[6]

5.035727314 -0.001927554 -0.661212565 0.150148260 -0.579904003 -0.423509217

beta[7] beta[8] beta[9] beta[10] log.sigma

1.124764509 0.838525731 0.257052949 1.837345368 -0.540429186
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Iterations: 290000

Log(Marginal Likelihood): -86.60886

Minutes of run-time: 2.18

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 290001

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 201

Recommended Burn-In of Un-thinned Samples: 58290

Recommended Thinning: 870

Status is displayed every 10000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 290

Summary of All Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0476190 0.10984847 0.003473714 1000.0000 4.8270261 5.04823623

beta[2] -0.4662030 0.36526652 0.018377095 395.0627 -1.2321903 -0.45438351

beta[3] -0.4915055 0.91307553 0.036206756 635.9664 -2.2930568 -0.46420443

beta[4] -0.0579340 0.67729967 0.021418096 1000.0000 -1.3839292 -0.06781109

beta[5] -0.4058416 0.50043946 0.017553949 812.7434 -1.4253946 -0.40363787

beta[6] -0.5071423 0.30318141 0.009587438 1000.0000 -1.1221300 -0.49588295

beta[7] 2.3018995 0.54584038 0.022036180 613.5624 1.2251696 2.31786996

beta[8] 0.6399804 0.42184745 0.016071664 688.9523 -0.1619606 0.65994613

beta[9] -0.2065339 0.57541339 0.021552593 712.7888 -1.3357013 -0.21631982

beta[10] 1.6537835 0.75428713 0.026310818 821.8730 0.1840727 1.63794373

log.sigma -0.3683079 0.13378099 0.004230526 1000.0000 -0.6010445 -0.36843782

Deviance 82.0549970 5.48702667 0.173515019 1000.0000 73.5924230 81.20998107

LP -88.4458976 2.74451043 0.086789040 1000.0000 -94.6280743 -88.02410585

sigma 0.6993738 0.09596913 0.003034810 1000.0000 0.5486774 0.69294099

UB

beta[1] 5.26180805

beta[2] 0.22075298

beta[3] 1.29063870

beta[4] 1.28778198

beta[5] 0.57286988

beta[6] 0.08262073

beta[7] 3.29668580

beta[8] 1.40908385

beta[9] 0.89019461

beta[10] 3.08867997
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log.sigma -0.09797562

Deviance 94.41662369

LP -84.21281351

sigma 0.91937490

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0487614 0.11098695 0.003923981 800.0000 4.8276524 5.0478311

beta[2] -0.4462911 0.36804981 0.013012526 800.0000 -1.1984881 -0.4311838

beta[3] -0.4127919 0.89952083 0.031802864 800.0000 -2.2471119 -0.3759962

beta[4] -0.1005763 0.66522778 0.023519354 800.0000 -1.3871856 -0.1070156

beta[5] -0.3881095 0.49963146 0.017664640 800.0000 -1.4203551 -0.3832188

beta[6] -0.5086246 0.31026265 0.010969441 800.0000 -1.1329532 -0.4950606

beta[7] 2.2831323 0.53905984 0.022160873 591.6982 1.1967685 2.3114036

beta[8] 0.6057946 0.42616788 0.015067310 800.0000 -0.2380697 0.6115900

beta[9] -0.1951843 0.56778306 0.020074163 800.0000 -1.3339505 -0.2052019

beta[10] 1.6169915 0.74430681 0.026315220 800.0000 0.1840727 1.5960083

log.sigma -0.3642619 0.13404312 0.004739140 800.0000 -0.6073474 -0.3633139

Deviance 82.1283571 5.42958388 0.191964779 800.0000 73.9554532 81.2635926

LP -88.4823987 2.71566019 0.096013087 800.0000 -94.6280743 -88.0484537

sigma 0.7008271 0.09527294 0.003368407 800.0000 0.5474287 0.6950558

UB

beta[1] 5.26483478

beta[2] 0.26423908

beta[3] 1.30052180

beta[4] 1.20910226

beta[5] 0.63976566

beta[6] 0.08456518

beta[7] 3.28063670

beta[8] 1.39014195

beta[9] 0.86841712

beta[10] 3.02095238

log.sigma -0.09041084

Deviance 94.41662369

LP -84.39394118

sigma 0.92059392

Demonic Suggestion

Due to the combination of the following conditions,

1. Random-Walk Metropolis

2. The acceptance rate (0.1806) is within the interval [0.15,0.5].

3. Each target MCSE is < 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)
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of at least 100.

5. Each target distribution became stationary by

201 iterations.

Laplace's Demon has been appeased, and suggests

the marginal posterior samples should be plotted

and subjected to any other MCMC diagnostic deemed

fit before using these samples for inference.

Laplace's Demon is finished consorting.

In 2.18 minutes, Laplace’s Demon updated 290000 iterations, retaining every 290th iteration
due to thinning, and reported an acceptance rate of 0.181. Notice that all criteria have been
met: MCSE’s are sufficiently small, ESS’s are sufficiently large, and stationarity was estimated
beginning with the first iteration. Since the algorithm was RWM, the Markov property holds,
so let’s look at some plots.

7. Plotting Output

Laplace’s Demon has a plot.demonoid function to enable its own customized plots with
demonoid objects. The variable BurnIn (below) may be left as it is so it will show only
the stationary samples (samples that are no longer trending), or set equal to one so that all
samples can be plotted. In this case, it will already be one, so I will leave it alone. The
function also enables the user to specify whether or not the plots should be saved as a .pdf
file, and allows the user to limit the number of parameters plotted, in case the number is very
large and only a quick glance is desired.

> BurnIn <- Fit$Rec.BurnIn.Thinned

> plot(Fit, BurnIn, MyData, PDF = FALSE, Parms = Fit$Parameters)

There are three plots for each parameter, the deviance, and each monitored variable (which
in this example are sigma and mu[1]). The leftmost plot is a trace-plot, showing the history
of the value of the parameter according to the iteration. The middlemost plot is a kernel
density plot. The rightmost plot is an ACF or autocorrelation function plot, showing the
autocorrelation at different lags. The chains look stationary (do not exhibit a trend), the
kernel densities look Gaussian, and the ACF’s show low autocorrelation.

Another useful plot is called the caterpillar plot, which plots a horizontal representation
of three quantiles (2.5%, 50%, and 97.5%) of each selected parameter from the posterior
samples summary. The caterpillar plot will attempt to plot the stationary samples first
(Fit$Summary2), but if stationary samples do not exist, then it will plot all samples (Fit$Summary1).
Here, only the first ten parameters are selected for a caterpillar plot:

> caterpillar.plot(Fit, Parms = 1:10)
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Figure 1: Plots of Marginal Posterior Samples
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Figure 2: Plots of Marginal Posterior Samples
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Figure 3: Plots of Marginal Posterior Samples
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Figure 4: Plots of Marginal Posterior Samples
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Figure 5: Plots of Marginal Posterior Samples
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When predicting the logarithm of y (Calories) with the demonsnacks data, the caterpillar plot
shows that the best fitting variables are beta[6] (Sodium), beta[7] (Total.Carbohydrate),
and beta[10] (Protein). Overall, Laplace’s Demon seems to have done well, eating demonsnacks
for breakfast.

If all is well, then the Markov chains should be studied with MCMC diagnostics, and finally,
further assessments of model fit should be estimated with posterior predictive checks, showing
how well (or poorly) the model fits the data. When the user is satisfied, the BayesFactor

function may be useful in selecting the best model, and the marginal posterior samples may
be used for inference.

8. Posterior Predictive Checks

A posterior predictive check is a method to assess discrepancies between the model and the
data (Gelman, Meng, and Stern 1996a). To perform posterior predictive checks with Laplace’s
Demon, simply use the predict function:

> Pred <- predict(Fit, Model, MyData)

This creates Pred, which is an object of class demonoid.ppc (where ppc is short for posterior
predictive check) that is a list which contains y and yhat. If the data set that was used to
estimate the model is supplied in predict, then replicates of y (also called yrep) are estimated.
If a new data set is supplied in predict, then new, unobserved instances of y (called ynew)
are estimated. Note that with new data, a y vector must still be supplied, and if unknown,
can be set to something sensible such as the mean of the y vector in the model.

The predict function calls the Model function once for each set of stationary samples in
Fit$Posterior2. Each set of samples is used to calculate mu, which is the expectation of y,
and mu is reported here as yhat. When there are few discrepancies between y and yrep, the
model is considered to fit well to the data.

Since Pred$yhat is a large (39 x 1000) matrix, let’s look at the summary of the posterior
predictive distribution:

> summary(Pred, Discrep = "Chi-Square")

Concordance: 0.7692308

Discrepancy Statistic: 302.861

L-criterion: 22.177, S.L: 0.393

Records:

y Mean SD LB Median UB PQ Discrep

1 4.174387 4.176 0.195 3.803 4.174 4.550 0.498 0.000

2 5.361292 5.296 0.392 4.540 5.300 6.057 0.438 0.028

3 6.089045 5.249 0.533 4.223 5.262 6.345 0.060 2.483

4 5.298317 5.154 0.323 4.534 5.165 5.818 0.311 0.200

5 4.406719 4.071 0.252 3.573 4.081 4.562 0.084 1.777

6 2.197225 3.802 0.196 3.437 3.803 4.192 1.000 66.671

7 5.010635 4.546 0.177 4.196 4.546 4.916 0.008 6.891
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8 1.609438 3.860 0.197 3.487 3.860 4.247 1.000 130.549

9 4.343805 4.235 0.227 3.810 4.237 4.652 0.312 0.227

10 4.812184 4.722 0.222 4.290 4.722 5.171 0.332 0.165

11 4.189655 4.409 0.202 4.010 4.413 4.809 0.876 1.177

12 4.919981 4.532 0.175 4.177 4.529 4.874 0.015 4.926

13 4.753590 4.377 0.176 4.037 4.367 4.725 0.016 4.609

14 4.127134 4.166 0.166 3.836 4.168 4.475 0.595 0.055

15 3.713572 4.094 0.193 3.733 4.098 4.480 0.980 3.886

16 4.672829 4.406 0.223 3.981 4.408 4.842 0.105 1.434

17 6.930495 7.202 0.512 6.184 7.213 8.221 0.704 0.282

18 5.068904 4.809 0.239 4.328 4.814 5.296 0.129 1.191

19 6.775366 6.316 0.490 5.333 6.322 7.302 0.169 0.879

20 6.553933 7.220 0.479 6.240 7.234 8.128 0.910 1.930

21 4.890349 5.382 0.350 4.669 5.371 6.048 0.921 1.971

22 4.442651 4.265 0.267 3.719 4.275 4.778 0.234 0.444

23 2.833213 3.067 0.497 2.103 3.082 3.998 0.684 0.222

24 4.787492 4.935 0.255 4.390 4.940 5.461 0.735 0.335

25 6.933423 7.247 0.605 6.065 7.251 8.437 0.695 0.269

26 6.180017 6.044 0.619 4.835 6.034 7.215 0.415 0.048

27 5.652489 5.334 0.305 4.771 5.328 5.950 0.149 1.091

28 5.429346 4.470 0.206 4.040 4.479 4.888 0.000 21.626

29 5.634790 5.561 0.676 4.170 5.596 6.921 0.475 0.012

30 4.262680 4.064 0.204 3.681 4.062 4.454 0.156 0.952

31 3.891820 4.070 0.244 3.590 4.073 4.541 0.774 0.534

32 6.613384 6.607 0.400 5.792 6.607 7.389 0.492 0.000

33 4.919981 4.406 0.177 4.061 4.395 4.745 0.002 8.405

34 6.541030 6.465 0.528 5.426 6.470 7.511 0.442 0.021

35 6.345636 6.452 0.501 5.505 6.447 7.462 0.592 0.045

36 3.737670 4.054 0.270 3.517 4.051 4.564 0.874 1.376

37 7.356280 7.926 0.600 6.719 7.915 9.069 0.832 0.901

38 5.739793 4.765 0.169 4.414 4.764 5.087 0.000 33.114

39 5.517453 5.149 0.252 4.651 5.148 5.647 0.074 2.135

The summary.demonoid.ppc function returns a list with 4 components when y is continu-
ous (different output occurs for categorical dependent variables when given the argument
Categorical=TRUE):

� Concordance is the predictive concordance of Gelfand (1996), that indicates the per-
centage of times that y that was within the 95% probability interval of yhat. A goal
is to have 95% predictive concordance. For more information, see the accompanying
vignette entitled “Bayesian Inference”. In this case, roughly 1% of the time, y is within
the 95% probability interval of yhat. These results suggest that the model should be
attempted again under different conditions, such as using different predictors, or speci-
fying a different form to the model.

� Discrepancy.Statistic is a summary of a specified discrepancy measure. There are
many options for discrepancy measures that may be specified in the Discrep argument.
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Figure 7: Posterior Predictive Plots

In this example, the specified discrepancy measure was the χ2 test in Gelman et˜al.
(2004, p. 175), and higher values indicate a worse fit.

� L-criterion is a posterior predictive check for model and variable selection that mea-
sures the distance between y and yrep, providing a criterion to be minimized (Laud and
Ibrahim 1995).

� The last part of the summarized output reports y, information about the distribution
of yhat, and the predictive quantile (PQ). The mean prediction of y[1], or yrep

1 , given
the model and data, is 4.176. Most importantly, PQ[1] is 0.498, indicating that 49.8%
of the time, yhat[1,] was greater than y[1], or that y[1] is close to the mean of
yhat[1,]. Contrast this with the 6th record, where y[6]=2.197 and PQ[6]=1. There-
fore, yhat[6,] was not a good replication of y[6], because the distribution of yhat[6,]
is always greater than y[6]. While y[1] is within the 95% probability interval of
yhat[1,], the 95% probability interval of yhat[6,] is above y[6] 100% of the time,
indicating a strong discrepancy between the model and data, in this case.

There are also a variety of plots for posterior predictive checks, and the type of plot is
controlled with the Style argument. Many styles exist, such as producing plots of covariates
and residuals. The last component of this summary may be viewed graphically as posterior
densities. Rather than observing plots for each of 39 records or rows, only the first 9 densities
will be shown here:

> plot(Pred, Style = "Density", Rows = 1:9)

These posterior predictive checks indicate that there is plenty of room to improve this model.
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9. General Suggestions

Following are general suggestions on how best to use Laplace’s Demon:

� As suggested by Gelman (2008), continuous predictors should be centered and scaled.
Here is an explicit example in R of how to center and scale a single predictor called
x: x.cs <- (x - mean(x)) / (2*sd(x)). However, it is instead easier to use the
CenterScale function provided in LaplacesDemon.

� Do not forget to reparameterize any bounded parameters in the Model function to be
real-valued in the parm vector.

� MCMC is a stochastic method of numerical approximation, and as such, results may
differ with each run due to the use of pseudo-random number generation. It is good
practice to set a seed so that each update of the model may be reproduced. Here is an
example in R: set.seed(666).

� Once a model has been specified in the Model function, it may be tempting to specify a
large number of iterations and thinning in the LaplacesDemon function, and simply let
the model update a long time, hoping for convergence. Instead, it is wise to begin with
few iterations such as Iterations=20, set Adaptive=0 (preventing adaptation), and set
Thinning=1. User-error in specifying the Model function will be frustrating otherwise.

� As model complexity increases, the number of parameters increases, and as initial values
are further from high-probability regions, the initial acceptance rate may be very low.
If the previous general suggestion was successful, but the aceptance rate was zero, then
update the model again, but for more iterations. The goal here is to verify that proposals
are accepted without problems before attempting an “actual” model update.

� After studying updates with few iterations, the first “actual” update should be long
enough that proposals are accepted (the acceptance rate is not zero), adaptation begins
to occur, and that enough iterations occur after the first adaptation to allow the user to
study the adaptation. In the supplied example, adaptation was allowed to begin at the
900th iteration (Adaptive=900), but also occurred with Periodicity=10, so every 10th
iteration, adaptation occurred. It is also wise to use delayed rejection to assist with the
acceptance rate when the algorithm may begin far from its solution, so set DR=1.

� If adaptation does not seem to improve estimation or the initial movement in the
chains is worse than expected, then consider optimizing the initial values with the
LaplaceApproximation function, changing the initial values, or setting all initial val-
ues equal to zero so the LaplacesDemon function will use the LaplaceApproximation

function. In MCMC, initial values are most effective when the starting points are close
to the target distributions (though, if the target distributions were known a priori, then
there would be little point in much of this). When initial values are far enough away from
the target distributions to be in low-probability regions, the algorithms (both Laplace
Approximation and MCMC) may take longer than usual. The MCMC algorithms herein
will struggle more as the proposal covariance matrix approaches near-singularity. In ex-
treme examples, it is possible for the proposal covariance matrix to become singular,
which will stop Laplace’s Demon. If there is no information available to make a better
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selection, then randomize the initial values and use LaplaceApproximation. Centered
and scaled predictors also help by essentially standardizing the possible range of the
target distributions.

� If Laplace’s Demon exhibits an unreasonably low acceptance rate (say, arbitrarily, lower
than 15%, but greater than 0%) and is having a hard time exploring (but is still able
to explore) after significant iterations, then investigate the latest proposal covariance
matrix by entering Fit$Covar. Chances are that the elements of the diagonal, the
variances, are large. In this case, it may be best to set Covar=NULL for the next time it
continues to update, which will begin by default with a scaled identity matrix that should
get more movement in the chains. As is usual practice, the latest sampled values should
also replace the initial values, so it begins from the last update, but with larger proposal
variances. The chains will mix better the closer they get to their target distributions.
The user can confirm that Laplace’s Demon is making progress and moving overall in the
right direction by observing the trace-plots of the deviance, or better yet, the logarithm
of the unnormalized joint posterior density. If the deviance is decreasing and the joint
posterior is increasing run after run, then the model is continuously fitting better and
better, and one possible sign of convergence will be when the deviance and the joint
posterior seem to become stationary or no longer show a trend.

� When speed is a concern, such as with complex models, there may be things in the
Model function that can be commented out, such as sometimes calculating yhat. The
model can be updated without some features, that can be un-commented and used for
posterior predictive checks. By commenting out things that are strictly unnecessary to
updating, the model will update more quickly.

� If Laplace’s Demon is exploring areas of the state space that the user knows a priori
should not be explored, then the parameters may be constrained in the Model function
before being passed back to the LaplacesDemon function. Simply change the parameter
of interest as appropriate and place the constrained value back in the parm vector.

� Demonic Suggestion is intended as an aid, not an infallible replacement for criti-
cal thinking. As with anything else, its suggestions are based on assumptions, and
it is the responsibility of the user to check those assumptions. For example, the
Geweke.Diagnostic may indicate stationarity (lack of a trend) when it does not exist,
and this most likely occurs when too few thinned samples remain. Or, the Demonic

Suggestion may indicate that the next update may need to run for a million iterations
in a complex model, requiring weeks to complete. Is this really best for the user?

� Use a two-phase approach with Laplace’s Demon, where the first phase consists of using
the AM or DRAM algorithm to achieve stationary samples that seem to have converged
to the target distributions (convergence can never be determined with MCMC, but some
instances of non-convergence can be observed). Once it is believed that convergence
has occurred, continue Laplace’s Demon with Adaptive=0 so that adaptation will not
occur. The final samples should again be checked for signs of non-convergence and, if
satisfactory, used for inference.

� The desirable number of final, thinned samples for inference depends on the required
precision of the inferential goal. A good, general goal is to end up with 1,000 thinned
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samples (Gelman et˜al. 2004, p. 295), where the ESS is at least 100 (and more is
desirable).

� Disagreement exists in MCMC literature as to whether to update one, long chain (Geyer
1992), or multiple, long chains with different, randomized initial values (Gelman and
Rubin 1992). Laplace’s Demon is not designed to simultaneously update multiple chains.
Nonetheless, if multiple chains are desired, then Laplace’s Demon can be updated a series
of times, each beginning with different initial values, until multiple output objects of
class demonoid exist with stationary samples, if time allows.

10. Independence and Observability

For the user, one set of advantages of Laplace’s Demon compared to many other available
methods is that it was designed with independence and observability in mind. By indepen-
dence, it is meant that a goal was to minimize dependence on other software. Laplace’s
Demon is performed completely within base R (though of course the LaplacesDemon package
is required). A goal is to provide a complete, Bayesian environment. From personal experi-
ence, I’ve used multiple packages to achieve goals before, and have been trapped when one of
those packages failed to keep pace with other changes.

Common Bayesian probability distributions (such as Dirichlet, multivariate normal, Wishart,
and others, as well as truncated forms of distributions) have been included in LaplacesDemon
so the user does not have to load numerous R packages. All functions in Laplace’s Demon are
written entirely in R, so the user can easily observe or manipulate the algorithm or functions.
For example, to print the code for LaplacesDemon to the R console, simply enter:

> LaplacesDemon

11. Details

The LaplacesDemon package uses two broad types of numerical approximation algorithms:
Laplace Approximation and Markov chain Monte Carlo (MCMC), and Approximate Bayesian
Computation (ABC) may be estimated within each. Each are described below, but MCMC
is emphasized.

11.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC), also called likelihood-free estimation, is a family
of numerical approximation techniques in Bayesian inference. ABC is especially useful when
evaluation of the likelihood, p(y|Θ) is computationally prohibitive, or when suitable likeli-
hoods are unavailable. As such, ABC algorithms estimate likelihood-free approximations.
ABC is usually faster than a similar likelihood-based numerical approximation technique,
because the likelihood is not evaluated directly, but replaced with an approximation that is
usually easier to calculate. The approximation of a likelihood is usually estimated with a
measure of distance between the observed sample, y, and its replicate given the model, yrep,
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or with summary statistics of the observed and replicated samples. See the accompanying
vignette entitled “Examples” for an example.

11.2. Laplace Approximation

The Laplace Approximation or Laplace Method is a family of asymptotic techniques used to
approximate integrals. Laplace’s method seems to accurately approximate uni-modal poste-
rior moments and marginal posterior distributions in many cases. Since it is not applicable
in all cases, it is recommended here that Laplace Approximation is used cautiously in its own
right, or preferably, it is used before MCMC.

After introducing the Laplace Approximation (Laplace 1774, p. 366–367), a proof was pub-
lished later (Laplace 1814) as part of a mathematical system of inductive reasoning based on
probability. Laplace used this method to approximate posterior moments.

Since its introduction, the Laplace Approximation has been applied successfully in many
disciplines. In the 1980s, the Laplace Approximation experienced renewed interest, espe-
cially in statistics, and some improvements in its implementation were introduced (Tierney
and Kadane 1986; Tierney, Kass, and Kadane 1989). Only since the 1980s has the Laplace
Approximation been seriously considered by statisticians in practical applications.

There are many variations of Laplace Approximation, with an effort toward replacing Markov
chain Monte Carlo (MCMC) algorithms as the dominant form of numerical approximation in
Bayesian inference. The run-time of Laplace Approximation is a little longer than Maximum
Likelihood Estimation (MLE), and much shorter than MCMC (Azevedo-Filho and Shachter
1994). In the LaplacesDemon package, Laplace Approximation may iterate faster or slower
than MCMC, so this is not the fastest possible implementation of Laplace Approximation.
Laplace Approximation extends MLE, but shares similar limitations, such as its asymptotic
nature with respect to sample size. Bernardo and Smith (2000) note that Laplace Approx-
imation is an attractive numerical approximation algorithm, and will continue to develop,
though it currently works best with few parameters.

The LaplaceApproximation function may be called by the user before using LaplacesDemon,
or LaplacesDemon may call this function if all initial values are zero. Chasing convergence
with LaplaceApproximation may be time-consuming and unimportant. The goal, instead,
is to improve the logarithm of the unnormalized joint posterior density so that it is easier
for the LaplacesDemon function to begin updating the parameters in search of the target
distributions. This can be difficult when the initial values are in low-probability regions, and
can cause unreasonably low acceptance rates.

LaplaceApproximation seeks a global maximum of the logarithm of the unnormalized joint
posterior density by taking steps proportional to an adaptive scale of the approximate gradi-
ent. This portion of the LaplaceApproximation function uses a conjugate gradient or gradient
ascent algorithm, where gradient ascent is called a gradient descent or steepest descent algo-
rithm elsewhere for minimization problems. Laplace’s Demon uses the LaplaceApproximation
algorithm to optimize initial values, estimate covariance, and save time for the user, though it
is used only when sample size is at least five times the number of parameters or initial values.

This algorithm assumes that the logarithm of the unnormalized joint posterior density is
defined and differentiable. An approximate gradient is taken for each initial value as the
difference in the logarithm of the unnormalized joint posterior density due to a slight increase
versus decrease in the parameter.
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With adaptive gradient ascent, at 10 evenly-space times, LaplaceApproximation attempts
several step sizes, which are also called rate parameters in other literature, and selects the best
step size from a set of 10 fixed options. Thereafter, each iteration in which an improvement
does not occur, the step size shrinks, being multiplied by 0.999.

Gradient ascent is criticized for sometimes being relatively slow when close to the maximum,
and its asymptotic rate of convergence is inferior to other methods. However, compared to
other popular optimization algorithms such as Newton-Rhapson, an advantage of the gradi-
ent ascent is that it works in infinite dimensions, requiring only sufficient computer memory.
Although Newton-Rhapson converges in fewer iterations, calculating the inverse of the neg-
ative Hessian matrix of second-derivatives is more computationally expensive and subject to
singularities. Therefore, gradient ascent takes longer to converge, but is more generalizable.
Conjugate gradient should give superior results, except in very large dimensions.

After LaplaceApproximation finishes, due either to early convergence or completing the
number of specified iterations, it approximates the Hessian matrix of second derivatives, and
attempts to calculate the covariance matrix by taking the inverse of the negative of this
matrix. If successful, then this covariance matrix may be passed to LaplacesDemon, and
the diagonal of this matrix is the variance of the parameters. If unsuccessful, then a scaled
identity matrix is returned, and each parameter’s variance will be 1.

11.3. Markov Chain Monte Carlo

Although the LaplacesDemon function may be assisted by Laplace Approximation, Laplace’s
Demon mainly accomplishes numerical approximation with Markov chain Monte Carlo (MCMC)
algorithms. There are a large number of MCMC algorithms, too many to review here. Pop-
ular families (which are often non-distinct) include Gibbs sampling, Metropolis-Hastings,
Random-Walk Metropolis (RWM), slice sampling, and many others, including hybrid algo-
rithms. RWM was developed first (Metropolis, Rosenbluth, M.N., and Teller 1953), and
Metropolis-Hastings was a generalization of RWM (Hastings 1970). All MCMC algorithms
are known as special cases of the Metropolis-Hastings algorithm. Regardless of the algorithm,
the goal in Bayesian inference is to maximize the unnormalized joint posterior distribution
and collect samples of the target distributions, which are marginal posterior distributions,
later to be used for inference.

While designing Laplace’s Demon, the primary goal in numerical approximation was gener-
alization. The most generalizable MCMC algorithm is the Metropolis-Hastings (MH) gener-
alization of the RWM algorithm. The MH algorithm extended RWM to include asymmetric
proposal distributions. Having no need of asymmetric proposals, Laplace’s Demon uses varia-
tions of the original RWM algorithm, which use symmetric proposal distributions, specifically
Gaussian proposals. For years, the main disadvantage of the RWM and MH algorithms was
that the proposal variance (see below) had to be tuned manually, and therefore other MCMC
algorithms have become popular because they do not need to be tuned.

Gibbs sampling became popular for Bayesian inference, though it requires conditional sam-
pling of conjugate distributions, so it is precluded from non-conjugate sampling in its purest
form. Gibbs sampling also suffers under high correlations (Gilks and Roberts 1996). Due to
these limitations, Gibbs sampling is less generalizable than RWM. Slice sampling samples a
distribution by sampling uniformly from the region under the plot of its density function, and
is more appropriate with bounded distributions that cannot approach infinity.
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There are valid ways to tune the RWM algorithm as it updates. This is known by many
names, including adaptive Metropolis and adaptive MCMC, among others. A brief discussion
follows of RWM and its adaptive variants.

Block Updating

Usually, there is more than one target distribution, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once.
Block updating refers to splitting a multivariate vector into groups called blocks, so each
block may be treated differently. A block may contain one or more variables. Advantages
of block updating are that a different MCMC algorithm may be used for each block (or
variable, for that matter), creating a more specialized approach, and the acceptance of a
newly proposed state is likely to be higher than sampling from all target distributions at once
in high dimensions. Disadvantages of block updating are that correlations probably exist
between variables between blocks, and each block is updated while holding the other blocks
constant, ignoring these correlations of variables between blocks. Without simultaneously
taking everything into account, the algorithm may converge slowly or never arrive at the
proper solution. Also, as the number of blocks increases, more computation is required,
which slows the algorithm. In general, block updating allows a more specialized approach at
the expense of accuracy, generalization, and speed. Laplace’s Demon avoids block updating,
though this increases the importance that the initial values are not in low-probability regions,
and may cause Laplace’s Demon to have chains that are slow to begin moving.

Random-Walk Metropolis

In MCMC algorithms, each iterative estimate of a parameter is part of a changing state.
The succession of states or iterations constitutes a Markov chain when the current state
is influenced only by the previous state. In random-walk Metropolis (RWM), a proposed
future estimate, called a proposal9 or candidate, of the joint posterior density is calculated,
and a ratio of the proposed to the current joint posterior density, called α, is compared to
a random number drawn uniformly from the interval (0,1). In practice, the logarithm of
the unnormalized joint posterior density is used, so log(α) is the proposal density minus the
current density. The proposed state is accepted, replacing the current state with probability 1
when the proposed state is an improvement over the current state, and may still be accepted
if the logarithm of a random draw from a uniform distribution is less than log(α). Otherwise,
the proposed state is rejected, and the current state is repeated so that another proposal may
be estimated at the next iteration. By comparing log(α) to the log of a random number when
log(α) is not an improvement, random-walk behavior is included in the algorithm, and it is
possible for the algorithm to backtrack while it explores.

Random-walk behavior is desirable because it allows the algorithm to explore, and hopefully
avoid getting trapped in undesirable regions. On the other hand, random-walk behavior is
undesirable because it takes longer to converge to the target distribution while the algorithm
explores. The algorithm generally progresses in the right direction, but may periodically
wander away. Such exploration may uncover multi-modal target distributions, which other

9Laplace’s Demon allows the user to constrain proposals in the Model function. Laplace’s Demon generates
a proposal vector, which is passed to the Model function in the parm vector. In the Model function, the user
may constrain the proposal to prevent the sampler from exploring certain areas of the state space by altering
the proposed values and placing them back into the parm vector, which will be passed back to Laplace’s Demon.
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algorithms may fail to recognize, and then converge incorrectly. With enough iterations,
RWM is guaranteed theoretically to converge to the correct target distribution, regardless of
the starting point of each parameter, provided the proposal variance for each proposal of a
target distribution is sensible.

Multiple parameters usually exist, and therefore correlations may occur between the param-
eters. All MCMC algorithms in Laplace’s Demon are modified to attempt to estimate multi-
variate proposals, thereby taking correlations into account through a covariance matrix. If a
failure is experienced in attempting to estimate multivariate proposals, or if the acceptance
rate is less than 5%, then Laplace’s Demon temporarily resorts to single-component propos-
als by updating one randomly-selected parameter, and will continue to attempt to return to
multivariate proposals at each iteration.

Throughout the RWM algorithm, the proposal covariance or variance remains fixed. The
user may enter a vector of proposal variances or a proposal covariance matrix, and if neither
is supplied, then Laplace’s Demon estimates both before it begins, based on the number of
variables.

The acceptance or rejection of each proposal should be observed at the completion of the
RWM algorithm as the acceptance rate, which is the number of acceptances divided by the
total number of iterations. If the acceptance rate is too high, then the proposal variance or
covariance is too small. In this case, the algorithm will take longer than necessary to find the
target distribution and the samples will be highly autocorrelated. If the acceptance rate is too
low, then the proposal variance or covariance is too large, and the algorithm is ineffective at
exploration. In the worst case scenario, no proposals are accepted and the algorithm fails to
move. Under theoretical conditions, the optimal acceptance rate for a sole, independent and
identically distributed (IID), Gaussian, marginal posterior distribution is 0.44 or 44%. The
optimal acceptance rate for an infinite number of distributions that are IID and Gaussian is
0.234 or 23.4%.

Delayed Rejection Metropolis

The Delayed Rejection Metropolis (DRM or DR) algorithm is a RWM with one, small twist.
Whenever a proposal is rejected, the DRM algorithm will try one or more alternate pro-
posals, and correct for the probability of this conditional acceptance. By delaying rejection,
autocorrelation in the chains may be decreased, and the algorithm is encouraged to move.
Currently, Laplace’s Demon will attempt one alternate proposal when using the DRAM (see
below) or DRM algorithm. The additional calculations may slow each iteration of the algo-
rithm in which the first set of proposals is rejected, but it may also converge faster. For more
information on DRM, see Mira (2001).

DRM may be considered to be an adaptive MCMC algorithm, because it adapts the proposal
based on a rejection. However, DRM does not violate the Markov property (see below),
because the proposal is based on the current state. For the purposes of Laplace’s Demon,
DRM is not considered to be an adaptive MCMC algorithm, because it is not adapting to
the target distribution by considering previous states in the Markov chain, but merely makes
more attempts from the current state. DRM is rarely suggested by Laplace’s Demon, though
the combination of DRM and AM, called DRAM (see below), is suggested frequently.

Laplace’s Demon also temporarily shrinks the proposal covariance arbitrarily by 50% for
delayed rejection. A smaller proposal covariance is more likely to be accepted, and the goal
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of delayed rejection is to increase acceptance. In the long-term, a proposal covariance that is
too small is undesirable, and so it is only used in this case to assist acceptance.

Adaptive Metropolis

In traditional, non-adaptive RWM, the Markov property is satisfied, creating valid Markov
chains, but it is difficult to manually optimize the proposal variance or covariance, and it is
crucial that it is optimized for good mixing of the Markov chains. Adaptive MCMC may be
used to automatically optimize the proposal variance or covariance based on the history of
the chains, though this violates the Markov property, which declares the proposed state is
influenced only by the current state10. To retain the Markov property, and therefore valid
Markov chains, a two-phase approach may be used, in which adaptive MCMC is used in the
first phase to arrive at the target distributions while violating the Markov property, and non-
adaptive DRM or RWM is used in the second phase to sample from the target distributions
for inference, while possessing the Markov property.

There are too many adaptive MCMC algorithms to review here. All of them adapt the pro-
posal variance to improve mixing. Some adapt the proposal variance to also optimize the
acceptance rate (which becomes difficult as dimensionality increases), minimize autocorrela-
tion, or optimize a scale factor. Laplace’s Demon uses a variation of the Adaptive Metropolis
(AM) algorithm of Haario et˜al. (2001).

Given the number of dimensions (d) or parameters, the optimal scale of the proposal variance,
also called the jumping kernel, has been reported as 2.42/d11 based on the asymptotic limit
of infinite-dimensional Gaussian target distributions that are independent and identically-
distributed (Gelman, Roberts, and Gilks 1996b). In applied settings, each problem is dif-
ferent, so the amount of correlation varies between variables, target distributions may be
non-Gaussian, the target distributions may be non-IID, and the scale should be optimized.
Laplace’s Demon uses a scale that is accurate to more decimals: 2.3812042/d. There are
algorithms in statistical literature that attempt to optimize this scale, and it is hoped that
these algorithms will be included in Laplace’s Demon in the future.

Haario et˜al. (2001) tested their algorithm with up to 200 dimensions or parameters. It
has been tested in Laplace’s Demon with 2,600 parameters, so it is capable of large-scale
Bayesian inference. The version in Laplace’s Demon should be capable of more dimensions
than the AM algorithm as it was presented, because when Laplace’s Demon experiences
an error in multivariate AM, or when the acceptance rate is less than 5%, it defaults to
single-component adaptive proposals (Haario, Saksman, and Tamminen 2005). Although
single-component adaptive proposals should take more iterations to converge, the algorithm
is limited in dimension only by the RAM of the computer.

For multivariate adaptive tuning, the formula across K parameters and t iterations is:

Σ∗ = [φKcov(Θ1:t,1:K)] + (φKCIK)

where φK is the scale according to K parameters, C is a small (1.0E-5) constant to ensure the
proposal covariance matrix is positive definite (does not have zero or negative variance on the

10Haario, Saksman, and Tamminen (2001) assert that the chains remain ergodic in the limit as the amount
of change in the adaptations should decrease to zero as the chains approach the target distributions.

11The optimal proposal standard deviation in this case is approximately 2.4/
√
d.
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diagonal), and IK is a K x K identity matrix. The initial proposal covariance matrix, when
none is provided, defaults to the scaling component multiplied by its identity matrix: φKIK .

For single-component adaptive tuning, the formula across K parameters and t iterations is:

σ∗2k = φkvar(Θ1:t,k) + φkC

Each element in the initial vector of proposal variances is set equal to the asymptotic scale
according to its dimensions: φk.

In both the multivariate and single-component cases, the AM algorithm begins with a fixed
proposal variance or covariance that is either estimated internally or supplied by the user.
Next, the algorithm begins, and it does not adapt until the iteration is reached that is specified
by the user in the Adaptive argument of the LaplacesDemon function. Then, the algorithm
will adapt with every n iterations according to the Periodicity argument. Therefore, the user
has control over when the AM algorithm begins to adapt, and how often it adapts. The value
of the Adaptive argument in Laplace’s Demon is chosen subjectively by the user according
to their confidence in the accuracy of the initial proposal covariance or variance. The value
of the Periodicity argument is chosen by the user according to their patience: when the
value is 1, the algorithm will adapt continuously, which will be slower to calculate. The AM
algorithm adapts the proposal covariance or variance according to the observed covariance or
variance in the entire history of all parameter chains, as well as the scale factor.

As recommended by Haario et˜al. (2001), there are two tricks that may be used to assist
the AM algorithm in the beginning. Although Laplace’s Demon does not use the suggested
“greedy start”method (and will instead use Laplace Approximation whensample size permits),
it uses the second suggested trick of shrinking the proposal as long as the acceptance rate
is less than 5%, and there have been at least five acceptances. Haario et˜al. (2001) suggest
loosely that if “it has not moved enough during some number of iterations, the proposal could
be shrunk by a constant factor”. For each iteration that the acceptance rate is less than 5%
and that the AM algorithm is used but the current iteration is prior to adaptation, Laplace’s
Demon multiplies the proposal covariance or variance by (1 - 1/Iterations). Over pre-adaptive
time, this encourages a smaller proposal covariance or variance to increase the acceptance rate
so that when adaptation begins, the observed covariance or variance of the chains will not be
constant, and then shrinkage will cease and adaptation will take it from there.

Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm is merely the combination
of both DRM (or DR) and AM (Haario, Laine, Mira, and Saksman 2006). DRAM has been
demonstrated as robust in extreme situations where DRM or AM fail separately. Haario et˜al.
(2006) present an example involving ordinary differential equations in which least squares
could not find a stable solution, and DRAM did well.

11.4. Afterward

Once the model is updated with the LaplacesDemon function, the Geweke.Diagnostic func-
tion of Geweke (1992) is iteratively applied to successively smaller tail-sections of the thinned
samples to assess stationarity (or lack of trend). When all parameters are estimated as sta-
tionary beyond a given iteration, the previous iterations are suggested to be considered as
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burn-in and discarded. The number of thinned samples is divided into cumulative 10% groups,
and the Geweke.Diagnostic function is applied by beginning with each cumulative group.

The importance of Monte Carlo Standard Error (MCSE) is debated. Here, it is considered
important enough to be one of five main criteria to appease Laplace’s Demon. It is often
recommended that one of several competing batch methods should be used to estimate MCSE,
arguing that the simple method (MCSE = σ/

√
m) is biased and reports less error (where m is

the ESS). I have calculated both the simple method and non-overlapping batch MCSE’s on a
wide range of applied models, and noted just as many cases of the simple method producing
higher MCSE’s as lower MCSE’s. As far as Laplace’s Demon is concerned, the simple method
is used to estimate MCSE, but it is open to debate.

12. Software Comparisons

There is now a wide variety of software to perform MCMC for Bayesian inference. Per-
haps the most common is BUGS, which is an acronym for Bayesian Using Gibbs Sampling
(Lunn, Spiegelhalter, Thomas, and Best 2009). BUGS has several versions. A popular vari-
ant is JAGS, which is an acronym for Just Another Gibbs Sampler (Plummer 2003). The
only other comparisons made here are with some R packages (AMCMC, mcmc, MCMC-
pack, and UMACS) and SAS. Many other R packages use MCMC, but are not intended
as general-purpose MCMC software. Hopefully I have not overlooked any general-purpose
MCMC packages in R.

WinBUGS has been the most common version of BUGS, though it is no longer developed.
BUGS is an intelligent MCMC engine that is capable of numerous MCMC algorithms, but
prefers Gibbs sampling. According to its user manual (Spiegelhalter et˜al. 2003), WinBUGS
1.4 uses Gibbs sampling with full conditionals that are continuous, conjugate, and standard.
For full conditionals that are log-concave and non-standard, derivative-free Adaptive Rejection
Sampling (ARS) is used. Slice sampling is selected for non-log-concave densities on a restricted
range, and tunes itself adaptively for 500 iterations. Seemingly as a last resort, an adaptive
MCMC algorithm is used for non-conjugate, continuous, full conditionals with an unrestricted
range. The standard deviation of the Gaussian proposal distribution is tuned over the first
4,000 iterations to obtain an acceptance rate between 20% and 40%. Samples from the
tuning phases of both Slice sampling and adaptive MCMC are ignored in the calculation of
all summary statistics, although they appear in trace-plots.

The current version of BUGS, OpenBUGS, allows the user to specify an MCMC algorithm
from a long list for each parameter (Lunn et˜al. 2009). This is a step forward, overcoming
what is perceived here as an over-reliance on Gibbs sampling. However, if the user does not
customize the selection of the MCMC sampler, then Gibbs sampling will be selected for full
conditionals that are continuous, conjugate, and standard, just as with WinBUGS.

Based on years of almost daily experience with WinBUGS and JAGS, which are excellent
software packages for Bayesian inference, Gibbs sampling is selected too often in these auto-
matic, MCMC engines. An advantage of Gibbs sampling is that the proposals are accepted
with probability 1, so convergence may be faster, whereas the RWM algorithm backtracks due
to its random-walk behavior. Unfortunately, Gibbs sampling is not as generalizable, because
it can function only when certain conjugate distributional forms are known a priori (Gilks
and Roberts 1996). Moreover, Gibbs sampling was avoided for Laplace’s Demon because it
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doesn’t perform well with correlated variables or parameters, which usually exist, and I have
been bitten by that bug many times.

The BUGS and JAGS families of MCMC software are excellent. BUGS is capable of several
things that Laplace’s Demon is not. BUGS allows the user to specify the model graphically
as a directed acyclic graph (DAG) in Doodle BUGS. Laplace’s Demon limits the user to one
chain per parameter per update, where BUGS can update multiple chains per parameter
simultaneously. Lastly, many textbooks in several fields have been written that are full of
WinBUGS examples.

The four MCMC algorithms in Laplace’s Demon are generalizable, and generally robust to
correlation between variables or parameters. The disadvantages are that convergence is slower
and RWM may get stuck in regions of low probability. The advantages, however, are faster
convergence when correlations are high, and more confidence in the results.

At the time this article was written, the AMCMC package in R is unavailable on CRAN, but
may be downloaded from the author’s website12. This download is best suited for a Linux,
Mac, or UNIX operating system, because it requires the gcc C compiler, which is unavailable
in Windows. It performs adaptive Metropolis-within-Gibbs (Roberts and Rosenthal 2007),
and uses C language for significantly faster sampling. Metropolis-within-Gibbs is not as
generalizable as adaptive MCMC. Otherwise, if the user wishes to see the code of the AMCMC
sampler, then the user must also be familiar with C language.

Also in R, the mcmc package (Geyer 2010) offers RWM with multivariate Gaussian proposals
and allows batching, as well as a simulated tempering algorithm, but it does not have any
adaptive algorithms.

The MCMCpack package (Martin, Quinn, and Park 2011) in R takes a canned-function
approach to RWM, which is convenient if the user needs the specific form provided, but is
otherwise not generalizable. General-purpose RWM is included, but adaptive algorithms are
not. It also offers the option of Laplace Approximation to optimize initial values, though
the algorithm is evaluated in optim, which has not performed well in my testing of Laplace
Approximations.

At the time this article was written, the UMACS package (Kerman 2007) has been removed
from CRAN. It became outdated due to lack of interest, but did include an adaptive MCMC
algorithm as well as Gibbs sampling.

In SAS 9.2 (SAS Institute Inc. 2008), an experimental procedure called PROC MCMC has been
introduced. It is undeniably a rip-off of BUGS (including its syntax), though OpenBUGS is
much more powerful, tested, and generalizable. Since SAS is proprietary, the user cannot see
or manipulate the source code, and should expect much more from it than OpenBUGS or any
open-source software, given the absurd price.

13. Large Data Sets and Speed

An advantage of Laplace’s Demon compared to other MCMC software is that the model is
specified in a way that takes advantage of R’s vectorization. BUGS and JAGS, for example,
require models to be specified so that each record of data is processed one by one inside a ‘for
loop’, which significantly slows updating with larger data sets. In contrast, Laplace’s Demon

12AMCMC is available from J. S. Rosenthal’s website at http://www.probability.ca/amcmc/

http://www.probability.ca/amcmc/
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avoids ‘for loops’ and apply functions wherever possible13. For example, a data set of 100,000
rows and 16 columns (the dependent variable, a column vector of 1’s for the intercept, and 14
predictors) was updated 1,000 times with Adaptive=2, DR=0, Periodicity=10, and the initial
value for each β set to 0.1 to bypass Laplace Approximation. This took 0.98 minutes with
Laplace’s Demon, according to a simple, linear regression14. It was nowhere near convergence,
but updating the same model with the same data for 1,000 iterations took 45.55 minutes in
JAGS.

However, the speed with which an iteration is estimated is not a good, overall criterion of
performance. For example, a Gibbs sampling algorithm with uncorrelated target distributions
should converge in fewer iterations than a random-walk algorithm, such as those used in
Laplace’s Demon. Depending on circumstances, Laplace’s Demon may handle larger data
sets better, and it may estimate each iteration faster, but it may also take more iterations to
converge15.

However, with small data sets, other MCMC software (AMCMC is a good example) can be
faster than Laplace’s Demon, if it is programmed in a faster language such as Component
Pascal, C, C++, or FORTRAN. I have not studied all MCMC algorithms in R, but most are
probably programmed in C and called from R. And Laplace’s Demon could be much faster if
programmed in C as well.

When the non-adaptive algorithm updates in Laplace’s Demon, the expected speed of an
iteration should not differ depending on how many iterations it has previously updated.
However, the adaptive algorithm will slow as iterations are updated, because each time it
adapts, it is adapting to the covariance of the entire history of the chains. As the history
increases, the calculations take longer to complete, and the expected speed of an adaptive
iteration decreases, compared to earlier adaptive iterations. If time is of the essence and the
algorithm needs to be adaptive, then it may be best to make multiple, shorter updates in
place of one, longer update.

14. Conclusion

The LaplacesDemon package is a significant contribution toward Bayesian inference in R. In
turn, contributions toward the development of Laplace’s Demon are welcome. Please send an
email to laplacesdemon@statisticat.com with constructive criticism, reports of software
bugs, or offers to contribute to Laplace’s Demon.
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