
MCMCglmm Course Notes

Jarrod Hadfield (j.hadfield@ed.ac.uk)

October 11, 2011

Introduction

These are (incomplete) course notes about generalised linear mixed models
(GLMM). Special emphasis is placed on understanding the underlying struc-
ture of a GLMM in order to show that slight modifications of this structure can
produce a wide range of models. These include familiar models like regression
and ANOVA, but also models with intimidating names: animal models, thresh-
old models, meta-analysis, MANCOVA and random regression . . . The primary
aim of the course is to show that these models are only daunting by name.
The secondary aim is to show how these models can be fitted in a Bayesian
framework using Markov chain Monte Carlo (MCMC) methods in the R pack-
age MCMCglmm. For those not comfortable using Bayesian methods, many of the
models outlined in the course notes can be fitted in asreml or lmer with little
extra work. If you do use MCMCglmm, please, cite Hadfield (2010).

1

Contents

Introduction 1

Contents 2

1 Bayesian Statistics & MCMC 5
1.1 Likelihood . 6

1.1.1 Maximum Likelihood (ML) 8
1.1.2 Restricted Maximum Likelihood (REML) 10

1.2 Prior Distribution . 11
1.3 Posterior Distribution . 13

1.3.1 Marginal Posterior Distribution 14
1.4 MCMC . 17

1.4.1 Starting values . 18
1.4.2 Metrpolis-Hastings updates 18
1.4.3 Gibbs Sampling . 19
1.4.4 Slice Sampling . 21
1.4.5 MCMC Diagnostics . 21

1.5 Improper Priors . 22
1.5.1 Flat Improper Prior . 23
1.5.2 Non-Informative Improper Prior 25

2 GLMM 28
2.1 Linear Model (LM) . 28

2.1.1 Linear Predictors . 28
2.2 Generalised Linear Model (GLM) 30
2.3 Over-dispersion . 33

2.3.1 Multiplicative Over-dispersion 33
2.3.2 Additive Over-dispersion 35

2.4 Random effects . 40
2.5 Prediction with Random effects 45
2.6 Categorical Data . 47
2.7 A note on fixed effect priors and covariances 56

2

CONTENTS 3

3 Categorical Random Interactions 60
3.1 idh Variance Structure . 64
3.2 us Variance Structure . 66
3.3 Compound Variance Structures 68
3.4 Heterogenous Residual Variance 71
3.5 Contrasts and Covariances . 71
3.6 Priors for Covariance Matrices 71

3.6.1 Priors for us structures 71
3.6.2 Priors for idh structures 73
3.6.3 Priors for cor structures 73

4 Continuous Random Interactions 74
4.1 Random Regression . 74
4.2 Expected Variances and Covariances 82
4.3 us versus idh and mean centering 86
4.4 Meta-analysis . 87
4.5 Splines . 87

5 Multi-response models 88
5.1 Relaxing the univariate assumptions of causality 88
5.2 Multinomial Models . 94
5.3 Zero-inflated Models . 100

5.3.1 Posterior predictive checks 103
5.4 Hurdle Models . 103
5.5 Zero-altered Models . 107

6 Pedigrees and Phylogenies 109
6.1 Pedigree and phylogeny formats 109

6.1.1 Pedigrees . 109
6.1.2 Phylogenies . 111

6.2 The animal model and the phylogenetic mixed model 113

7 Technical Details 115
7.1 Model Form . 115
7.2 MCMC Sampling Schemes . 116

7.2.1 Updating the latent variables 116
7.2.2 Updating the location vector 117
7.2.3 Updating the variance structures 118
7.2.4 Ordinal Models . 119
7.2.5 Deviance and DIC . 119

8 Parameter Expansion 123
8.0.6 Variances close to zero . 124
8.0.7 Parameter expanded priors 125
8.0.8 Binary response models 127

9 Simultaneity & Recursion 132

CONTENTS 4

Acknowledgments 134

Bibliography 135

Chapter 1

Bayesian Statistics &
Markov chain Monte Carlo

There are fundamental differences between classical and Bayesian approaches,
but for those of us interested in applied statistics the hope is that these differ-
ences do not translate into practical differences, and this is often the case. My
advice would be if you can fit the same model using different packages and/or
methods do so, and if they give very different answers worry. In some cases
differences will exist, and it is important to know why, and which method is
more appropriate for the data in hand.

In the context of a generalised linear mixed model (GLMM), here are what I
see as the pro’s and cons of using (restricted) maximum likelihood (REML) ver-
sus Bayesian Markov chain Monte Carlo (MCMC) Bayesian methods. REML is
fast and easy to use, whereas MCMC can be slow and technically more challeng-
ing. Particularly challenging is the specification of a sensible prior, something
which is a non-issue in a REML analysis. However, analytical results for non-
Gaussian GLMM are generally not available, and REML based procedures use
approximate likelihood methods that may not work well. MCMC is also an
approximation but the accuracy of the approximation increases the longer the
analysis is run for, being exact at the limit. In addition REML uses large-
sample theory to derive approximate confidence intervals that may have very
poor coverage, especially for variance components. Again, MCMC measures of
confidence are exact, up to Monte Carlo error, and provide an easy and intuitive
way of obtaining measures of confidence on derived statistics such as ratios of
variances, correlations and predictions.

To illustrate the differences between the approaches lets imagine we’ve ob-
served several random deviates (y) from a standard normal (i.e. µ = 0 and
σ2 = 1). The likelihood is the probability of the data given the parameters:

Pr(y|µ, σ2)

5

CHAPTER 1. BAYESIAN STATISTICS & MCMC 6

This is a conditional distribution, where the conditioning is on the model
parameters which are taken as fixed and known. In a way this is quite odd
because we’ve already observed the data, and we don’t know what the parameter
values are. In a Bayesian analysis we evaluate the conditional probability of the
model parameters given the observed data:

Pr(µ, σ2|y)

which seems more reasonable, until we realise that this probability is pro-
portional to

Pr(y|µ, σ2)Pr(µ, σ2)

where the first term is the likelihood, and the second term represents our
prior belief in the values that the model parameters could take. Because the
choice of prior is rarely justified by an objective quantification of the state of
knowledge it has come under criticism, and indeed we will see later that the
choice of prior can make a difference.

1.1 Likelihood

We can generate 5 observations from this distribution using rnorm:

> Ndata <- data.frame(y = rnorm(5, mean = 0, sd = sqrt(1)))

> Ndata$y

[1] 0.01464054 0.87328871 -1.02794620 0.68566463 0.44943698

We can plot the probability density function for the standard normal using
dnorm and we can then place the 5 data on it:

> possible.y<-seq(-3,3,0.1) # possible values of y

> Probability<-dnorm(possible.y, mean=0, sd=sqrt(1)) # density of possible values

> plot(Probability~possible.y, type="l")

> Probability.y<-dnorm(Ndata$y, mean=0, sd=sqrt(1)) # density of actual values

> points(Probability.y~Ndata$y)

The likelihood of these data, conditioning on µ = 0 and σ2 = 1, is propor-
tional to the product of the densities (read off the y axis on Figure 1.1):

> prod(dnorm(Ndata$y, mean = 0, sd = sqrt(1)))

[1] 0.002907336

Of course we don’t know the true mean and variance and so we may want
to ask how probable the data would be if, say, µ = 0, and σ2 = 0.5:

> prod(dnorm(Ndata$y, mean = 0, sd = sqrt(0.5)))

CHAPTER 1. BAYESIAN STATISTICS & MCMC 7

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

possible.y

P
ro

ba
bi

lit
y

●

●

●

●

●

Figure 1.1: Probability density function for the unit normal with the data points
overlaid.

[1] 0.004731679

It would seem that the data are more likely under this set of parameters
than the true parameters, which we must expect some of the time just from
random sampling. To get some idea as to why this might be the case we can
overlay the two densities (Figure 1.2), and we can see that although some data
points (e.g. 0.873) are more likely with the true parameters, in aggregate the
new parameters produce a higher likelihood.

The likelihood of the data can be calculated on a grid of possible parameter
values to produce a likelihood surface, as in Figure 1.3. The densities on the
contours have been scaled so they are relative to the density of the parameter
values that have the highest density (the maximum likelihood estimate of the two
parameters). Two things are apparent. First, although the surface is symmetric
about the line µ = µ̂ (where ˆ stands for maximum likelihood estimate) the
surface is far from symmetric about the line σ2 = σ̂2. Second, there are a large
range of parameter values for which the data are only 10 times less likely than
if the data were generated under the maximum likelihood estimates.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 8

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

pos.y

de
ns

ity

●

●

●

●

●

●

●

●

●

●

Figure 1.2: Two probability density functions for normal distributions with
means of zero, and a variance of one (black line) and a variance of 0.5 (red line).
The data points are overlaid.

1.1.1 Maximum Likelihood (ML)

The ML estimator is the combination of µ and σ2 that make the data most
likely. Although we could evaluate the density on a grid of parameter values
(as we did to produce Figure 1.3) in order to locate the maximum, for such a
simple problem the ML estimator can be derived analytically. However, so we
don’t have to meet some nasty maths later, I’ll introduce and use one of R’s
generic optimising routines that can be used to maximise the likelihood function
(in practice, the log-likelihood is maximised to avoid numerical problems):

> loglik <- function(par, y) {

+ sum(dnorm(y, par[1], sqrt(par[2]), log = TRUE))

+ }

> MLest <- optim(c(mean = 0, var = 1), fn = loglik, y = Ndata$y,

+ control = list(fnscale = -1, reltol = 1e-16))$par

The first call to optim are starting values for the optimisation algorithm, and
the second argument (fn) is the function to be maximised. By default optim

CHAPTER 1. BAYESIAN STATISTICS & MCMC 9

µ

σ2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 0.55 0.6

 0.7 0.75 0.9

−2 −1 0 1 2

0
1

2
3

4
5

Figure 1.3: Likelihood surface for the likelihood Pr(y|µ, σ2). The likelihood has
been normalised so that the maximum likelihood has a value of one.

will try to minimise the function hence multiplying by -1 (fnscale = -1). The
algorithm has successfully found the mode:

> MLest

mean var
0.1990169 0.4587223

Alternatively we could also fit the model using glm:

> m1a.1 <- glm(y ~ 1, data = Ndata)

> summary(m1a.1)

Call:
glm(formula = y ~ 1, data = Ndata)

Deviance Residuals:
1 2 3 4 5

-0.1844 0.6743 -1.2270 0.4867 0.2504

CHAPTER 1. BAYESIAN STATISTICS & MCMC 10

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1990 0.3386 0.588 0.588

(Dispersion parameter for gaussian family taken to be 0.573403)

Null deviance: 2.2936 on 4 degrees of freedom
Residual deviance: 2.2936 on 4 degrees of freedom
AIC: 14.293

Number of Fisher Scoring iterations: 2

Here we see that although the estimate of the mean (intercept) is the same,
the estimate of the variance (the dispersion parameter: 0.573) is higher when
fitting the model using glm. In fact the ML estimate is a factor of n

n−1 smaller.

> MLest["var"] * (5/4)

var
0.5734029

1.1.2 Restricted Maximum Likelihood (REML)

To see why this happens, imagine if we had only observed the first two values of y
(Figure 1.4). The variance is defined as the average squared distance between a
random variable and the true mean. However, the ML estimator of the variance
is the average squared distance between a random variable and the ML estimate
of the mean. Since the ML estimator of the mean is the average of the two
numbers (the dashed line) then the average squared distance will always be
smaller than if the true mean was used, unless the ML estimate of the mean
and the true mean coincide. This is why we divide by n − 1 when estimating
the variance from the sum of squares, and is the motivation behind REML.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 11

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

pos.y

dn
or

m
(p

os
.y

)

●

●

−1.0282=1.057

0.4492=0.202

−0.7392=0.546

0.7392=0.546

Figure 1.4: Probability density function for the unit normal with 2 realisations
overlaid. The solid vertical line is the true mean, whereas the vertical dashed line
is the mean of the two realisations (the ML estimator of the mean). The variance
is the expected squared distance between the true mean and the realisations.
The ML estimator of the variance is the average squared distance between the
ML mean and the realisations (horizontal dashed lines), which is always smaller
than the average squared distance between the true mean and the realisations
(horizontal solid lines)

1.2 Prior Distribution

MCMCglmm uses an inverse Wishart prior for the (co)variances and a normal prior
for the fixed effects. In versions > 1.13 parameter expanded models can be used
which enable prior specifications from the the scaled non-central F-distribution
(Gelman, 2006). Here, we will focus on specifying a prior for a single fixed ef-
fect (µ) and a single variance component using the inverse-Wishart to highlight
some of the issues. I strongly recommend reading the section 8.0.7 on parameter
expanded priors as these can be less informative than the inverse-Wishart under
many situations.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 12

For a single variance component the inverse Wishart takes two scalar param-
eters, V and nu. The distribution tends to a point mass on V as the degree of
belief parameter, nu goes to infinity. The distribution tends to be right skewed
when nu is not very large, with a mode of V∗nu

nu+2 but a mean of V∗nu
nu−2 (which is

not defined for nu < 2).1

As before, we can evaluate and plot density functions in order to visualise
what the distribution looks like. Figure 1.5 plots the probability density func-
tions holding V equal to one but with nu varying.

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Index

0

nu= 1

nu= 0.2

nu= 0.02
nu= 0.002

V=1

Figure 1.5: Probability density function for a univariate inverse Wishart with
the variance at the limit set to 1 (V=1) and varying degree of belief parameter
(nu). With V=1 these distributions are equivalent to inverse gamma distributions
with shape and scale parameters set to nu/2.

A probability distribution must integrate to one because a variable must
1The inverse gamma is a special case of the inverse Wishart, although it is parametrised

using shape and scale, where nu = 2 ∗ shape and V = scale
shape (or shape = nu

2
and scale =

nu∗V
2

). MCMCpack provides a density function (dinvgamma) for the inverse gamma distribution.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 13

have some value. It therefore seems reasonable that when specifying a prior,
care must be taken that this condition is met. In the example here where V
is a single variance this condition is met if V>0 and nu>0. If this condition is
not met then the prior is said to be improper, and in WinBUGS (and possibly
other software) improper priors cannot be specified. Although great care has to
be taken when using improper priors, MCMCglmm does allow them as they have
some useful properties, and some common improper priors are discussed in sec-
tion 1.5. However, for now we will use the prior specification V=1 and nu=0.002
which is frequently used for variance components. For the mean we will use a
diffuse normal prior centred around zero but with very large variance (108). If
the variance is finite then the prior is always proper.

As before we can write a function for calculating the (log) prior probability:

> logprior <- function(par, priorR, priorB) {

+ dnorm(par[1], mean = priorB$mu, sd = sqrt(priorB$V), log = TRUE) +

+ log(dinvgamma(par[2], shape = priorR$nu/2, scale = (priorR$nu *

+ priorR$V)/2))

+ }

where priorR is a list with elements V and nu specifying the prior for the
variance, and priorB is a list with elements mu and V specifying the prior for
the mean. MCMCglmm takes these prior specifications as a list:

> prior <- list(R = list(V = 1, nu = 0.002), B = list(mu = 0, V = 1e+08))

1.3 Posterior Distribution

To obtain a posterior density we need to multiply the likelihood by the prior
probability for that set of parameters. We can write a function for doing this:

> loglikprior <- function(par, y, priorR, priorB) {

+ loglik(par, y) + logprior(par, priorR, priorB)

+ }

and we can overlay the posterior densities on the likelihood surface we cal-
culated before (Figure 1.3).

The prior has some influence on the posterior mode of the variance, and we
can use an optimisation algorithm again to locate the mode:

> Best <- optim(c(mean = 0, var = 1), fn = loglikprior, y = Ndata$y,

+ priorR = prior$R, priorB = prior$B, control = list(fnscale = -1,

+ reltol = 1e-16))$par

> Best

mean var
0.1990169 0.3278509

CHAPTER 1. BAYESIAN STATISTICS & MCMC 14

µ

σ2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 0.55 0.6

 0.7 0.75 0.9

−2 −1 0 1 2

0
1

2
3

4
5

Figure 1.6: Likelihood surface for the likelihood Pr(y|µ, σ2) in black, and the
posterior distribution Pr(µ, σ2|y) in red. The likelihood has been normalised so
that the maximum likelihood has a value of one, and the posterior distribution
has been normalised so that the posterior mode has a value of one. The prior
distributions Pr(µ) ∼ N(0, 108) and Pr(σ2) ∼ IW (V = 1, nu = 0.002) were
used.

The posterior mode for the mean is identical to the ML estimate, but the
posterior mode for the variance is even less than the ML estimate which is known
to be downwardly biased. The reason that the ML estimate is downwardly
biased is because it did no take into account the uncertainty in the mean. In a
Bayesian analysis we can do this by evaluating the marginal distribution of σ2

and averaging over the uncertainty in the mean.

1.3.1 Marginal Posterior Distribution

The marginal distribution is often of primary interest in statistical inference,
because it represents our knowledge about a parameter given the data:

Pr(σ2|y) ∝
∫
Pr(µ, σ2|y)dµ

CHAPTER 1. BAYESIAN STATISTICS & MCMC 15

after averaging over any nuisance parameters, such as the mean in this case.

Obtaining the marginal distribution analytically is usually impossible, and
this is where MCMC approaches prove useful. We can fit this model in MCMCglmm
pretty much in the same way as we did using glm:

> m1a.2 <- MCMCglmm(y ~ 1, data = Ndata, prior = prior, thin = 1,

+ verbose = FALSE)

The Markov chain is drawing random (but often correlated) samples from
the joint posterior distribution (depicted by the red contours in Figure 1.6). The
element of the output called Sol contains the distribution for the mean, and the
element called VCV contains the distribution for the variance. We can produce
a scatter plot:

> points(cbind(m1a.2$Sol, m1a.2$VCV))

and we see that MCMCglmm is sampling the same distribution as the pos-
terior distribution calculated on a grid of possible parameter values (Figure 1.8).

A very nice property of MCMC is that we can normalise the density so that
it integrates to 1 (a true probability) rather than normalising it with respect to
some other aspect of the distribution, such as the density at the ML estimator
or the joint posterior mode as in Figures 1.3 and 1.6. To make this clearer,
imagine we wanted to know how much more probable the unit normal (i.e. with
µ = 0 and σ2 = 1) was than a normal distribution with the posterior modal
parameters. We can calculate this by taking the ratio of the posterior densities
at these two points:

> exp(loglikprior(Best, Ndata$y, prior$R, prior$B) - loglikprior(c(0,

+ 1), Ndata$y, prior$R, prior$B))

[1] 5.207646

Now, if we wanted to know the probability that the parameters lay in the
region of parameter space we were plotting, i.e. lay in the square µ = (−2, 2)
and σ2 = (0, 5) then this would be more difficult. We would have to evaluate the
density at a much larger range of parameter values than we had done, ensuring
that we had covered all regions with positive probability. Because MCMC has
sampled the distribution randomly, this probability will be equal to the expected
probability that we have drawn an MCMC sample from the region. We can
obtain an estimate of this by seeing what proportion of our actual samples lie
in this square:

> prop.table(table(m1a.2$Sol > -2 & m1a.2$Sol < 2 & m1a.2$VCV <

+ 5))

CHAPTER 1. BAYESIAN STATISTICS & MCMC 16

−2 −1 0 1 2

0
1

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Figure 1.7: The posterior distribution Pr(µ, σ2|y). The black dots are samples
from the posterior using MCMC, and the red contours are calculated by eval-
uating the posterior density on a grid of parameter values. The contours are
normalised so that the posterior mode has a value of one.

FALSE TRUE
0.0239 0.9761

There is Monte Carlo error in the answer (0.976) but if we collect a large
number of samples then this can be minimised.

Using a similar logic we can obtain the marginal distribution of the variance
by simply evaluating the draws in VCV ignoring (averaging over) the draws in
Sol:

> hist(m1a.2$VCV[which(m1a.2$VCV < 5)])

> abline(v = Best["var"], col = "red")

In this example (see Figure 1.8) the marginal mode and the joint mode are
very similar, although this is not necessarily the case and can depend both on

CHAPTER 1. BAYESIAN STATISTICS & MCMC 17

Posterior Distribution of σ2

σ2

F
re

qu
en

cy

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0
10

00

Figure 1.8: Histogram of samples from the marginal distribution of the variance
Pr(σ2|y) using MCMC. The vertical line is the joint posterior mode, which
differs slightly from the marginal posterior mode (the peak of the marginal
distribution).

the data and the prior. Section 1.5 introduces improper priors that are non-
informative with regard to the marginal distribution of a variance.

1.4 MCMC

In order to be confident that MCMCglmm has successfully sampled the poste-
rior distribution it will be necessary to have a basic understanding of MCMC
methods. MCMC methods are often used when the joint posterior distribution
cannot be derived analytically, which is nearly always the case. MCMC relies
on the fact that although we cannot derive the complete posterior, we can cal-
culate the height of the posterior distribution at a particular set of parameter
values, as we did to obtain the contour plot in Figure 1.6. However, rather than
going systematically through every likely combination of µ and σ and calculate

CHAPTER 1. BAYESIAN STATISTICS & MCMC 18

the height of the distribution at regular distances, MCMC moves stochastically
through parameter space, hence the name ‘Monte Carlo’.

1.4.1 Starting values

First we need to initialise the chain and specify a set of parameter values from
which the chain can start moving through parameter space. Ideally we would like
to pick a region of high probability, as we do not want to waste time wandering
through regions of low probability: we are not so interested in determining the
height of the distribution far outside of Figure 1.6 as it is virtually flat and close
to zero (or at least we hope so!). Although starting configurations can be set
by the user using the start argument, in general the heuristic techniques used
by MCMCglmm seem to work quite well. We will denote the parameter values of
the starting configuration (time t = 0) as µt=0 and σ2

t=0. There are several
ways in which we can get the chain to move in parameter space, and MCMCglmm
uses a combination of Gibbs sampling, slice sampling and Metropolis-Hastings
updates. To illustrate, it will be easier to turn the contour plot of the posterior
distribution into a perspective plot (Figure 1.9).

1.4.2 Metrpolis-Hastings updates

After initialising the chain we need to decide where to go next, and this decision
is based on two rules. First we have to generate a candidate destination, and
then we need to decide whether to go there or stay where we are. There are many
ways in which we could generate candidate parameter values, and MCMCglmm uses
a well tested and simple method. A random set of coordinates are picked from a
multivariate normal distribution that is entered on the initial coordinates µt=0

and σ2
t=0. We will denote this new set of parameter values as µnew and σ2

new.
The question then remains whether to move to this new set of parameter values
or remain at our current parameter values now designated as old µold = µt=0

and σ2
old = σ2

t=0. If the posterior probability for the new set of parameter values
is greater, then the chain moves to this new set of parameters and the chain
has successfully completed an iteration: (µt=1 = µnew and σ2

t=1 = σ2
new). If

the new set of parameter values has a lower posterior probability then the chain
may move there, but not all the time. The probability that the chain moves
to low lying areas, is determined by the relative difference between the old and
new posterior probabilities. If the posterior probability for µnew and σ2

new is
5 times less than the posterior probability for µold and σ2

old, then the chain
would move to the new set of parameter values 1 in 5 times. If the move is
successful then we set µt=1 = µnew and σ2

t=1 = σ2
new as before, and if the move

is unsuccessful then the chain stays where it is (µt=1 = µold and σ2
t=1 = σ2

old).
Using these rules we can record where the chain has travelled and generate an
approximation of the posterior distribution. Basically, a histogram of Figure 1.9.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 19

Pr

µ

σ2

Figure 1.9: The posterior distribution Pr(µ, σ2|y). This perspective plot is
equivalent to the contour plot in Figure 1.6

1.4.3 Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings updating, and MCMCglmm
uses Gibbs sampling to update most parameters. In the Metropolis-Hastings
example above, the Markov Chain was allowed to move in both directions of
parameter space simultaneously. An equally valid approach would have been
to set up two Metropolis-Hastings schemes where the chain was first allowed to
move along the µ axis, and then along the σ2 axis. In Figure 1.10 I have cut the
posterior distribution of Figure 1.9 in half, and the edge of the surface facing
left is the conditional distribution of µ given that σ2 = 1:

Pr(µ|σ2 = 1,y). (1.1)

In some cases, the equation that describes this conditional distribution can
be derived despite the equation for the complete joint distribution of Figure
1.9 remaining unknown. When the conditional distribution of µ is known we
can use Gibbs sampling. Lets say the chain at a particular iteration is located
at σ2 = 1. If we updated µ using a Metropolis-Hastings algorithm we would

CHAPTER 1. BAYESIAN STATISTICS & MCMC 20

Pr

µ σ2

Figure 1.10: The posterior distribution Pr(µ, σ2|y), but only for values of σ2

between 1 and 5, rather than 0 to 5 (Figure 1.9). The edge of the surface facing
left is the conditional distribution of the mean when σ2 = 1 (Pr(µ|y, σ2 = 1)).
This conditional distribution follows a normal distribution.

generate a candidate value and evaluate its relative probability compared to the
old value. This procedure would take place in the slice of posterior facing left
in Figure 1.10. However, because we know the actual equation for this slice we
can just generate a new value of µ directly. This is Gibbs sampling. The slice of
the posterior that we can see in Figure 1.10 actually has a normal distribution.
Because of the weak prior this normal distribution has a mean close to the mean
of y and a variance close to σ2

n = 1
n . Gibbs sampling can be much more efficient

than Metropolis-Hastings updates, especially when high dimensional conditional
distributions are known, as is typical in GLMMs. A technical description of the
sampling schemes used by MCMCglmm is given in appendix 7.2, but is perhaps
not important to know.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 21

1.4.4 Slice Sampling

If the distribution can be factored such that one factor is a distribution from
which truncated random variables can be drawn, then the slice sampling meth-
ods of Damien et al. (1999) can be used. The latent variables in univariate
binary models can be updated in this way if slice=TRUE is specified in the call
to MCMCglmm. In these models, slice sampling is only marginally more efficient
than adaptive Metropolis-Hastings updates when the residual variance is fixed.
However, for parameter expanded binary models where the residual variance is
not fixed, the slice sampler can be much more efficient.

1.4.5 MCMC Diagnostics

When fitting a model using MCMCglmm the parameter values through which the
Markov chain has travelled are stored and returned. The length of the chain (the
number of iterations) can be specified using the nitt argument2 (the default is
13,000), and should be long enough so that the posterior approximation is valid.
If we had known the joint posterior distribution in Figure 1.9 we could have set
up a Markov chain that sampled directly from the posterior. If this had been
the case, each successive value in the Markov chain would be independent of
the previous value after conditioning on the data, y, and a thousand iterations
of the chain would have produced a histogram that resembled Figure 1.9 very
closely. However, generally we do not know the joint posterior distribution of
the parameters, and for this reason the parameter values of the Markov chain
at successive iterations are usually not independent and care needs to be taken
regarding the validity of the approximation. MCMCglmm returns the Markov chain
as mcmc objects, which can be analysed using the coda package. The function
autocorr estimates the level of non-independence between successive samples
in the chain:

> autocorr(m1a.2$Sol)

, , (Intercept)

(Intercept)
Lag 0 1.000000000
Lag 1 0.023715850
Lag 5 0.007823033
Lag 10 -0.011490974
Lag 50 0.008903345

> autocorr(m1a.2$VCV)

, , units

units
2The double t is because I cannot spell.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 22

Lag 0 1.000000000
Lag 1 0.228517764
Lag 5 -0.007597471
Lag 10 -0.004843682
Lag 50 0.006178729

The correlation between successive samples is low for the mean (0.024) but
a bit high for the variance (0.229). When auto-correlation is high the chain
needs to be run for longer, and this can lead to storage problems for high di-
mensional problems. The argument thin can be passed to MCMCglmm specifying
the intervals at which the Markov chain is stored. In model m1a.2 we specified
thin=1 meaning we stored every iteration (the default is thin=10). I usually
aim to store 1,000-2,000 iterations and have the autocorrelation between suc-
cessive stored iterations less than 0.1.

The approximation obtained from the Markov chain is conditional on the
set of parameter values that were used to initialise the chain. In many cases
the first iterations show a strong dependence on the starting parametrisation,
but as the chain progresses this dependence may be lost. As the dependence
on the starting parametrisation diminishes the chain is said to converge and the
argument burnin can be passed to MCMCped specifying the number of iterations
which must pass before samples are stored. The default burn-in period is 3,000
iterations. Assessing convergence of the chain is notoriously difficult, but visual
inspection and diagnostic tools such as gelman.diag often suffice.

> plot(m1a.2$Sol)

On the left of Figure 1.11 is a time series of the parameter as the MCMC
iterates, and on the right is a posterior density estimate of the parameter (a
smoothed histogram of the output). If the model has converged there should be
no trend in the time series. The equivalent plot for the variance is a little hard
to see on the original scale, but on the log scale the chain looks good (Figure
1.12):

> plot(log(m1a.2$VCV))

1.5 Improper Priors

When improper priors are used their are two potential problems that may be
encountered. The first is that if the data do not contain enough information
the posterior distribution itself may be improper, and any results obtained from
MCMCglmm will be meaningless. In addition, with proper priors there is a zero
probability of a variance component being exactly zero but this is not necessarily
the case with improper priors. This can produce numerical problems (trying to
divide through by zero) and can also result in a reducible chain. A reducible

CHAPTER 1. BAYESIAN STATISTICS & MCMC 23

4000 8000 12000

−
4

−
2

0
2

4

Iterations

Trace of (Intercept)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N = 10000 Bandwidth = 0.06377

Density of (Intercept)

Figure 1.11: Summary plot of the Markov Chain for the intercept. The left plot
is a trace of the sampled posterior, and can be thought of as a time series. The
right plot is a density estimate, and can be thought of a smoothed histogram
approximating the posterior.

chain is one which gets ‘stuck’ at some parameter value and cannot escape. This
is usually obvious from the mcmc plots but MCMCglmm will often terminate before
the analysis has finished with an error message of the form:

ill-conditioned G/R structure: use proper priors ...

However, improper priors do have some useful properties.

1.5.1 Flat Improper Prior

The simplest improper prior is one that is proportional to some constant for
all possible parameter values. This is known as a flat prior and the posterior
density in such cases is equal to the likelihood:

Pr(µ, σ2|y) ∝ Pr(y|µ, σ2)

CHAPTER 1. BAYESIAN STATISTICS & MCMC 24

4000 8000 12000

−
2

−
1

0
1

2
3

4

Iterations

Trace of units

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

N = 10000 Bandwidth = 0.1273

Density of units

Figure 1.12: Summary plot of the Markov Chain for the logged variance. The
logged variance was plotted rather than the variance because it was easier to
visualise. The left plot is a trace of the sampled posterior, and can be thought
of as a time series. The right plot is a density estimate, and can be thought of
a smoothed histogram approximating the posterior.

It is known that although such a prior is non-informative for the mean it
is informative for the variance. We can specify a flat prior on the variance
component by having nu=0 (the value of V is irrelevant) and the default prior
for the mean is so diffuse as to be essentially flat across the range (−106, 106).

> prior.m1a.3 <- list(R = list(V = 1, nu = 0))

> m1a.3 <- MCMCglmm(y ~ 1, data = Ndata, thin = 1, prior = prior.m1a.3,

+ verbose = FALSE)

We can overlay the joint posterior distribution on the likelihood surface
(1.13) and see that the two things are in close agreement, up to Monte Carlo
error.

CHAPTER 1. BAYESIAN STATISTICS & MCMC 25

µ

σ2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 0.55 0.6

 0.7 0.75 0.9

−2 −1 0 1 2

0
1

2
3

4
5

Figure 1.13: Likelihood surface for the likelihood Pr(y|µ, σ2) in black, and an
MCMC approximation for the posterior distribution Pr(µ, σ2|y) in red. The
likelihood has been normalised so that the maximum likelihood has a value
of one, and the posterior distribution has been normalised so that the poste-
rior mode has a value of one. Flat priors were used (Pr(µ) ∼ N(0, 108) and
Pr(σ2) ∼ IW (V = 0, nu = 0)) and so the posterior distribution is equivalent to
the likelihood.

1.5.2 Non-Informative Improper Prior

Although inverse-Wishart distributions with negative degree of belief parame-
ters are not defined, the resulting posterior distribution can be defined if there is
sufficient replication. Specifying V=0 and n=-1 is equivalent to a uniform prior
for the standard deviation on the the interval (0,∞], and specifying V=0 and
n=-2 is non-informative for a variance component.

> prior.m1a.4 <- list(R = list(V = 1e-16, nu = -2))

> m1a.4 <- MCMCglmm(y ~ 1, data = Ndata, thin = 1, prior = prior.m1a.4,

+ verbose = FALSE)

The joint posterior mode does not coincide with either the ML or REML
estimator (Figure 1.14).

CHAPTER 1. BAYESIAN STATISTICS & MCMC 26

µ

σ2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 0.55 0.6

 0.7 0.75 0.9

−2 −1 0 1 2

0
1

2
3

4
5

Figure 1.14: Likelihood surface for the likelihood Pr(y|µ, σ2) in black, and an
MCMC approximation for the posterior distribution Pr(µ, σ2|y) in red. The
likelihood has been normalised so that the maximum likelihood has a value of
one, and the posterior distribution has been normalised so that the posterior
mode has a value of one. A non-informative prior was used (Pr(µ) ∼ N(0, 108)
and Pr(σ2) ∼ IW (V = 0, nu = −2))

but the marginal distribution of the variance component is equivalent to the
REML estimator (See Figure 1.15):

CHAPTER 1. BAYESIAN STATISTICS & MCMC 27

Histogram of m1a.4$VCV[which(m1a.4$VCV < 5)]

m1a.4$VCV[which(m1a.4$VCV < 5)]

F
re

qu
en

cy

0 1 2 3 4 5

0
20

0
40

0
60

0
80

0

Figure 1.15: An MCMC approximation for the marginal posterior distribution of
the variance Pr(σ2|y). A non-informative prior specification was used (Pr(µ) ∼
N(0, 108) and Pr(σ2) ∼ IW (V = 0, nu = −2)) and the REML estimator of the
variance (red line) coincides with the marginal posterior mode.

Chapter 2

Generalised Linear Mixed
Models (GLMM)

2.1 Linear Model (LM)

A linear model is one in which unknown parameters are multiplied by observed
variables and then added together to give a prediction for the response variable.
As an example, lets take the results from a Swedish experiment from the sixties:

> data(Traffic, package = "MASS")

> Traffic$year <- as.factor(Traffic$year)

> Traffic[c(1, 2, 184),]

year day limit y
1 1961 1 no 9
2 1961 2 no 11
184 1962 92 yes 9

The experiment involved enforcing speed limits on Swedish roads on some
days, but on other days letting everyone drive as fast as they liked. The response
variable (y) was how many of their citizens were injured in road accidents! The
experiment was conducted in 1961 and 1962 for 92 days in each year. As a first
attempt we could specify the linear model:

y ~ limit + year + day

but what does this mean?

2.1.1 Linear Predictors

The model formula defines a set of simultaneous (linear) equations

28

CHAPTER 2. GLMM 29

E[y[1]] = β1 + β2(limit[1]=="yes") + β3(year[1]=="1962") + β4day[1]
E[y[2]] = β1 + β2(limit[2]=="yes") + β3(year[2]=="1962") + β4day[2]

... =
...

E[y[184]] = β1 + β2(limit[184]=="yes") + β3(year[184]=="1962") + β4day[184]

where the β’s are the unknown coefficients to be estimated, and the variables
in this font are observed predictors. Continuous predictors such as day re-
main unchanged, but categorical predictors are expanded into a series of binary
variables of the form ‘do the data come from 1961, yes or no? ’, ‘do the data
come from 1962, yes or no? ’, and so on for as many years for which there are
data.

It is cumbersome to write out the equation for each data point in this way,
and a more compact way of representing the system of equations is

E[y] = Xβ (2.1)

where X is called a design matrix and contains the predictor information,
and β = [β1 β2 β3 β4]

′
is the vector of parameters.

> X <- model.matrix(y ~ limit + year + day, data = Traffic)

> X[c(1, 2, 184),]

(Intercept) limityes year1962 day
1 1 0 0 1
2 1 0 0 2
184 1 1 1 92

The binary predictors do the data come from 1961, yes or no? and there
was no speed limit, yes or no? do not appear. These are the first factor levels
of year and limit respectively, and are absorbed into the global intercept (β1)
which is fitted by default in R. Hence the expected number of injuries for the
four combinations (on day zero) are β1 for 1961 with no speed limit, β1 +β2 for
1961 with a speed limit, β1 + β3 for 1962 with no speed limit and β1 + β2 + β3

for 1962 with a speed limit.

The simultaneous equations defined by Equation (2.1) cannot be solved di-
rectly because we do not know the expected value of y. We only know the
observed value, which we assume is distributed around the expected value with
some error. In a normal linear model we assume that these errors are normally
distributed so that the data are also normally distributed (after taking into
account the predictor variables):

y ∼ N(Xβ, σ2
eI) (2.2)

CHAPTER 2. GLMM 30

I is an identity matrix. It has ones along the diagonal, and zeros in the
off-diagonals. The zero off-diagonals imply that the residuals are uncorrelated,
and the ones along the diagonal imply that they have the same variance σ2

e . We
could use glm to estimate β and σ2

e assuming that y is normally distributed:

> m2a.1 <- glm(y ~ limit + year + day, data = Traffic)

but the injuries are count data and the residuals show the typical right skew:

Histogram of m2a.1$resid

m2a.1$resid

F
re

qu
en

cy

−20 −10 0 10 20 30

0
10

20
30

40

Figure 2.1: Histogram of residuals from model m2a.1 which assumed they fol-
lowed a Gaussian distribution.

Its not extreme, and the conclusions probably won’t change, but we could
assume that the data follow some other distribution.

2.2 Generalised Linear Model (GLM)

Generalised linear models extend the linear model to non-Gaussian data. They
are essentially the same as the linear model described above, except they differ in
two aspects. First, it is not necessarily the mean response that is predicted, but

CHAPTER 2. GLMM 31

some function of the mean response. This function is called the link function.
For example, with a log link we are trying to predict the logged expectation:

log(E[y]) = Xβ (2.3)

or alternatively

E[y] = exp(Xβ) (2.4)

where exp is the inverse of the log link function. The second difference is
that many distributions are single parameter distributions for which a variance
does not need to be estimated, because it can be inferred from the mean. For
example, we could assume that the number of injuries are Poisson distributed,
in which case we also make the assumption that the variance is equal to the
expected value. There are many different types of distribution and link functions
and those supported by MCMCglmm can be found in Table 7.1. For now we will
concentrate on a Poisson GLM with log link (the default link function for the
Poisson distribution):

> m2a.2 <- glm(y ~ limit + year + day, family = poisson, data = Traffic)

> summary(m2a.2)

Call:
glm(formula = y ~ limit + year + day, family = poisson, data = Traffic)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.1774 -1.4067 -0.4040 0.9725 4.9920

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.0467406 0.0372985 81.685 < 2e-16 ***
limityes -0.1749337 0.0355784 -4.917 8.79e-07 ***
year1962 -0.0605503 0.0334364 -1.811 0.0702 .
day 0.0024164 0.0005964 4.052 5.09e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 625.25 on 183 degrees of freedom
Residual deviance: 569.25 on 180 degrees of freedom
AIC: 1467.2

Number of Fisher Scoring iterations: 4

The results look fairly straightforward, having a speed limit reduces the
number of injuries significantly, there are fewer injuries in 1962 (although sig-
nificance is marginal) and there is a significant increase in the number of injuries

CHAPTER 2. GLMM 32

over the year. Are these big effects or small effects? The coefficients are on the
log scale so to get back to the data scale we need to exponentiate. The exponent
of the intercept is the predicted number of injuries on day zero in 1961 without
a speed limit:

> exp(m2a.2$coef["(Intercept)"])

(Intercept)
21.04663

To get the prediction for the same day with a speed limit we need to add
the limityes coefficient

> exp(m2a.2$coef["(Intercept)"] + m2a.2$coef["limityes"])

(Intercept)
17.66892

With a speed limit there are expected to be 0.840 times less injuries than if
there were no speed limits. This value can be more directly obtained:

> exp(m2a.2$coef["limityes"])

limityes
0.8395127

and holds true for any given day in either year. For example, without a
speed limit on the final day of the year (92) in 1961 we expect 24.742 injuries:

> exp(m2a.2$coef["(Intercept)"] + m2a.2$coef["year1962"] + 92 *

+ m2a.2$coef["day"])

(Intercept)
24.74191

and 20.771 injuries if a speed limit had been in place:

> exp(m2a.2$coef["(Intercept)"] + m2a.2$coef["limityes"] + m2a.2$coef["year1962"] +

+ 92 * m2a.2$coef["day"])

(Intercept)
20.77115

The proportional change is identical because the model is linear on the log
scale.

CHAPTER 2. GLMM 33

2.3 Over-dispersion

Most count data do not conform to a Poisson distribution because the variance
in the response exceeds the expectation. This is known as over-dispersion and it
is easy to see how it arises, and why it is so common. In the summary to m2a.2
note that the ratio of the residual deviance to the residual degrees of freedom
is 3.162 which means, roughly speaking, there is 3.2 times as much variation in
the residuals than what we expect.

If the predictor data had not been available to us then the only model we
could have fitted was one with just an intercept:

> m2a.3 <- glm(y ~ 1, data = Traffic, family = "poisson")

> summary(m2a.3)

Call:
glm(formula = y ~ 1, family = "poisson", data = Traffic)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.6546 -1.4932 -0.3378 0.9284 5.0601

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.07033 0.01588 193.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 625.25 on 183 degrees of freedom
Residual deviance: 625.25 on 183 degrees of freedom
AIC: 1517.2

Number of Fisher Scoring iterations: 4

for which the residual variance exceeds that expected by a factor of 3.5.
Of course, the variability in the residuals must go up if there are factors that
influence the number of injuries, but which we hadn’t measured. Its likely that
in most studies there are things that influence the response that haven’t been
measured, and even if each thing has small effects individually, in aggregate
they can cause substantial over-dispersion.

2.3.1 Multiplicative Over-dispersion

There are two ways of dealing with over-dispersion. With glm the distribution
name can be prefixed with quasi and a dispersion parameter estimated:

CHAPTER 2. GLMM 34

> m2a.4 <- glm(y ~ limit + year + day, family = quasipoisson, data = Traffic)

> summary(m2a.4)

Call:
glm(formula = y ~ limit + year + day, family = quasipoisson,

data = Traffic)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.1774 -1.4067 -0.4040 0.9725 4.9920

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.046741 0.067843 44.909 < 2e-16 ***
limityes -0.174934 0.064714 -2.703 0.00753 **
year1962 -0.060550 0.060818 -0.996 0.32078
day 0.002416 0.001085 2.227 0.02716 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 3.308492)

Null deviance: 625.25 on 183 degrees of freedom
Residual deviance: 569.25 on 180 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

glm uses a multiplicative model of over-dispersion and so the estimate is
roughly equivalent to how many times greater the variance is than expected,
after taking into account the predictor variables. You will notice that although
the parameter estimates have changed very little ,the standard errors have gone
up and the significance gone down. Over-dispersion, if not dealt with, can
result in extreme anti-conservatism because the assumption of independence is
contravened. For example, the second lowest number of accidents (8) occurred
on the 91st day of 1961 without a speed limit. This should have been the second
worst day for injuries over the whole two years, and the probability of observing
9 or less accidents on this day, under the assumption of independence is almost
1 in a 100,000:

> ppois(9, exp(m2a.2$coef["(Intercept)"] + 91 * m2a.2$coef["day"]))

[1] 9.80056e-05

However, perhaps it was Christmas day and everything was under 5 foot of
snow. Although the accidents may have been independent in the sense that all
9 cars didn’t crash into each other, they are non-independent in the sense that

CHAPTER 2. GLMM 35

they all happened on a day where the underlying probability may be different
from that underlying any other day (data point).

2.3.2 Additive Over-dispersion

I believe that a model assuming all relevant variables have been measured or
controlled for, should not be the de facto model, and so when you specify
family=poisson in MCMCglmm, over-dispersion is always dealt with1. However,
MCMCglmm does not use a multiplicative model, but an additive model.

> prior <- list(R = list(V = 1, nu = 0.002))

> m2a.5 <- MCMCglmm(y ~ limit + year + day, family = "poisson",

+ data = Traffic, prior = prior, verbose = FALSE, pl = TRUE)

The element Sol contains the posterior distribution of the coefficients of the
linear model, and we can plot their marginal distributions:

4000 6000 8000 10000 12000

2.
8

Iterations

Trace of (Intercept)

2.7 2.8 2.9 3.0 3.1 3.2 3.3

0
4

N = 1000 Bandwidth = 0.01793

Density of (Intercept)

4000 6000 8000 10000 12000

−
0.

3

Iterations

Trace of limityes

−0.4 −0.3 −0.2 −0.1 0.0

0
4

N = 1000 Bandwidth = 0.0165

Density of limityes

4000 6000 8000 10000 12000

−
0.

2

Iterations

Trace of year1962

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
4

N = 1000 Bandwidth = 0.01529

Density of year1962

4000 6000 8000 10000 12000

0.
00

0

Iterations

Trace of day

0.000 0.002 0.004 0.006

0

N = 1000 Bandwidth = 0.0002664

Density of day

Figure 2.2: MCMC summary plot for the coefficients from a Poisson glm (model
m2a.5).

1This is a bit disingenuous - it is no coincidence that the Markov chain without over-
dispersion would be reducible

CHAPTER 2. GLMM 36

Notice that the year1962 coefficient has a high posterior density around
zero, in agreement with the over-dispersed glm model, and that in general the
estimates for the two models are broadly similar. This agreement is superficial.

With additive over-dispersion the linear predictor includes a ‘residual’, for
which a residual variance is estimated (hence our prior specification).

E[y] = exp(Xβ + e) (2.5)

At this point it will be handy to represent the linear model in a new way:

l = η + e (2.6)

where l is a vector of latent variables (log(E[y]) in this case) and eta (η) the
usual symbol for the linear predictor (Xβ). The data we observe are assumed
to be Poisson variables with expectation equal to the exponentiated latent vari-
ables:

y ∼ Pois(exp(l)) (2.7)

Note that the latent variable does not exactly predict y, as it would if the data
were Gaussian, because there is additional variability in the Poisson process. In
the call to MCMCglmm I specified pl=TRUE to indicate that I wanted to store the
posterior distributions of latent variables. This is not usually necessary and
can require a lot of memory (we have 1000 realisations for each of the 182 data
points). However as an example we can obtain the posterior mean residual for
data point 92 which is the data from day 92 in 1961 when there was no speed
limit:

> lat92 <- m2a.5$Liab[, 92]

> eta92 <- m2a.5$Sol[, "(Intercept)"] + m2a.5$Sol[, "day"] * Traffic$day[92]

> resid92 <- lat92 - eta92

> mean(resid92)

[1] -0.1410748

This particular day has a negative expected residual indicating that the prob-
ability of getting injured was less than expected for this particular realisation
of that day in that year. If that particular day could be repeated it does not
necessarily mean that the actual number of injuries would always be less than
expected, because it would follow a Poisson distribution with rate parameter
λ =exp(lat92)=21.872. In fact there would be a 21.461% chance of having
more injuries than if the residual had been zero:

> 1 - ppois(exp(mean(eta92)), exp(mean(lat92)))

[1] 0.2146055

CHAPTER 2. GLMM 37

Like residuals in a Gaussian model, the residuals are assumed to be indepen-
dently and normally distributed with an expectation of zero and an estimated
variance. If the residual variance was zero then e would be a vector of zeros and
the model would conform to the standard Poisson GLM. However, the posterior
distribution of the residual variance is located well away form zero:

> plot(m2a.5$VCV)

4000 8000 12000

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

Iterations

Trace of units

0.06 0.10 0.14 0.18

0
5

10
15

20
25

N = 1000 Bandwidth = 0.00409

Density of units

Figure 2.3: MCMC summary plot for the residual (units) variance from a
Poisson glm (model m2a.5). The residual variance models any over-dispersion,
and a residual variance of zero implies that the response conforms to a standard
Poisson.

The forces that created this residual were only realised on day 92 in 1961,
however we could ask hypothetically what if those forces were present on an-
other day. Figure 2.4 plots the first 92 residuals as function of day (red lines)
as scatter around the expectation on the log scale (solid black line). Each resid-
ual is only realised once, and the black dashed line is the hypothetical resid92
which happened to be observed on day 92 (black circle).

CHAPTER 2. GLMM 38

0 20 40 60 80

2
3

4
5

6

day

lo
g(

E
[y

])

●

0 20 40 60 80

0
10

0
20

0
30

0
40

0

day

E
[y

]

●

Figure 2.4: The predicted number of injuries on the log scale (left) and data
scale (right) as a function of the continuous covariate day for 1961 without a
speed limit. In order to highlight a point, the slope of the plotted relationship
is an order of magnitude steeper than the model m2a.5 estimate. The solid
black line is the value of the linear predictor, and the red dashed lines represent
noise around the linear predictor. Each dashed line is a residual from the model,
which is only observed for a particular data point. The vertical distance between
the black dot and the solid black line is the observed residual on day 92. The
black dashed line is the predicted value of a data point observed on other days
but with the same residual value. All lines are parallel and linear on the log
scale, but this is not the case on the data scale.

CHAPTER 2. GLMM 39

4.7 4.8 4.9 5.0 5.1 5.2 5.3

0.
8

0.
9

1.
0

1.
1

1.
2

log(y)

D
en

si
ty

Ee[log(y)]=η

120 140 160 180 200

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

y

D
en

si
ty

MEDe[y]=η

Ee[y]=η + 1
2
σe

2

MODEe[y]=η − σe
2

Figure 2.5: The hypothetical distribution for the number of injuries on the log
scale (left) and data scale (right) for day 92 in 1961 without a speed limit. These
can viewed as vertical slices from Figure 2.4 on day 92. On the log scale the
distribution is assumed to be normal and so the residuals are symmetrically
distributed around the linear predictor. As a consequence the linear predictor
(η) is equal to the mean, median and mode of the distribution on the log scale.
Because the exponential function is non-linear this symmetry is lost on the data
scale, and the different measures of central tendency do not coincide. Since the
residuals are normal on the log scale, the distribution on the data scale is log-
normal and so analytical solutions exist for the mean, mode and median. σ2 is
the residual variance.

It is perhaps more interesting to know the expected number of injuries that
would occur on this date if we had randomly sampled one of these other residu-
als. To indicate an expectation taken over residuals I have subscripted expecta-
tions with e. In Figure 2.5 I have plotted the distribution of the latent variables
on day 92. On the log scale the expectation is simply the solid black line η.
However, because the exponent function is non-linear this does not translate to
the data scale and η is actually equal to the median value on the data scale.

In the Traffic example the non linearities are small so the differences in
parameter estimates are not large using either multiplicative or additive models.
However, multiplying the intercept in model m2a.5 by half the residual variance
is in closer agreement with the quasipoisson model than the raw intercept:

> exp(mean(m2a.5$Sol[, "(Intercept)"] + 0.5 * m2a.5$VCV[, 1]))

[1] 20.91752

> exp(mean(m2a.5$Sol[, "(Intercept)"]))

[1] 19.88554

> exp(m2a.3$coef["(Intercept)"])

CHAPTER 2. GLMM 40

(Intercept)
21.54891

Analytical results for these transformations can be obtained for the Poisson
log-normal, but for other distributions this is not always the case. Section 5.2
gives prediction functions for other types of distribution. One could reasonably
ask, why have this additional layer of complexity, why not just stick with the
multiplicative model? This brings us to random effects.

2.4 Random effects

In some cases we may have measured variables whose effects we would like to
treat as random. Often the distinction between fixed and random is given by
example; things like population, species, individual and vial are random, but
sex, treatment and age are not. Or the distinction is made using rules of thumb;
if there are few factor levels and they are interesting to other people they are
fixed. However, this doesn’t really confer any understanding about what it
means to treat something as fixed or random, and doesn’t really allow judge-
ments to be made regarding ambiguous variables (for example year) or give any
insight into the fact that in a Bayesian analysis all effects are technically random.

When we treat an effect as fixed we believe that the only information regard-
ing its value comes from data associated with that particular level. If we treat
an effect as random we also use this information, but we weight it by what other
data tell us about the likely values that the effects could take. In a Bayesian
analysis this additional information could come from data not formally included
in the analysis, in which case it would be called a prior. In hierarchical models
this additional information comes from data associated with other factor levels
of the same type.

The degree to which this additional information is important depends on
the variability of the effects, as measured by the estimated variance component,
and the degree of replication within a particular level. If variability is high then
most of the information must come from data associated with an individual ef-
fect, particularly if replication within that effect is high. However, if variability
and replication are low then extreme mean values of the response for a given
level are more likely to be due to sampling error alone, and so the estimates are
shrunk towards zero.

It is common to hear things like ‘year is a random effect’ as if you just have
to estimate a single effect for all years. It is also common to hear things like
‘years is random’ as if years were sampled at random. Better to say year effects
are random and understand that it is the effects that are random not the years,
and that we’re trying to estimate as many effects as there are years. In this
sense they’re the same as fixed effects, and we can easily treat the year effects

CHAPTER 2. GLMM 41

as random to see what difference it makes.

Random effect models are often expressed as:

E[y] = exp(Xβ + Zu + e) (2.8)

where Z is a design matrix like X, and u is a vector of parameters like β.
We can specify simple random effect models in the same way that we specified
the fixed effects:

random = ~ year

although we don’t need anything to the left of the ∼ because the response
is known from the fixed effect specification. In addition, the global intercept is
suppressed by default, so in fact this specification produces the design matrix:

> Z <- model.matrix(~year - 1, data = Traffic)

> Z[c(1, 2, 184),]

year1961 year1962
1 1 0
2 1 0
184 0 1

Earlier I said that there was no distinction between fixed and random effects
in a Bayesian analysis - all effects are random - so lets not make the distinction
and combine the design matrices (W = [X,Z]) and combine the vectors of
parameters (θ = [β

′
,u
′
]
′
):

E[y] = exp(Wθ + e) (2.9)

If we drop year from the fixed terms, the new fixed effect design matrix looks
like:

> X2 <- model.matrix(y ~ limit + day, data = Traffic)

> X2[c(1, 2, 184),]

(Intercept) limityes day
1 1 0 1
2 1 0 2
184 1 1 92

and

> W <- cbind(X2, Z)

> W[c(1, 2, 184),]

(Intercept) limityes day year1961 year1962
1 1 0 1 1 0
2 1 0 2 1 0
184 1 1 92 0 1

CHAPTER 2. GLMM 42

You will notice that this new design matrix is exactly equivalent to the
original design matrix X except we have one additional variable year1961. In
our first model this variable was absorbed in to the global intercept because it
could no be uniquely estimated from the data. What has changed that could
make this additional parameter estimable? As is usual in a Bayesian analysis,
if there is no information in the data it has to come from the prior. In model
m2a.5 we used the default normal prior for the fixed effects with means of zero,
large variances of 108, and no covariances. Lets treat the year effects as random,
but rather than estimate a variance component for them we’ll fix the variance
at 108 in the prior:

> prior <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1e+08,

+ fix = 1)))

> m2a.6 <- MCMCglmm(y ~ limit + day, random = ~year, family = "poisson",

+ data = Traffic, prior = prior, verbose = FALSE, pr = TRUE)

> plot(m2a.6$Sol)

4000 6000 8000 10000 12000

−
20

00
0

20
00

0

Iterations

Trace of (Intercept)

−30000 −10000 0 10000 30000

0e
+

00
4e

−
05

N = 1000 Bandwidth = 1823

Density of (Intercept)

4000 6000 8000 10000 12000

−
0.

4
−

0.
1

Iterations

Trace of limityes

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1

0
2

4
6

N = 1000 Bandwidth = 0.01713

Density of limityes

4000 6000 8000 10000 12000

−
0.

00
1

0.
00

3

Iterations

Trace of day

−0.002 0.000 0.002 0.004 0.006

0
20

0

N = 1000 Bandwidth = 0.0002771

Density of day

Figure 2.6: MCMC summary plots for the intercept, speed limit and day coef-
ficients from model m2a.6 where year effects were treated as random. Note the
high posterior variance for the intercept.

CHAPTER 2. GLMM 43

The estimates for the intercept, day and the effect of a speed limit now appear
completely different (Figure 2.6). However, in the original model (m2a.5) the
prediction for each year is obtained by:

> y1961.m2a.5 <- m2a.5$Sol[, "(Intercept)"]

> y1962.m2a.5 <- m2a.5$Sol[, "(Intercept)"] + m2a.5$Sol[, "year1962"]

However, for this model we have to add the intercept to both random effects
to get the year predictions. MCMCglmm does not store the posterior distribution
of the random effects by default, but because we specified pr=TRUE, the whole
of θ is stored rather than just β:

> y1961.m2a.6 <- m2a.6$Sol[, "(Intercept)"] + m2a.6$Sol[, "year.1961"]

> y1962.m2a.6 <- m2a.6$Sol[, "(Intercept)"] + m2a.6$Sol[, "year.1962"]

We can merge the two posterior distributions to see how they compare:

> y.m2a.5 <- mcmc(cbind(y1961 = y1961.m2a.5, y1962 = y1962.m2a.5))

> y.m2a.6 <- mcmc(cbind(y1961 = y1961.m2a.6, y1962 = y1962.m2a.6))

> plot(mcmc.list(y.m2a.5, y.m2a.6))

The posterior distributions are very similar (Figure 2.7; but see Section 2.7
why they are not identical), highlighting the fact that effects that are fixed
are those associated with a variance component which has been set a priori to
something large (108 in this case), where effects that are random are associated
with a variance component which is not set a priori but is estimated from
the data. As the variance component tends to zero then no matter how many
random effects there are, we are effectively only estimating a single parameter
(the variance). This makes sense, if there were no differences between years we
only need to estimate a global intercept and not separate effects for each year.
Alternatively if the variance is infinite then we need to estimate separate effects
for each year. In this case the intercept is confounded with the average value
of the random effect, resulting in a wide marginal distribution for the intercept,
and strong posterior correlations between the intercept and the mean of the
random effects:

> plot(c(m2a.6$Sol[, "year.1961"] + m2a.6$Sol[, "year.1962"])/2,

+ c(m2a.6$Sol[, "(Intercept)"]))

With only two levels, there is very little information to estimate the variance,
and so we would often make the a priori decision to treat year effects as fixed,
and fix the variance components to something large (or infinity in a frequentist
analysis).

At the moment we have day as a continuous covariate, but we could also have
random day effects and ask whether the number of injuries on the same day but
in different years are correlated. Rather than fixing the variance component at
something large, we’ll use the same weaker prior that we used for the residual
variance:

CHAPTER 2. GLMM 44

0 200 400 600 800

2.
8

3.
0

3.
2

Iterations

Trace of y1961

2.7 2.8 2.9 3.0 3.1 3.2

0
1

2
3

4
5

6

N = 1000 Bandwidth = 0.01571

Density of y1961

0 200 400 600 800

2.
7

2.
9

3.
1

Iterations

Trace of y1962

2.6 2.8 3.0 3.2

0
1

2
3

4
5

N = 1000 Bandwidth = 0.01714

Density of y1962

Figure 2.7: MCMC summary plots for the year effects from a model where year
effects were treated as fixed (black) and where they were treated as random
(red) but with the variance component set at a large value rather than being
estimated. The posterior distributions are virtually identical.

> Traffic$day <- as.factor(Traffic$day)

> prior <- list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,

+ nu = 0.002)))

> m2a.7 <- MCMCglmm(y ~ year + limit + as.numeric(day), random = ~day,

+ family = "poisson", data = Traffic, prior = prior, verbose = FALSE)

day has also gone in the fixed formula, but as a numeric variable, in order to
capture any time trends in the number of injuries. Most of the over-dispersion
seems to be captured by fitting day as a random term (Figure 2.9):

> plot(m2a.7$VCV)

In fact it explains so much that the residual variance is close to zero and
mixing seems to be a problem. The chain would have to be run for longer, and
the perhaps an alternative prior specification used.

CHAPTER 2. GLMM 45

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20000 −10000 0 10000 20000

−
20

00
0

−
10

00
0

0
10

00
0

20
00

0

c(m2a.6$Sol[, "year.1961"] + m2a.6$Sol[, "year.1962"])/2

c(
m

2a
.6

$S
ol

[,
"(

In
te

rc
ep

t)
"]

)

Figure 2.8: Joint posterior distribution of the intercept and the mean of the two
random year effects. The variance component associated with year was fixed at
a large value (108) and so the effects are almost completely confounded.

2.5 Prediction with Random effects

In section 2.3.2 we showed that for non-Gaussian data the expectation of the
response variable y is different from the linear predictor if we wish to average
over the residuals. Often it is important to get the expectation after marginalis-
ing residuals, and indeed after marginalising other random effects. For example
we may not be so interested in knowing the expected number of injuries on the
average day, but knowing the expected number of injuries on any random day.

For the Poisson mixed model:

E[y] = exp(Xβ + Zu + e) (2.10)

we can marginalise with respect to the random effects, including the over-
dispersion residual:

Eu,e[y] = exp(Xβ + 0.5σ2) (2.11)

CHAPTER 2. GLMM 46

4000 8000 12000

0.
06

0.
10

0.
14

Iterations

Trace of day

0.04 0.08 0.12 0.16

0
5

10
15

20

N = 1000 Bandwidth = 0.004923

Density of day

4000 8000 12000

0.
00

0.
02

0.
04

Iterations

Trace of units

0.00 0.01 0.02 0.03 0.04

0
20

40
60

80

N = 1000 Bandwidth = 0.00162

Density of units

Figure 2.9: MCMC summary plot of the variance component associated with day
(top) and the residual variance component (below). The trace for the residual
variance shows strong autocorrelation and needs to be ran for longer.

where σ2 is the sum of the variance components.

For the Binomial mixed model with logit link

E[y] = logit−1(Xβ + Zu + e) (2.12)

it is not possible to marginilse with respect to the random effects analytically,
but two approximations exist. The first

Eu,e[y] ≈ logit−1(Xβ − 0.5σ2tanh(Xβ(1 + 2exp(−0.5σ2))/6))) (2.13)

can be found on p452 in McCulloch and Searle (2001) and the second (and
possibly less accurate) approximation in Diggle et al. (2004):

Eu,e[y] ≈ logit−1

 Xβ√
1 + (16

√
3

15π)2σ2

 (2.14)

CHAPTER 2. GLMM 47

A predict function has been implemented for MCMCglmm although it is cur-
rently incomplete and needs further testing. However, for simpler distributions
it should be OK - for example, we can predict the laibality on the latent scale
after marginalising the random effects in model m2a.7:

> predict(m2a.7, marginal = ~day, type = "terms")[1:5]

[1] 3.013906 3.016406 3.018907 3.021407 3.023907

or we can predict on the data scale:

> predict(m2a.7, marginal = ~day, type = "response")[1:5]

[1] 22.41390 22.46803 22.52232 22.57679 22.63144

In addition, credible intervals can be obtained

> predict(m2a.7, marginal = ~day, type = "response", interval = "confidence")[1:5,

+]

fit lwr upr
1 22.41390 19.19317 25.93465
2 22.46803 19.28033 25.94429
3 22.52232 19.36215 25.95811
4 22.57679 19.39551 25.93856
5 22.63144 19.47556 25.93655

as can prediction intervals through posterior predictive simulation:

> predict(m2a.7, marginal = ~day, type = "response", interval = "prediction")[1:5,

+]

fit lwr upr
1 22.14200 7.307660 44.72613
2 22.13422 5.424454 41.50115
3 22.36608 6.893520 41.15897
4 22.14274 6.968208 42.67847
5 22.27424 6.286758 40.72599

2.6 Categorical Data

Response variables consisting of levels of some categorical factor are best anal-
ysed using family="categorical" if the levels have no natural ordering, or
family="ordinal" if the levels do have a natural ordering, such as never <
sometimes < always. The simplest variable of this type is binary data where
the response variable is either a zero or a one, and can be analysed as fam-
ily="categorical" (logit link) or family="ordinal" (probit link). A binary
distribution is a special case of the binomial distribution where the number of

CHAPTER 2. GLMM 48

trials (size) is equal to 1. One way of interpreting a binomial response is to
expand it into a series of binary variables and treat the zero’s and ones as re-
peated measures. For example, we could generate two binomial variates each
with 5 trials:

> success <- rbinom(2, size = 5, prob = c(0.4, 0.6))

> failure <- 5 - success

> binom <- rbind(success, failure)

> colnames(binom) <- c("u.1", "u.2")

> binom

u.1 u.2
success 3 3
failure 2 2

and then expand them into success or failure:

> binary <- matrix(rep(c(1, 0, 1, 0), binom), 1, 10)

> colnames(binary) <- rep(c("u.1", "u.2"), each = 5)

> binary

u.1 u.1 u.1 u.1 u.1 u.2 u.2 u.2 u.2 u.2
[1,] 1 1 1 0 0 1 1 1 0 0

We can then interpret the units variance in a binomial GLMM as account-
ing for any similarity between repeated measurements made within the same
observational unit. If the binary variables within the binomial observation are
correlated, this means that the underlying probability for each binomial response
differs to a greater degree than can be predicted from the linear predictor. In
this example the two probabilities were 0.4 and 0.6 which means that the re-
peated binary measures would be correlated if we only fitted the intercept (0.5).

If the original data are already binary then there is no information to mea-
sure how repeatable trials are within a binomial unit because we only have a
single trial per observation. This does not necessarily mean that heterogeneity
in the underlying probabilities does not exist, only that we can’t estimate it.
Imagine we are in a room of 100 people and we are told that 5% of the people
will be dead the following day. If the people in the room were a random sample
from the UK population I would worry - I probably have a 5% chance of dying.
If on the other hand the room was a hospital ward and I was a visitor, I may not
worry too much for my safety. The point is that in the absence of information,
the binary data look the same if each person has a 5% chance of dying or if 5
people have a 100% chance of dying. Most programs set the residual variance
to zero and assume the former, but it is important to understand that this is a
convenient but arbitrary choice. Given this, it is desirable that any conclusions
drawn from the model do not depend on this arbitrary choice. Worryingly, both
the location effects (fixed and random) and variance components are completely

CHAPTER 2. GLMM 49

dependent on the magnitude of the residual variance.

To demonstrate we will use some data from a pilot study on the Indian
meal moth (Plodia interpunctella) and its granulosis virus (PiGV) collected by
Hannah Tidbury & Mike Boots at the University of Sheffield.

> data(PlodiaRB)

The data are taken from 874 moth pupae for which the Pupated variable is
zero if they failed to pupate (because they were infected with the virus) or one
if they successfully pupated. The 874 individuals are spread across 49 full-sib
families, with family sizes ranging from 6 to 38.

To start we will fix the residual variance at 1:

> prior.m2b.1 = list(R = list(V = 1, fix = 1), G = list(G1 = list(V = 1,

+ nu = 0.002)))

> m2b.1 <- MCMCglmm(Pupated ~ 1, random = ~FSfamily, family = "categorical",

+ data = PlodiaRB, prior = prior.m2b.1, verbose = FALSE)

and then fit a second model where the residual variance is fixed at 2:

> prior.m2b.2 = list(R = list(V = 2, fix = 1), G = list(G1 = list(V = 1,

+ nu = 0.002)))

> m2b.2 <- MCMCglmm(Pupated ~ 1, random = ~FSfamily, family = "categorical",

+ data = PlodiaRB, prior = prior.m2b.2, verbose = FALSE)

The posterior distribution for the intercept differs between the two models
(see Figure 2.10):

> plot(mcmc.list(m2b.1$Sol, m2b.2$Sol))

as do the variance components (see Figure 2.11):

> plot(mcmc.list(m2b.1$VCV, m2b.2$VCV))

Should we worry? Not really. We just have to be careful about how we
express the results. Stating that the family variance is 0.655 is meaningless
without putting it in the context of the assumed residual variance. It is therefore
more appropriate to report the intraclass correlation which in this context is the
expected correlation between the state Pupated/Not Pupated, for members of
the same family. It can be calculated as:

IC =
σ2
FSfamily

σ2
FSfamily + σ2

units + π2/3
(2.15)

for the logit link, which is used when family=categorical, or

CHAPTER 2. GLMM 50

4000 8000 12000

−
2.

0
−

1.
8

−
1.

6
−

1.
4

−
1.

2
−

1.
0

−
0.

8
−

0.
6

Iterations

Trace of (Intercept)

−2.0 −1.5 −1.0 −0.5

0.
0

0.
5

1.
0

1.
5

2.
0

N = 1000 Bandwidth = 0.04365

Density of (Intercept)

Figure 2.10: MCMC summary plots for the intercept of a binary GLMM where
the residual variance was fixed at one (black) and two (red).

IC =
σ2
FSfamily

σ2
FSfamily + σ2

units + 1
(2.16)

for the probit link, which is used if family=ordinal was specified.

Obtaing the posterior distribution of the intra-calss correlation for each
model shows that they are sampling very similar posterior distributions (see
Figure 2.12)

> IC.1 <- m2b.1$VCV[, 1]/(rowSums(m2b.1$VCV) + pi^2/3)

> IC.2 <- m2b.2$VCV[, 1]/(rowSums(m2b.2$VCV) + pi^2/3)

> plot(mcmc.list(IC.1, IC.2))

Using the approximation due to Diggle et al. (2004) described earlier we can
also rescale the estimates by the estimated residual variance (σ2

units) in order
to obtain the posterior distributions of the parameters under the assumption
that the actual residual variance (σ2

e) is equal to some other value. For location

CHAPTER 2. GLMM 51

4000 8000 12000

0.
5

1.
5

2.
5

Iterations

Trace of FSfamily

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

1.
2

N = 1000 Bandwidth = 0.07554

Density of FSfamily

4000 8000 12000

1.
0

1.
4

1.
8

Iterations

Trace of units

y

D
en

si
ty

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4
5

Density of units

Figure 2.11: MCMC summary plots for the between family variance component
of a binary GLMM where the residual variance was fixed at one (black) and two
(red).

effects the posterior distribution needs to be multiplied by
√

1+c2σ2
e

1+c2σ2
units

and

for the variance components the posterior distribution needs to be multiplied by
1+c2σ2

e

1+c2σ2
units

where c is some constant that depends on the link function. For the

probit c = 1 and for the logit c = 16
√

3/15π. We can obtain estimates under
the assumption that σ2

e = 0:

> c2 <- ((16 * sqrt(3))/(15 * pi))^2

> Int.1 <- m2b.1$Sol/sqrt(1 + c2 * m2b.1$VCV[, 2])

> Int.2 <- m2b.2$Sol/sqrt(1 + c2 * m2b.2$VCV[, 2])

> plot(mcmc.list(as.mcmc(Int.1), as.mcmc(Int.2)))

The posteriors should be virtually identical under a flat prior (See Figure
2.13) although with different priors this is not always the case. Remarkably, van
Dyk and Meng (2001) show that leaving a diffuse prior on σ2

units and rescaling
the estimates each iteration, a Markov chain with superior mixing and conver-

CHAPTER 2. GLMM 52

4000 8000 12000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Iterations

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

N = 1000 Bandwidth = 0.01062

Figure 2.12: MCMC summary plots for the intra-family correlation from a bi-
nary GLMM where the residual variance was fixed at one (black) and two (red).

gence properties can be obtained (See section 8).

It should also be noted that a diffuse prior on the logit scale is not necessarily
weakly informative on the probability scale. For example, the default setting
for the prior on the intercept is N(0, 108) on the logit scale, which although
relatively flat across most of the probability scale, has a lot of density close to
zero and one:

> hist(plogis(rnorm(1000, 0, sqrt(1e+08))))

This diffuse prior can cause problems if there is complete (or near complete)
separation. Generally this happens when the binary data associated with some
level of a categorical predictor are all success or all failures. For example, imagine
we had 50 binary observations from an experiment with two treatments, for the
first treatment the probability of success is 0.5 but in the second it is only one
in a thousand:

> treatment <- gl(2, 25)

> y <- rbinom(50, 1, c(0.5, 0.001)[treatment])

CHAPTER 2. GLMM 53

4000 8000 12000

−
1.

4
−

1.
2

−
1.

0
−

0.
8

−
0.

6

Iterations

Trace of (Intercept)

−1.6 −1.2 −0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

N = 1000 Bandwidth = 0.03171

Density of (Intercept)

Figure 2.13: MCMC summary plots for the expected proportion of caterpillars
pupating from a binary GLMM where the residual variance was fixed at one
(black) and two (red).

> data.bin <- data.frame(treatment = treatment, y = y)

> table(data.bin)

y
treatment 0 1

1 13 12
2 25 0

if we analyse using glm we see some odd behaviour:

> m2c.1 <- glm(y ~ treatment, data = data.bin, family = "binomial")

> summary(m2c.1)

Call:
glm(formula = y ~ treatment, family = "binomial", data = data.bin)

Deviance Residuals:

CHAPTER 2. GLMM 54

Histogram of plogis(rnorm(1000, 0, sqrt(1e+08)))

plogis(rnorm(1000, 0, sqrt(1e+08)))

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Figure 2.14: Histogram of 1000 random deviates from a normal distribution
with a mean of zero and a large variance (108) after undergoing an inverse logit
transformation.

Min 1Q Median 3Q Max
-1.14361 -0.85773 -0.00008 -0.00008 1.21159

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.08004 0.40032 -0.200 0.842
treatment2 -19.48603 2150.80263 -0.009 0.993

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 55.108 on 49 degrees of freedom
Residual deviance: 34.617 on 48 degrees of freedom
AIC: 38.617

Number of Fisher Scoring iterations: 18

CHAPTER 2. GLMM 55

the effect of treatment does not appear significant despite the large effect
size. This is in direct contrast to an exact binomial test:

> m2c.2 <- binom.test(table(data.bin)[2, 2], 25)

> m2c.2

Exact binomial test

data: table(data.bin)[2, 2] and 25
number of successes = 0, number of trials = 25, p-value = 5.96e-08
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.0000000 0.1371852
sample estimates:
probability of success

0

where the 95% confidence interval for the probability of success is 0.000 to
0.137.

The default MCMCglmm model also behaves oddly (see Figure 2.15):

> prior.m2c.3 = list(R = list(V = 1, fix = 1), G = list(G1 = list(V = 1,

+ nu = 0.002)))

> m2c.3 <- MCMCglmm(y ~ treatment, data = data.bin, family = "categorical",

+ prior = prior.m2c.3, verbose = FALSE)

> plot(m2c.3$Sol)

For these types of problems, I usually remove the global intercept (-1) and
use the prior N(0, σ2

units + π2/3) because this is reasonably flat on the proba-
bility scale when a logit link is used. For example,

> prior.m2c.4 = list(B = list(mu = c(0, 0), V = diag(2) * (1 +

+ pi^2/3)), R = list(V = 1, fix = 1), G = list(G1 = list(V = 1,

+ nu = 0.002)))

> m2c.4 <- MCMCglmm(y ~ treatment - 1, data = data.bin, family = "categorical",

+ prior = prior.m2c.4, verbose = FALSE)

> plot(m2c.4$Sol)

looks a little better (see Figure 2.15), and the posterior distribution for the
probability of success in treatment 2 is consistent with the exact binomial test
for which the 95% CI were (0.000 - 0.137). With such a simple model, the
prediction for observation 26 is equal to the treatment 2 effect and so we can
get the the credible interval (on the data scale) for treatment 2 using the predict
function:

> predict(m2c.4, interval = "confidence")[26,]

fit lwr upr
0.0447653495 0.0002971701 0.1296584843

CHAPTER 2. GLMM 56

4000 8000 12000

−
2.

0
−

1.
0

0.
0

1.
0

Iterations

Trace of (Intercept)

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

N = 1000 Bandwidth = 0.1329

Density of (Intercept)

4000 8000 12000

−
25

−
15

−
5

Iterations

Trace of treatment2

−30 −20 −10 0

0.
00

0.
04

0.
08

N = 1000 Bandwidth = 1.602

Density of treatment2

Figure 2.15: MCMC summary plots for the intercept and treatment effect in
a binary GLM. In treatment 2 all 25 observations were failures and so the ML
estimator on the probability scale is zero and −∞ on the logit scale. With a flat
prior on the treatment effect the posterior distribution is improper, and with a
diffuse prior (as used here) the posterior is dominated by the high prior densities
at extreme values.

2.7 A note on fixed effect priors and covariances

Fixed and random effects are essentially the same thing. The only difference is
that the variance component for the fixed effects is usually fixed at some large
value, whereas the variance component for the random effects is estimated. In
section 2.4 I demonstrated this by claiming that a model where year effects were
fixed (m2a.5) was identical to one where they were treated as random, but with
the variance component set to a large value (m2a.6). This was a white lie as I
did not want to distract attention from the main point. The reason why they
were not identical is as follows:

In the fixed effect model (m2a.5) we had the prior:

CHAPTER 2. GLMM 57

4000 8000 12000

−
1

0
1

2

Iterations

Trace of treatment1

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

N = 1000 Bandwidth = 0.1319

Density of treatment1

4000 8000 12000

−
10

−
6

−
4

−
2

Iterations

Trace of treatment2

−10 −8 −6 −4 −2 0

0.
00

0.
10

0.
20

0.
30

N = 1000 Bandwidth = 0.313

Density of treatment2

Figure 2.16: MCMC summary plots for the intercept and treatment effect in
a binary GLM. In treatment 2 all 25 observations were failures and so the ML
estimator on the probability scale is zero and −∞ on the logit scale. A flat
prior on the probability scale was used and the posterior distribution is better
behaved than if a flat prior on the logit scale had been used (see Figure 2.15).

[
β(Intercept)
βyear1962

]
∼

[
108 0
0 108

]
(2.17)

Where β(Intercept) and βyear1962 are the fixed effects to be estimated.

Remembering the identity σ2
(a+b) = σ2

a + σ2
b + 2σa,b, this implies:

[
β1961

β1962

]
=

[
β(Intercept)

β(Intercept) + βyear1962

]
∼

[
108 108

108 108 + 108

]
=
[

108 108

108 208

]
(2.18)

where β1961 and β1962 are the actual year effects, rather than the global in-
tercept and the contrast. In hindsight this is a bit odd, for one thing we expect

CHAPTER 2. GLMM 58

the 1962 effect to be twice as variable as the 1961 effect. With such weak priors
it makes little difference, but lets reparameterise the model anyway.

Rather than having a global intercept and a year contrast, we will have
separate intercepts for each year:

> X3 <- model.matrix(y ~ year - 1, data = Traffic)

> X3[c(1, 2, 184),]

year1961 year1962
1 1 0
2 1 0
184 0 1

and a prior that has a covariance between the two year effects:

> PBV.yfixed <- diag(2) * 1e+08

> PBV.yfixed[1, 2] <- PBV.yfixed[2, 1] <- 1e+08/2

> PBV.yfixed

[,1] [,2]
[1,] 1e+08 5e+07
[2,] 5e+07 1e+08

> prior.m2a.5.1 <- list(B = list(mu = rep(0, 2), V = PBV.yfixed),

+ R = list(V = 1, nu = 0.002))

This new model:

> m2a.5.1 <- MCMCglmm(y ~ year - 1, family = "poisson", data = Traffic,

+ prior = prior.m2a.5.1, verbose = FALSE)

has the same form as a mixed effect model with a prior variance of 108

2 for the
intercept, and the variance component associated with the random year effects
also fixed at 108

2 :

> prior.m2a.6.1 <- list(B = list(mu = 0, V = 1e+08/2), R = list(V = 1,

+ nu = 0.002), G = list(G1 = list(V = 1e+08/2, fix = 1)))

This arises because the two random effects have the joint prior distribution:[
βyear.1961
βyear.1962

]
∼

[
108

2 0
0 108

2

]
(2.19)

which when combined with the prior for the intercept, N(0, 108

2), gives:

[
β1961

β1962

]
=

[
β(Intercept) + βyear.1961
β(Intercept) + βyear.1962

]
∼

[
108

2 + 108

2
108

2
108

2
108

2 + 108

2

]
=

[
108 108

2
108

2 108

]
(2.20)

CHAPTER 2. GLMM 59

which is equivalent to the PBV.yfixed parameteristaion of for the two years.

The model:

> m2a.6.1 <- MCMCglmm(y ~ 1, random = ~year, family = "poisson",

+ data = Traffic, prior = prior.m2a.6.1, verbose = FALSE, pr = TRUE)

is therefore sampling from the same posterior distribution as model m2a.5.1.

Chapter 3

Categorical Random
Interactions

Random effect specification is a common cause of confusion, especially when we
want to form interactions in the random terms. To illustrate the possibilities
we’ll use data collected on Blue tits.

> data(BTdata)

The data are morphological measurements (tarsus length and back colour)
made on 828 blue tit chicks from 106 mothers (dam). Half the offspring from
each mother were swapped with half the offspring from another mother soon
after hatching. The nest they were reared in is recorded as fosternest.

> prior = list(R = list(V = 1, nu = 0.002), G = list(G1 = list(V = 1,

+ nu = 0.002), G2 = list(V = 1, nu = 0.002)))

> m3a.1 <- MCMCglmm(tarsus ~ sex, random = ~dam + fosternest, data = BTdata,

+ verbose = FALSE, prior = prior)

fits sex as a fixed effect, and dam and fosternest as random effects.

> diag(autocorr(m3a.1$VCV)[2, ,])

dam fosternest units
0.03015650 0.43293184 0.04920423

> plot(m3a.1$VCV)

Perhaps the autocorrelation for the fosternest variance is a little higher
than we would like, and so we may like to run it for longer.

> effectiveSize(m3a.1$VCV)

dam fosternest units
1000.0000 333.7115 822.8681

60

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 61

dam fosternest units
0.03015650 0.43293184 0.04920423

4000 6000 8000 10000 12000

0.
15

0.
30

Iterations

Trace of dam

0.1 0.2 0.3 0.4

0
2

4
6

8

N = 1000 Bandwidth = 0.01225

Density of dam

4000 6000 8000 10000 12000

0.
00

0.
10

Iterations

Trace of fosternest

0.00 0.05 0.10 0.15 0.20
0

4
8

12
N = 1000 Bandwidth = 0.007872

Density of fosternest

4000 6000 8000 10000 12000

0.
50

0.
60

Iterations

Trace of units

0.45 0.50 0.55 0.60 0.65 0.70

0
4

8
12

N = 1000 Bandwidth = 0.008548

Density of units

Figure 3.1: MCMC summary plot for the variance components from model
m3a.1.

Indeed, we’ve only sampled the fosternest variance about half as well as the
other two variance components.

The posterior correlation between the parameters is low

> cor(m3a.1$VCV)

dam fosternest units
dam 1.00000000 -0.2617804 -0.03572453
fosternest -0.26178044 1.0000000 -0.19821243
units -0.03572453 -0.1982124 1.00000000

which is not that surprising give the data come from an experiment which
was designed in order to estimate these variance components. In general, vari-
ance components will show negative posterior correlations because the the total
variance is being divided up. Imagine cutting a piece of string; making one bit

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 62

longer has to reduce the size of the other bits, by necessity. If we hadn’t exper-
imentally manipulated the birds then all chicks with the same mother, would
be raised in the same nest, and there would be no information in the data to
separate these terms. In this case the posterior correlation between these pa-
rameters would approach -1 as the prior information goes to zero.

The lower 95% credible interval for the fosternest variance is low

> HPDinterval(m3a.1$VCV)

lower upper
dam 0.137995486 0.3244924
fosternest 0.001049190 0.1226651
units 0.513211216 0.6366857
attr(,"Probability")
[1] 0.95

and perhaps a model without it would be better supported, although the
DIC suggest not:

> priorb <- prior

> priorb[[2]] <- priorb[[2]][-2]

> m3a.2 <- MCMCglmm(tarsus ~ sex, random = ~dam, data = BTdata,

+ verbose = FALSE, prior = priorb)

> m3a.2$DIC

[1] 2014.195

> m3a.1$DIC

[1] 1992.541

The tarsus lengths were standardised prior to analysis - this is not recom-
mended, but was done in the original analyses of these data (Hadfield et al.,
2007) so that comparisons would be scale invariant. The original analyses were
done in REML where it is hard to get accurate confidence intervals for functions
of variance components. With MCMC procedures this is simple. For example
if we want to know what proportion of the total variance is explained by dams

> HPDinterval(m3a.1$VCV[, 1]/rowSums(m3a.1$VCV))

lower upper
var1 0.1772904 0.3516524
attr(,"Probability")
[1] 0.95

One nice thing though about standardised data is that effect sizes are im-
mediately apparent. For example, fixed effects are in standard deviation units
and the sex effects are non-trivial:

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 63

> summary(m3a.1)

Iterations = 3001:12991
Thinning interval = 10
Sample size = 1000

DIC: 1992.541

G-structure: ~dam

post.mean l-95% CI u-95% CI eff.samp
dam 0.2293 0.138 0.3245 1000

~fosternest

post.mean l-95% CI u-95% CI eff.samp
fosternest 0.06465 0.001049 0.1227 333.7

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.5731 0.5132 0.6367 822.9

Location effects: tarsus ~ sex

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -0.40612 -0.52516 -0.27356 1000 <0.001 ***
sexMale 0.76894 0.65010 0.87477 1000 <0.001 ***
sexUNK 0.20476 -0.02971 0.46530 1000 0.116

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Given that the sexes differ in their mean phenotype it may be worth exploring
whether they vary in other ways. For example, perhaps there are sex-limited
genes that mean that related brothers resemble each other more than they do
their sisters. Perhaps females are less sensitive to environmental variation? To
fit these models it will be necessary to understand how the variance functions,
such as us() and idh(), work. We could refit the model m3a.1 using the random
effect specifications:

> random = ~us(1):dam + us(1):fosternest

> random = ~idh(1):dam + idh(1):fosternest

and these would give exactly the same answer as the model specified as
∼dam+fosternest. The term inside the brackets is a model formula and is
interpreted exactly how you would interpret any R formula expect the inter-
cept is not fitted by default. These formula are therefore fitting an intercept

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 64

which is interacted with the random effects. For the dam terms we can get a
representation of the interaction for the first few levels of dam:

> levels(BTdata$dam)[1:5]

[1] "Fem2" "Fem20" "Fem3" "Fem5" "K983388"

Fem2 Fem20 Fem3 Fem5 K983388 . . .

(1) (1).Fem2 (1).Fem20 (1).Fem3 (1).Fem5 (1).K983388 . . .

Across the top, we have the original dam effects in red, and along the side
we have the term defined by the variance structure formula (just the intercept
in this case). The interaction forms a new set of factors. Although they have
different names from the original dam levels, it is clear that there is a one to
one mapping between the original and the new factor levels and the models are
therefore equivalent. For more complex interactions this is not the case.

We could also fit sex in the variance structure model, (i.e. us(sex):dam or
idh(sex):dam)1:

Fem2 Fem20 Fem3 Fem5 K983388 . . .

Fem Fem.Fem2 Fem.Fem20 Fem.Fem3 Fem.Fem5 Fem.K983388 . . .
Male Male.Fem2 Male.Fem20 Male.Fem3 Male.Fem5 Male.K983388 . . .
UNK UNK.Fem2 UNK.Fem20 UNK.Fem3 UNK.Fem5 UNK.K983388 . . .

which creates three times as many random factors, one associated with off-
spring of each sex for each each dam.

3.1 idh Variance Structure

The different variance functions make different assumptions about how the ef-
fects associated with these different factors are distributed. First, we may want
to allow the variance in the effects to be different for each row of factors; i.e.
does the identity of a chicks mother explain different amounts of variation de-
pending on the sex of the chick. We can fit this model using the idh function
and represent our belief in how the effects are distributed as a 3× 3 covariance
matrix V:

1Remember that a global intercept is not fitted by default for variance structure models,
and the model formula is essentially ∼sex-1. To add the global intercept, us(1+sex):dam

could be fitted but this can be harder to interpret because the effects are then Fem, Male-Fem
and UNK-Fem. If a us structure is fitted, the two models are equivalent reparameterisations of
each other although the priors have to be modified accordingly. This is not the case if the
variance function is idh. In this case the sex-specific variances are allowed to vary as before,
but a constant covariance equal to σ2

Fem is also assumed

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 65

Vdam =

 σ2
Female 0 0

0 σ2
Male 0

0 0 σ2
UNK

In the simpler models we had fitted in Chapters 1 and 2 V was a scalar

(V = σ2) rather than a matrix, and the prior specification was relatively simple.
We will come back to prior specifications for covariance matrices in Section 3.6.3,
but for now note that the prior for the dam component has V as a 3× 3 identity
matrix:

> priorb = list(R = list(V = diag(1), nu = 0.002), G = list(G1 = list(V = diag(3),

+ nu = 0.002), G2 = list(V = 1, nu = 0.002)))

> m3a.3 <- MCMCglmm(tarsus ~ sex, random = ~idh(sex):dam + fosternest,

+ data = BTdata, verbose = FALSE, prior = priorb)

The sex specific variances for males and females look pretty similar, but the
sex-specific variance for birds with unknown sex is not behaving well. This is
not that surprising given that there are only 47 birds with unknown sex and
these tend to be thinly spread across dams. This variance component is likely
to be dominated by the prior, but for now we’ll leave the model as it is and
come back to some possible alternative solutions later.

We can extract the marginal means for each variance and place them into a
matrix:

> Vdam.3 <- diag(colMeans(m3a.3$VCV)[1:3])

> colnames(Vdam.3) <- colnames(m3a.3$VCV)[1:3]

> Vdam.3

Fem.dam Male.dam UNK.dam
[1,] 0.1782858 0.0000000 0.00000000
[2,] 0.0000000 0.1712243 0.00000000
[3,] 0.0000000 0.0000000 0.05514687

Note, that they are in general less than the marginal mean of the dam
variance in model m3a.1 (0.229) where a sex interaction was not fitted. Because
the dam effects are assumed to be multivariate normal we can plot an ellipsoid
that completely represents their distribution (you can rotate the figure in R):

> plotsubspace(Vdam.3, axes.lab = TRUE)

If we had measured the offspring of a lot of dams, and for each dam we had
measured a very large number of offspring of each sex, then we could calculate
the average tarsus lengths within a nest for males, females and unknowns sep-
arately. If we produced a scatter plot of these means the data would have the
same shape as this ellipsoid and 95% of the data would lie inside.

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 66

4000 6000 8000 10000 12000

0.
05

0.
20

0.
35

Iterations

Trace of Fem.dam

0.0 0.1 0.2 0.3 0.4

0
2

4
6

N = 1000 Bandwidth = 0.01447

Density of Fem.dam

4000 6000 8000 10000 12000

0.
1

0.
3

Iterations

Trace of Male.dam

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

N = 1000 Bandwidth = 0.01409

Density of Male.dam

4000 6000 8000 10000 12000

0.
0

0.
4

0.
8

Iterations

Trace of UNK.dam

0.0 0.2 0.4 0.6 0.8

0
10

20
30

N = 1000 Bandwidth = 0.01232

Density of UNK.dam

Figure 3.2: MCMC summary plot for the sex-specific dam variance components
from model m3a.3. The number of chicks with unknown (UNK) sex is low, with
very little replication within dams. The posterior distribution for the UNK vari-
ance component is dominated by the prior which has a marginal distribution of
V=1 and nu=0.002.

3.2 us Variance Structure

The oddity of the model, and the meaning of the off-diagonal zeros, should
become apparent. We have assumed that the different sexes with in a nest are
independent. If we plotted the average tarsus lengths for males against the
average tarsus lengths for females for each dam this model implies we should
see no relationship. We can relax this assumption using the us function which
estimates the matrix:

Vdam =

 σ2
Female σFemale,Male σFemale,UNK

σFemale,Male σ2
Male σMale,UNK

σFemale,UNK σMale,UNK σ2
UNK

We will now use a prior for the covariance matrix where nu=4 (1 more than

the dimension of V) and the prior covariance matrix is an diagonal matrix with

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 67

0

0.5

-0.5

0.4
0.2

sexUNK.dam

0
-0.2

-0.4

0.5

sexFem.dam

0

-0.5

sexMale.dam

Figure 3.3: Ellipsoid that circumscribes 95% of the expected dam effects as
estimated in model m3a.3. This can be thought of as a scatter plot of the dam
effects between each sex, if the dam effects could be directly measured. Because
the covariances of the dam effects between the sexes were set to zero the axes
of the ellipsoids are all parallel to the figure axes.

small variances. This may seem surprising but the motivation is laid out in
Section 3.6.3:

> prior.m3a.4 = list(R = list(V = diag(1), nu = 0.002), G = list(G1 = list(V = diag(3) *

+ 0.02, nu = 4), G2 = list(V = 1, nu = 0.002)))

> m3a.4 <- MCMCglmm(tarsus ~ sex, random = ~us(sex):dam + fosternest,

+ data = BTdata, verbose = FALSE, prior = prior.m3a.4)

The posterior mean (co)variances for this model show that the covariances
are almost the same magnitude as the variances suggesting strong correlations:

> Vdam.4 <- matrix(colMeans(m3a.4$VCV)[1:9], 3, 3)

> colnames(Vdam.4) <- colnames(m3a.4$VCV)[1:3]

> Vdam.4

Fem:Fem.dam Male:Fem.dam UNK:Fem.dam
[1,] 0.2310396 0.2028935 0.2044394
[2,] 0.2028935 0.2170135 0.1978614
[3,] 0.2044394 0.1978614 0.2434057

The distribution of dam effects in this model looks substantially different
(Figure 3.4):

> plotsubspace(Vdam.4, axes.lab = TRUE, wire.frame = T)

Covariances can be hard to interpret, and I usually find correlations easier
to think about. They can also be useful for detecting problems in the chain.

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 68

-0.5

0

0.5

0.5

sexFem.dam.sexFem.dam

0 -0.5
sexUNK.dam.sexFem.dam

1
0.5

0
-0.5

-1

sexMale.dam.sexFem.dam

Figure 3.4: Ellipsoid that circumscribes 95% of the expected dam effects as
estimated in model m3a.4. This can be thought of as a scatter plot of the dam
effects between each sex, if the dam effects could be directly measured. The
correlations of the dam effects between the sexes were estimated and found to be
close to one, and the sex-specific variances were all roughly equal in magnitude.
Consequently the major axis of the ellipsoid lies at 45o to the figure axes.

In model m3a.1 the dam variance for chicks with unknown sex was behaving
badly and was getting ‘trapped’ at zero. When fitting a 2×2 covariance matrix
similar things can happen when correlations are close to -1 and 1, and this may
not be obvious from the marginal distribution of the covariances:

> plot(posterior.cor(m3a.4$VCV[, 1:9])[, c(2, 3, 7)])

All the correlations are very close to one, and the variances all pretty equal so
we’d probably consider the simpler model. We could try using DIC to compare
models, although given the different prior specifications for the two models it
is unclear whether this would be meaningful. However, the simpler model does
seem to have better support as intuition suggests:

> m3a.4$DIC

[1] 1996.747

> m3a.1$DIC

[1] 1992.541

3.3 Compound Variance Structures

There are also ways of specifying models that lie somewhere between the sim-
ple model (mBT), where dam effects are assumed to be equivalent across the

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 69

0 200 400 600 800 1000

0.
6

0.
8

Iterations

Trace of var1

0.6 0.7 0.8 0.9 1.0

0
4

8

N = 1000 Bandwidth = 0.01117

Density of var1

0 200 400 600 800 1000

−
0.

2
0.

4
1.

0

Iterations

Trace of var2

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

N = 1000 Bandwidth = 0.01658

Density of var2

0 200 400 600 800 1000

−
0.

2
0.

4
1.

0

Iterations

Trace of var3

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

N = 1000 Bandwidth = 0.01658

Density of var3

Figure 3.5: MCMC summary plot for the between sex correlations in dam effects
from model m3a.4.

sexes, and the most complex model (mBT2), where dam effects are allowed to
vary across the sexes and covary between the sexes to different degrees. Some
alternatives are listed in Table 3.1.

To be completed

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 70

l
m
e
r

M
C
M
C
g
l
m
m
/a
s
r
e
m
l

N
o.

P
ar

am
et

er
s

V
ar

ia
nc

e
C

or
re

la
ti

on

(
1
|
d
a
m
)

d
a
m

1

 V
V

V
V

V
V

V
V

V

 1

1
1

1
1

1
1

1
1

(
s
e
x
-
1
|
d
a
m
)

u
s
(
s
e
x
)
:
d
a
m

6

 V 1
,1

C
1
,2

C
1
,3

C
1
,2

V
2
,2

C
2
,3

C
1
,3

C
2
,3

V
3
,3

 1

r 1
,2

r 1
,3

r 1
,2

1
r 2
,3

r 1
,3

r 2
,3

1

(
1
|
s
e
x
:
d
a
m
)

s
e
x
:
d
a
m

1

 V
0

0
0

V
0

0
0

V

 1

0
0

0
1

0
0

0
1

(
1
|
d
a
m
)
+
(
1
|
s
e
x
:
d
a
m
)

d
a
m
+
s
e
x
:
d
a
m

2

 V 1
+
V

2
V

1
V

1

V
1

V
1

+
V

2
V

1

V
1

V
1

V
1

+
V

2

 1

r
r

r
1

r
r

r
1

-
i
d
h
(
s
e
x
)
:
d
a
m

3

 V 1
,1

0
0

0
V

2
,2

0
0

0
V

3
,3

 1

0
0

0
1

0
0

0
1

-
c
o
r
h
(
s
e
x
)
:
d
a
m

4

V

1
,1

rV
1
,1
V

2
,2

rV
1
,1
V

2
,2

rV
1
,1
V

2
,2

V
2
,2

rV
2
,2
V

2
,3

rV
1
,1
V

3
,3

rV
2
,2
V

3
,3

V
3
,3

 1

r
r

r
1

r
r

r
1

-
c
o
r
(
s
e
x
)
:
d
a
m

3

 1
r 1
,2

r 1
,3

r 1
,2

1
r 2
,3

r 1
,3

r 2
,3

1

 1

r 1
,2

r 1
,3

r 1
,2

1
r 2
,3

r 1
,3

r 2
,3

1

T
ab

le
3.

1:
D

iff
er

en
t

ra
nd

om
eff

ec
t

sp
ec

ifi
ca

ti
on

s
in

l
m
e
r
,
M
C
M
C
g
l
m
m

an
d
a
s
r
e
m
l
.

s
e
x

is
a

fa
ct

or
w

it
h

th
re

e
le

ve
ls

so
th

e
re

su
lt

in
g

m
at

ri
x

is
3
×

3.
C

on
ti

nu
ou

s
va

ri
ab

le
s

ca
n

al
so

go
on

th
e

L
H

S
of

th
e

pi
pe

,
or

w
it

hi
n

th
e

va
ri

an
ce

st
ru

ct
ur

e
fu

nc
ti

on
s

(e
.g

.
u
s
,i
d
h
).

In
th

is
ca

se
th

e
as

so
ci

at
ed

pa
ra

m
et

er
s

ar
e

re
gr

es
si

on
co

effi
ci

en
ts

fo
r

w
hi

ch
a

va
ri

an
ce

is
es

ti
m

at
ed

.
Fo

r
ex

am
pl

e,
if

th
e

ch
ic

ks
w

er
e

of
di

ffe
re

nt
ag

es
(o

r
w

e’
d

m
ea

su
re

d
th

e
sa

m
e

ch
ic

ks
at

di
ffe

re
nt

ag
es

)
w

e
m

ay
w

an
t

to
se

e
if

th
e

gr
ow

th
ra

te
is

m
or

e
si

m
ila

r
fo

r
ch

ic
ks

ra
is

ed
by

th
e

sa
m

e
m

ot
he

r.
(
1
+
a
g
e
|
d
a
m
)

or
u
s
(
1
+
a
g
e
)
:
d
a
m

es
ti

m
at

es
a

2
×

2
m

at
ri

x
w

hi
ch

in
cl

ud
es

th
e

va
ri

an
ce

in
in

te
rc

ep
ts

(w
he

n
a
g
e
=

0)
,

th
e

va
ri

an
ce

in
sl

op
es

,
an

d
th

e
co

va
ri

an
ce

th
at

ex
is

ts
be

tw
ee

n
th

em
.

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 71

3.4 Heterogenous Residual Variance

To be started... In short - if you’ve fitted a sex by dam interaction I would always
allow the sexes to have different residual variances. Use rcov=∼idh(sex):units.

3.5 Contrasts and Covariances

A general method for seeing what a particular random specification means in
terms of the original variables is to realise that

Σ = ZVZ
′

(3.1)

where Σ is the covariance matrix for the original set of variables and V the
variances associated with the variance structure model. Z is the random effect
design matrix. Equation 3.1 implies:

V = Z−1Σ(Z
′
)−1 (3.2)

or alternatively:

V = (ZZ
′
)−Z

′
ΣZ(Z

′
Z)− (3.3)

if Z is non-square and/or singular, where − is a generalised inverse.

3.6 Priors for Covariance Matrices

Priors for covariance matrices are tricky. What maybe non-informative for a
covariance may be informative for a correlation and vice versa.

3.6.1 Priors for us structures

A useful result is that the marginal distribution of a variance is also inverse -
Wishart distributed:

σ2
1 ∼ IW

(
nu∗=nu-dim(V)+1, V∗ =

nu

nu∗
V[1,1]

)
using the first variance as an example, and indicating the new parameters

with an asterisk.

An uninformative prior for the correlations is an improper prior with V=diag(dim(V))∗0
and nu=dim(V)+1. For the 3× 3 sex by dam covariance matrix in model m3a.4
we used a proper prior with V=diag(3)∗0.02 and nu=4 in the hope that this
would be relatively uninformative for the correlations. We can plot the marginal
density of the variances for this distribution as we did in Chapter 1:

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 72

> nu.ast <- prior.m3a.4GG1$nu - dim(prior.m3a.4$G$G1$V)[1] +

+ 1

> V.ast <- prior.m3a.4GG1$V[1, 1] * (prior.m3a.4$G$G1$nu/nu.ast)

> xv <- seq(1e-16, 1, length = 100)

> dv <- MCMCpack::dinvgamma(xv, shape = nu.ast/2, scale = (nu.ast *

+ V.ast)/2)

> plot(dv ~ xv, type = "l")

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

xv

dv

Figure 3.6: Marginal prior distribution of a variance using an inverse Wishart
prior for the covariance matrix with V=diag(3)*0.02 and nu=4.

In Chapter 2 we saw that a non-informative prior for a variance component
was V=0 and nu=-2. This result generalises to covariance matrices where the
improper prior V=diag(dim(V))∗0 and nu=dim(V)-3 is non-informative for the
variances and covariances. This can be verified for the variances using the results
derived above for the marginal distribution:

σ2
1 ∼ IW

(
nu∗=dim(V)-3-dim(V)+1, V∗ = nu

nu∗ 0
)

∼ IW (nu∗=-2, V∗ = 0)

CHAPTER 3. CATEGORICAL RANDOM INTERACTIONS 73

3.6.2 Priors for idh structures

For idh the diagonal elements of the matrix are independent and each variance
is distributed as2:

σ2
1 ∼ IW (nu∗=nu, V∗ = V[1,1])

3.6.3 Priors for cor structures

For cor structures I use the prior specification in Barnard et al. (2000). Here
the specification of V is redundant and nu controls how much the correlation
matrix approaches an identity matrix. The marginal distribution of individual
correlations (r) is given by Barnard et al. (2000) (and Box and Tiao, 1973):

Pr(r) ∝ (1− r2)
nu-dim(V)-1

2 , |r| < 1 (3.4)

and as shown above setting nu =dim(V)+1 results in marginal correlations
that are uniform on the interval [-1,1].

In most cases correlation matrices do not have known form and so cannot be
directly Gibbs sampled. MCMCglmm uses a method proposed by Liu and Daniels
(2006) with the target prior as in Barnard et al. (2000). Generally this algorithm
is very efficient as the Metropolis-Hastings acceptance probability only depends
on the degree to which the candidate prior and the target prior (the prior you
specify) conflict. The candidate prior is equivalent to the prior in Barnard et al.
(2000) with nu=0 so as long as a diffuse prior is set, mixing is generally not
a problem. If nu=0 is set (the default) then the Metropolis-Hastings steps are
always accepted resulting in Gibbs sampling. However, a prior of this form puts
high density on extreme correlations which can cause problems if the data give
support to correlations in this region.

2IMPORTANT: In versions < 2.05 priors on each variance of an idh structure were dis-
tributed as IW (nu∗=nu-dim(V)+1, V∗ = V[1,1]) but this was a source of confusion and was
changed.

Chapter 4

Continuous Random
Interactions

In Lecture 3 we saw how we could define a linear model within a variance
function and then interact these terms with a random effect. In the example,
we did this in order to fit a sex by dam interaction:

us(sex):dam

The term entering into the variance function model was categorical, and we
saw that by fitting the interaction we were essentially estimating the parameters
of the covariance matrix:

Vdam =

 σ2
Female σFemale,Male σFemale,UNK

σFemale,Male σ2
Male σMale,UNK

σFemale,UNK σMale,UNK σ2
UNK

We are also free to define the variance function model with continuous covari-

ates, or even a mixture of continuous and categorical factors, and the resulting
covariance matrix is interpreted in the same way.

4.1 Random Regression

As an example, we’ll use a longitudinal data set on chicken growth (See Figure
4.1):

> data(ChickWeight)

The data consist of body weights (weight) for 50 chicks (Chick) measured
up to 12 times over a 3 week period. The variable Time is the number of days
since hatching, and Diet is a four level factor indicating the type of protein diet
the chicks received.

74

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 75

Time

w
ei

gh
t

100
200
300

0 510 20

●●

18

●●●●●●●

16

0 510 20

●●●●●●●●

15

●●●●●●●●●●●●

13

0 510 20

●●●●●●●●●●●●

9

●●●●●●●●●●●●

20

0 510 20

●●●●●●●●●●●●

10

●●●●●●●●●●●

8
●●●●●●●●●●●●

17

●●●●●●●●●●●●

19

●●●●●●●●●●●●

4

●●●●●●●●●●●●

6

●●●●●●●●●●●●

11

●●●●●●●●●●●●

3

●●●●●●●●●●●●

1

100
200
300

●●●●●●●●●●●●

12
100
200
300

●●●●●●●●●●●●

2

●●●●●●●●●●●●

5

●●●●●●●●●●●●

14

●●●●●●●●
●●

●●

7

●●●●●●●●●●●●

24

●●●●●●●●●●●●

30

●●●●●●●●●●●●

22

●●●●●●●●●●●●

23
●●●●●●●●●●●●

27

●●●●●●●●●●●●

28

●●●●●●●●●●●●

26

●●●●●●●●●●●●

25

●●●●●●●●
●
●
●●

29

●●●●
●
●
●●●●●●

21

●●●●●●●●●●●●

33

100
200
300

●●●●●●●●●●●●

37
100
200
300

●●●●●●●●●●●●

36

●●●●●●●●●●●●

31

●●●●●●●●●
●●●

39

●●●●●●●●
●
●
●●

38

●●●●●●●●
●
●●●

32

●●●●●●●●●
●●●

40

●●●●●●●●
●
●●●

34

●●●●●●
●
●
●
●●●

35
●●●●●●●●●●

44

●●●●●●●●●●●●

45

●●●●●●●●●●●●

43

●●●●●●●●●●●●

41

●●●●●●●●●●●●

47

●●●●●●●●●●●●

49

●●●●●●●●●
●●●

46

100
200
300

●●●●●●●●●●●●

50
100
200
300

●●●●●●●●●●●●

42

0 510 20

●●●●●●●●
●
●
●●

48

Figure 4.1: Weight data of 50 chicks from hatching until three weeks old.

> xyplot(weight ~ Time | Chick, data = ChickWeight)

Growth curves tend to be sigmoidal and so one of the non-linear growth
curves such as the Gompertz or logistic may be a good starting model. However,
these can be tricky to use and an alternative is to try and capture the form of the
curve using polynomials. We’ll start with a quadratic function at the population
level and and fit chick as a random term:

> prior.m4a.1 <- list(R = list(V = 1e-16, n = -2), G = list(G1 = list(V = 1,

+ n = 1)))

> m4a.1 <- MCMCglmm(weight ~ Diet + poly(Time, 2, raw = TRUE),

+ random = ~Chick, data = ChickWeight, verbose = FALSE, pr = TRUE,

+ prior = prior.m4a.1, saveX = TRUE, saveZ = TRUE)

We’ve saved the random chick effects so we can plot the predicted growth
functions for each bird. For now we will just predict the growth function as-
suming that all birds were on Diet 1 (the intercept):

> pop.int <- posterior.mode(m4a.1$Sol[, 1])

> pop.slope <- posterior.mode(m4a.1$Sol[, 5])

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 76

> pop.quad <- posterior.mode(m4a.1$Sol[, 6])

> chick.int <- posterior.mode(m4a.1$Sol[, c(7:56)])

We need to combine these parameter estimates with the polynomials for
Time which are just the sequence Time0, Time1, Time2 . . . and so on. We can
then plot the population expected population growth curve, and around that
the predicted growth curves for each chick (we don’t need to bother with Time0

since this is always one):

0 5 10 15 20

0
10

0
20

0
30

0
40

0

pos.time

po
p.

in
t +

 p
op

.s
lo

pe
 *

 I(
po

s.
tim

e^
1)

 +
 p

op
.q

ua
d

*
I(

po
s.

tim
e^

2)

Figure 4.2: Predicted weights of each chick as a function of age. A quadratic
population growth curve (black) is fitted with random chick intercepts.

The population growth curve is slightly convex because of the quadratic
term, and the predictions for each chick are parallel to this curve. By fitting
chick as a random effect we have allowed variation in the intercept only, and
often this is not enough. We can get a feel for how well the model fits the data
by overlaying the predictions with actual values. In the call to MCMCglmm we
specified saveX=TRUE and saveZ=TRUE indicating that we wanted to save the
design matrices. We can combine these matrices into the design matrix W and
multiply by the parameter vector θ to get the predictions (See Eq. 2.9):

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 77

> W.1<-cBind(m4a.1$X, m4a.1$Z) # note X and Z are sparse so use cBind

> prediction.1<-W.1%*%posterior.mode(m4a.1$Sol)

> xyplot(weight+prediction.1@x~Time|Chick, data=ChickWeight)

Time

w
ei

gh
t +

 p
re

di
ct

io
n.

1@
x

0
100
200
300

0 510 20

●●●●

18

●●●●●●●
●●●●●●●

16

0 510 20

●●●●●●●●
●●●●●●●●

15

●●●●●●●●●●●●
●●●●●●●●●●●●

13

0 510 20

●●●●●●●●●●●●
●●●●●●●●●●●●

9

●●●●●●●●●●●●

●●●●●●●●●●●●

20

0 510 20

●●●●●●●●●●●●

●●●●●●●●●●●●

10

●●●●●●●●●●●
●●●●●●●●●●●

8
●●●●●●●●●●●●

●●●●●●●●●●●●

17

●●●●●●●●●●●●

●●●●●●●●●●●●

19

●●●●●●●●●●●●

●●●●●●●●●●●●

4

●●●●●●●●●●●●

●●●●●●●●●●●●

6

●●●●●●●●●●●●

●●●●●●●●●●●●

11

●●●●●●●●●●●●

●●●●●●●●●●●●

3

●●●●●●●●●●●●

●●●●●●●●●●●●

1

0
100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

12
0

100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

2

●●●●●●●●●●●●

●●●●●●●●●●●●

5

●●●●●●●●●●●●

●●●●●●●●●●●●

14

●●●●●●●●
●●●●

●●●●●●●●●●●●

7

●●●●●●●●●●●●
●●●●●●●●●●●●

24

●●●●●●●●●●●●

●●●●●●●●●●●●

30

●●●●●●●●●●●●

●●●●●●●●●●●●

22

●●●●●●●●●●●●

●●●●●●●●●●●●

23
●●●●●●●●●●●●

●●●●●●●●●●●●

27

●●●●●●●●●●●●

●●●●●●●●●●●●

28

●●●●●●●●●●●●

●●●●●●●●●●●●

26

●●●●●●●●●●●●

●●●●●●●●●●●●

25

●●●●●●●●●
●
●●

●●●●●●●●●●●●

29

●●●●●●
●●●●●●

●●●●●●●●●●●●

21

●●●●●●●●●●●●

●●●●●●●●●●●●

33

0
100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

37
0

100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

36

●●●●●●●●●●●●

●●●●●●●●●●●●

31

●●●●●●●●●
●●●

●●●●●●●●●●●●

39

●●●●●●●●●●
●●

●●●●●●●●●●●●

38

●●●●●●●●
●
●●●

●●●●●●●●●●●●

32

●●●●●●●●●
●●●

●●●●●●●●●●●●

40

●●●●●●●●
●
●●●

●●●●●●●●●●●●

34

●●●●●●
●●

●
●●●

●●●●●●●●●●●●

35
●●●●●●●●●●
●●●●●●●●●●

44

●●●●●●●●●●●●

●●●●●●●●●●●●

45

●●●●●●●●●●●●

●●●●●●●●●●●●

43

●●●●●●●●●●●●

●●●●●●●●●●●●

41

●●●●●●●●●●●●

●●●●●●●●●●●●

47

●●●●●●●●●●●●

●●●●●●●●●●●●

49

●●●●●●●●●●●●

●●●●●●●●●●●●

46

0
100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

50
0

100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

42

0 510 20

●●●●●●●●
●●

●●

●●●●●●●●●●●●

48

Figure 4.3: Weights of each chick as a function of age in blue, with the predicted
weights in purple. A quadratic population growth curve was fitted with random
chick intercepts.

The predictions don’t look that bad, but you will notice that for some chicks
(e.g. 13,19,34) the slope of the predicted growth seems either to shallow, or
too steep. To account for this we can start by fitting us(1+time):Chick. The
linear model inside the variance function has two parameters, an intercept (1)
and a regression slope associated with Time which define the set of interactions:

Chick1 Chick2 Chick3 . . .

(Intercept) (Intercept).Chick1 (Intercept).Chick2 (Intercept).Chick3 . . .
Time Time.Chick1 Time.Chick2 Time.Chick3 . . .

Each chick now has an intercept and a slope, and because we have used the
us function we are estimating the 2× 2 matrix:

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 78

VChick =

[
σ2
(Intercept) σ(Intercept),Time

σ(Intercept),Time σ2
Time

]

σ2
(Intercept) is the amount of variation in intercepts between chicks, and

σ2
Time is the amount of variation in the regression slopes between chicks. If

the idh function had been used the covariance would have been set to zero and
we could have interpreted variation in intercepts as variation in overall size,
and variation in slopes as variation in growth rate. However, there is often
covariance between intercepts and slopes and it is usually a good idea to use the
us function and estimate them (see Section 4.3). We shall do so:

> prior.m4a.2 <- list(R = list(V = 1e-16, nu = -2), G = list(G1 = list(V = diag(2),

+ nu = 2)))

> m4a.2 <- MCMCglmm(weight ~ Diet + poly(Time, 2, raw = TRUE),

+ random = ~us(1 + Time):Chick, data = ChickWeight, verbose = FALSE,

+ pr = TRUE, prior = prior.m4a.2, saveX = TRUE, saveZ = TRUE)

The traces look OKish for the chick (co)variance matrices (Figure 4.4) but
notice that the the estimate of intercept-slope correlation is close to the bound-
ary of parameter space (-1):

> int.slope.cor <- m4a.2$VCV[, 2]/sqrt(m4a.2$VCV[, 1] * m4a.2$VCV[,

+ 4])

> posterior.mode(int.slope.cor)

var1
-0.9767131

and shows strong autocorrelation

> autocorr(int.slope.cor)

, , 1

[,1]
Lag 0 1.000000000
Lag 10 0.213576035
Lag 50 0.002312814
Lag 100 -0.020849608
Lag 500 -0.095313496

and we should run it for longer in order to sample the posterior adequately.
For now we will carry on and obtain the predictions from the model we ran, but
using the perdict function rather than dong it ‘by hand’:

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 79

4000 6000 8000 10000 12000

50
Iterations

Trace of (Intercept):(Intercept).Chick

100 200 300 400

0.
00

0

N = 1000 Bandwidth = 10.71

Density of (Intercept):(Intercept).Chick

4000 6000 8000 10000 12000

−
10

0

Iterations

Trace of Time:(Intercept).Chick

−100 −80 −60 −40 −20

0.
00

N = 1000 Bandwidth = 2.784

Density of Time:(Intercept).Chick

4000 6000 8000 10000 12000

−
10

0

Iterations

Trace of (Intercept):Time.Chick

−100 −80 −60 −40 −20

0.
00

N = 1000 Bandwidth = 2.784

Density of (Intercept):Time.Chick

4000 6000 8000 10000 12000

10

Iterations

Trace of Time:Time.Chick

5 10 15 20 25 30

0.
00

N = 1000 Bandwidth = 0.7754

Density of Time:Time.Chick

Figure 4.4: MCMC summary plots for the chick covariance components from
model m4a.2. The lower and upper plots are the intercept and slope variance
components respectively, and the middle two plots are the intercept-slope co-
variance.

> xyplot(weight + predict(m4a.2, marginal = NULL) ~ Time | Chick,

+ data = ChickWeight)

and we can see that the fit is much better (See Figure 4.5). In theory we
could fit higher order random regressions (data and prior permitting) and use
something like DIC to choose which is the best compromise between the fit
of the model to the data and how many effective parameters were fitted. For
example we could go from the 1st order random regression to a 2nd order model:

> prior.m4a.3 <- list(R = list(V = 1, n = 0.002), G = list(G1 = list(V = diag(3),

+ n = 3)))

> m4a.3 <- MCMCglmm(weight ~ Diet + poly(Time, 2, raw = TRUE),

+ random = ~us(1 + poly(Time, 2, raw = TRUE)):Chick, data = ChickWeight,

+ verbose = FALSE, pr = TRUE, prior = prior.m4a.3, saveX = TRUE,

+ saveZ = TRUE)

and obtain the 3× 3 covariance matrix:

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 80

Time

w
ei

gh
t +

 p
re

di
ct

(m
4a

.2
, m

ar
gi

na
l =

 N
U

LL
)

0
100
200
300

0 510 20

●●●●

18

●●●●●●●●●●●●●●

16

0 510 20

●●●●●●●●●●●●●●●●

15

●●●●●●●●●●●●●●●●●●●●●●●●

13

0 510 20

●●●●●●●●●●●●
●●●●●●●●●●●●

9

●●●●●●●●●●●●
●●●●●●●●●●●●

20

0 510 20

●●●●●●●●●●●●
●●●●●●●●●●●●

10

●●●●●●●●●●●
●●●●●●●●●●●

8
●●●●●●●●●●●●
●●●●●●●●●●●●

17

●●●●●●●●●●●●

●●●●●●●●●●●●

19

●●●●●●●●●●●●

●●●●●●●●●●●●

4

●●●●●●●●●●●●

●●●●●●●●●●●●

6

●●●●●●●●●●●●

●●●●●●●●●●●●

11

●●●●●●●●●●●●

●●●●●●●●●●●●

3

●●●●●●●●●●●●

●●●●●●●●●●●●

1

0
100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

12
0

100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

2

●●●●●●●●●●●●

●●●●●●●●●●●●

5

●●●●●●●●●●●●

●●●●●●●●●●●●

14

●●●●●●●●
●●●●

●●●●●●●●●●●●

7

●●●●●●●●●●●●●●●●●●●●●●●●

24

●●●●●●●●●●●●

●●●●●●●●●●●●

30

●●●●●●●●●●●●

●●●●●●●●●●●●

22

●●●●●●●●●●●●

●●●●●●●●●●●●

23
●●●●●●●●●●●●

●●●●●●●●●●●●

27

●●●●●●●●●●●●

●●●●●●●●●●●●

28

●●●●●●●●●●●●

●●●●●●●●●●●●

26

●●●●●●●●●●●●

●●●●●●●●●●●●

25

●●●●●●●●●
●
●●

●●●●●●●●●●●●

29

●●●●●●
●●●●●●

●●●●●●●●●●●●

21

●●●●●●●●●●●●

●●●●●●●●●●●●

33

0
100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

37
0

100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

36

●●●●●●●●●●●●

●●●●●●●●●●●●

31

●●●●●●●●●
●●●

●●●●●●●●●●●●

39

●●●●●●●●●
●
●●

●●●●●●●●●●●●

38

●●●●●●●●
●
●●●

●●●●●●●●●●●●

32

●●●●●●●●●
●●●

●●●●●●●●●●●●

40

●●●●●●●●
●
●●●

●●●●●●●●●●●●

34

●●●●●●
●●

●
●●●

●●●●●●●●●●●●
35

●●●●●●●●●●
●●●●●●●●●●

44

●●●●●●●●●●●●

●●●●●●●●●●●●

45

●●●●●●●●●●●●

●●●●●●●●●●●●

43

●●●●●●●●●●●●

●●●●●●●●●●●●

41

●●●●●●●●●●●●

●●●●●●●●●●●●

47

●●●●●●●●●●●●

●●●●●●●●●●●●

49

●●●●●●●●●●●●

●●●●●●●●●●●●

46

0
100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

50
0

100
200
300

●●●●●●●●●●●●

●●●●●●●●●●●●

42

0 510 20

●●●●●●●●
●●

●●

●●●●●●●●●●●●

48

Figure 4.5: Weights of each chick as a function of age in blue, with the predicted
weights in purple. A quadratic population growth curve was fitted with a first
order random regression for chicks (i.e. a random intercept-slope model).

VChick =

 σ2
(Intercept) σ(Intercept),Time σ(Intercept),Time2

σ(Intercept),Time σ2
Time σTime,Time2

σ(Intercept),Time2 σTime,Time2 σ2

Time2

The model predicts the chick weights to an even better degree (See Figure

4.6)

> xyplot(weight + predict(m4a.3, marginal = NULL) ~ Time | Chick,

+ data = ChickWeight)

and the DIC has gone down, suggesting that the model is better:

> m4a.1$DIC

[1] 5525.669

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 81

Time

w
ei

gh
t +

 p
re

di
ct

(m
4a

.3
, m

ar
gi

na
l =

 N
U

LL
)

100
200
300
400

0 510 20

●●●●

18

●●●●●●●●●●●●●●

16

0 510 20

●●●●●●●●●●●●●●●●

15

●●●●●●●●●●●●
●●●●●●●●●●●●

13

0 510 20

●●●●●●●●●●●●
●●●●●●●●●●●●

9

●●●●●●●●●●●●
●●●●●●●●●●●●

20

0 510 20

●●●●●●●●●●●●
●●●●●●●●●●●●

10

●●●●●●●●●●●
●●●●●●●●●●●

8
●●●●●●●●●●●●

●●●●●●●●●●●●

17

●●●●●●●●●●●●

●●●●●●●●●●●●

19

●●●●●●●●●●●●

●●●●●●●●●●●●

4

●●●●●●●●●●●●

●●●●●●●●●●●●

6

●●●●●●●●●●●●

●●●●●●●●●●●●

11

●●●●●●●●●●●●

●●●●●●●●●●●●

3

●●●●●●●●●●●●

●●●●●●●●●●●●

1

100
200
300
400

●●●●●●●●●●●●

●●●●●●●●●●●●

12
100
200
300
400

●●●●●●●●●●●●

●●●●●●●●●●●●

2

●●●●●●●●●●●●

●●●●●●●●●●●●

5

●●●●●●●●●●●●

●●●●●●●●●●●●

14

●●●●●●●●
●●●●

●●●●●●●●●●
●●

7

●●●●●●●●●●●●●●●●●●●●●●●●

24

●●●●●●●●●●●●

●●●●●●●●●●●●

30

●●●●●●●●●●●●

●●●●●●●●●●●●

22

●●●●●●●●●●●●

●●●●●●●●●●●●

23
●●●●●●●●●●●●

●●●●●●●●●●●●

27

●●●●●●●●●●●●

●●●●●●●●●●●●

28

●●●●●●●●●●●●

●●●●●●●●●●●●

26

●●●●●●●●●●●●

●●●●●●●●●●●●

25

●●●●●●●●●
●
●●

●●●●●●●●●●
●●

29

●●●●●●
●●●●●●

●●●●●●●●●●●●

21

●●●●●●●●●●●●

●●●●●●●●●●●●

33

100
200
300
400

●●●●●●●●●●●●

●●●●●●●●●●●●

37
100
200
300
400

●●●●●●●●●●●●

●●●●●●●●●●●●

36

●●●●●●●●●●●●

●●●●●●●●●●●●

31

●●●●●●●●●
●●●

●●●●●●●●●●●●

39

●●●●●●●●●
●
●●

●●●●●●●●●●
●●

38

●●●●●●●●
●
●●●

●●●●●●●●●●●●

32

●●●●●●●●●
●●●

●●●●●●●●●●
●●

40

●●●●●●●●
●
●●●

●●●●●●●●●
●
●●

34

●●●●●●
●●

●
●●●

●●●●●●●●
●
●
●●

35
●●●●●●●●●●

●●●●●●●●●●

44

●●●●●●●●●●●●

●●●●●●●●●●●●

45

●●●●●●●●●●●●

●●●●●●●●●●●●

43

●●●●●●●●●●●●

●●●●●●●●●●●●

41

●●●●●●●●●●●●

●●●●●●●●●●●●

47

●●●●●●●●●●●●

●●●●●●●●●●●●

49

●●●●●●●●●●●●

●●●●●●●●●●●●

46

100
200
300
400

●●●●●●●●●●●●

●●●●●●●●●●●●

50
100
200
300
400

●●●●●●●●●●●●

●●●●●●●●●●●●

42

0 510 20

●●●●●●●●
●●

●●

●●●●●●●●●●
●●

48

Figure 4.6: Weights of each chick as a function of age in blue, with the predicted
weights in purple. A quadratic population growth curve was fitted with a sec-
ond order random regression for chicks (i.e. a random intercept-slope-quadratic
model).

> m4a.2$DIC

[1] 4544.62

> m4a.3$DIC

[1] 3932.942

It is worth seeing whether using an AIC measure using REML also suggests
the highest order model is the better model.

> library(lme4, warn.conflicts = FALSE)

> m5a.1.REML <- lmer(weight ~ Diet + poly(Time, 2, raw = TRUE) +

+ (1 | Chick), data = ChickWeight)

> summary(m5a.1.REML)@AICtab[1]

AIC
5578.963

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 82

> m5a.2.REML <- lmer(weight ~ Diet + poly(Time, 2, raw = TRUE) +

+ (poly(Time, 1, raw = TRUE) | Chick), data = ChickWeight)

> summary(m5a.2.REML)@AICtab[1]

AIC
4732.387

> m5a.3.REML <- lmer(weight ~ Diet + poly(Time, 2, raw = TRUE) +

+ (poly(Time, 2, raw = TRUE) | Chick), data = ChickWeight)

> summary(m5a.3.REML)@AICtab[1]

AIC
4274.606

> detach(package:lme4)

4.2 Expected Variances and Covariances

Random regression models make strong assumptions about how the variance
should change as a function of the predictor variable. Imagine that the inter-
cept variance was zero, such that all regressions give the same prediction when
Time=0. Imagine also that there was variance for slope, the predictions would
look something like this (Figure 4.7):

> slope <- rnorm(30)

> plot(0, type = "n", xlim = c(-1, 1), ylim = c(-3, 3), ylab = "y",

+ xlab = "Time")

> for (i in 1:30) {

+ lines(c(-1, 1), c(-slope[i], slope[i]))

+ }

with the variance increasing at extreme values of Time and being zero at
Time=0. For an intercept-slope model such as this the expected variance is
quadratic in the predictor, and for a intercept-slope-quadratic model the vari-
ance is cubic in the predictor. Generally the expected variance can be obtained
using:

V AR[y] = diag(ZVZ
′
)

and we can use this to predict the change in variance as a function of Time
for the three models:

> pos.time <- seq(0, 21, length = 100)

> polynomial <- leg(pos.time, 2, normalized = FALSE)

> beta.1 <- c(posterior.mode(m4a.1$Sol[, 1]), posterior.mode(m4a.1$Sol[,

+ 5]), posterior.mode(m4a.1$Sol[, 6]))

> beta.2 <- c(posterior.mode(m4a.2$Sol[, 1]), posterior.mode(m4a.2$Sol[,

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 83

−1.0 −0.5 0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

Time

y

Figure 4.7: Hypothetical regression lines where the variance in slopes is one but
the variance in intercepts is zero. The expected variance of y is a quadratic
function of Time, being zero when Time=0, and increasing with positive or
negative values.

+ 5]), posterior.mode(m4a.2$Sol[, 6]))

> beta.3 <- c(posterior.mode(m4a.3$Sol[, 1]), posterior.mode(m4a.3$Sol[,

+ 5]), posterior.mode(m4a.3$Sol[, 6]))

> VCV.1 <- matrix(posterior.mode(m4a.1$VCV)[1], 1, 1)

> VCV.2 <- matrix(posterior.mode(m4a.2$VCV)[1:(2^2)], 2, 2)

> VCV.3 <- matrix(posterior.mode(m4a.3$VCV)[1:(3^2)], 3, 3)

> units.1 <- posterior.mode(m4a.1$VCV)[2]

> units.2 <- posterior.mode(m4a.2$VCV)[5]

> units.3 <- posterior.mode(m4a.3$VCV)[10]

> plot(weight ~ Time, data = ChickWeight, cex.lab = 1.5)

> mu.1 <- polynomial %*% beta.1

> sd.1 <- sqrt(units.1 + diag(polynomial[, 1, drop = FALSE] %*%

+ VCV.1 %*% t(polynomial[, 1, drop = FALSE])))

> lines(mu.1 ~ pos.time, lwd = 2)

> lines(I(mu.1 + 1.96 * sd.1) ~ pos.time, lty = 2, lwd = 2)

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 84

> lines(I(mu.1 - 1.96 * sd.1) ~ pos.time, lty = 2, lwd = 2)

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
● ● ●

● ● ●

● ●
●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

● ● ● ●
●

● ●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●
●

●
●

●

●

●

●

●
●

● ●
●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

0 5 10 15 20

50
10

0
15

0
20

0
25

0
30

0
35

0

Time

w
ei

gh
t

Figure 4.8: Chick weights plotted as a function of time. 95% of the data are
expected to fall within the dashed lines assuming the model with random inter-
cepts is the correct model, and the diet treatments have small effects.

The simple model, without a slope term has constant variance across the
range, and is clearly inconsistent with the data (Figure 4.8). The second model
on the other hand

> plot(weight ~ Time, data = ChickWeight, cex.lab = 1.5)

> mu.2 <- polynomial %*% beta.2

> sd.2 <- sqrt(units.2 + diag(polynomial[, 1:2, drop = FALSE] %*%

+ VCV.2 %*% t(polynomial[, 1:2, drop = FALSE])))

> lines(mu.2 ~ pos.time, lwd = 2)

> lines(I(mu.2 + 1.96 * sd.2) ~ pos.time, lty = 2, lwd = 2)

> lines(I(mu.2 - 1.96 * sd.2) ~ pos.time, lty = 2, lwd = 2)

has an expected variance structure reasonably close to that observed (Figure
4.9). The highest order model, which was the best using information criteria
such as AIC an DIC, also does badly (Figure 4.10):

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 85

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●
● ●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
● ● ●

● ● ●

● ●
●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

● ● ● ●
●

● ●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●
●

●
●

●

●

●

●

●
●

● ●
●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

0 5 10 15 20

50
10

0
15

0
20

0
25

0
30

0
35

0

Time

w
ei

gh
t

Figure 4.9: Chick weights plotted as a function of time. 95% of the data are
expected to fall within the dashed lines assuming the model with random in-
tercepts and slopes is the correct model, and the diet treatments have small
effects.

> plot(weight ~ Time, data = ChickWeight, ylim = c(-150, 600),

+ cex.lab = 1.5)

> mu.3 <- polynomial %*% beta.3

> sd.3 <- sqrt(units.3 + diag(polynomial[, 1:3, drop = FALSE] %*%

+ VCV.3 %*% t(polynomial[, 1:3, drop = FALSE])))

> lines(mu.3 ~ pos.time, lwd = 2)

> lines(I(mu.3 + 1.96 * sd.3) ~ pos.time, lty = 2, lwd = 2)

> lines(I(mu.3 - 1.96 * sd.3) ~ pos.time, lty = 2, lwd = 2)

In general, I would not draw conclusions about changes in variance from
random regression models (Pletcher and Geyer, 1999).

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 86

● ● ● ●
●

●
●

●
●

●

● ●

● ● ●
●

●
●

●
●

●

●
● ●

● ●
●

●
●

●
●

●

●
●

● ●

● ● ●
● ●

●
● ●

●
● ● ●

● ● ●
●

●

●

●
●

● ●
● ●

● ●
●

●
●

●
● ● ● ● ● ●

● ● ●
●

●
●

●

●

●

●

●
●

● ●
●

●
● ●

● ●
● ● ●

● ● ● ●
●

● ● ● ● ● ● ●

● ● ●
●

● ● ● ● ●
● ● ●

● ●
●

●

●

●

● ● ● ● ● ●

● ● ● ●
●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ●
●

● ●

● ●
●

●
●

●

●

●

●
●

● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

●
●

● ● ● ●
●

●
● ●

● ●● ● ● ● ● ●
● ●

●
●

●
●

● ● ● ● ● ● ●
● ● ● ● ●

●
●

●
●

●

●

●
●

●

●
●

●

●
● ●

●
● ●

● ●
●

●
● ●

● ● ●
●

●
●

● ●
●

● ● ●

●
● ●

● ● ● ● ● ● ● ● ●

● ●
●

●
●

●
●

●

●

●

● ●

● ● ●
●

●
●

●
●

●

●

●
●

● ●
●

●
●

●
● ●

●
●

● ●

● ●
●

●
●

●

●
●

●
● ●

●

● ●
●

●
●

●

●
●

●

●

●

●

● ●
●

●
●

●
● ●

● ● ● ●

●
● ●

●
●

●
●

●

●

●

●
●

● ●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

● ● ● ●
● ●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●

● ● ●

● ● ●
●

● ●
● ●

●
●

● ●

● ●
●

●
●

●
●

●

●

●

●
●

● ●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

● ●
● ●

● ●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ● ● ● ● ●

● ●
●

●
●

● ●
● ● ●

● ●
●

●
●

●
● ● ●

●
● ●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

● ●
●

●

● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●

●

● ●

0 5 10 15 20

0
20

0
40

0
60

0

Time

w
ei

gh
t

Figure 4.10: Chick weights plotted as a function of time. 95% of the data are
expected to fall within the dashed lines assuming the model with random inter-
cepts, slopes and quadratic effects is the correct model, and the diet treatments
have small effects.

4.3 us versus idh and mean centering

bad
reparametersitaion

> prior.m4b.1 <- list(R = list(V = 1e-16, nu = -2), G = list(G1 = list(V = diag(2),

+ nu = 2)))

> m4b.1 <- MCMCglmm(weight ~ Diet + poly(Time, 2, raw = TRUE),

+ random = ~us(1 + I(Time - 3)):Chick, data = ChickWeight,

+ verbose = FALSE, pr = TRUE, prior = prior.m4b.1, saveX = TRUE,

+ saveZ = TRUE)

CHAPTER 4. CONTINUOUS RANDOM INTERACTIONS 87

4.4 Meta-analysis

Random intercept-slope models implicitly assume that the variance changes as a
quadratic function of the predictor. This can be used to our advantage because
it allows us to fit meta-analytic models. In meta-analysis the data are usually
some standardised statistic which has been estimated with different levels of
measurement error. If we wanted to know the expected value of these statistics
we would want to weight our answer to those measurements made with the
smallest amount of error. If we assume that measurement error around the true
value is normally distributed then we could assume the model:

yi = β1 +mi + ei (4.1)

where β1 is the expected value, mi is some deviation due to measurement
error, and ei is the deviation of the statistic from the global intercept not due to
measurement error. Some types of meta-analysis presume ei does not exist and
that the only variation between studies is due to measurement error. This is not
realistic, I think. Often, standard errors are reported in the literature, and these
can be viewed as an approximation to the expected standard deviation of the
measurement error. If we put the standard errors for each statistic as a column
in the data frame (and call it SE) then the random term idh(SE):units defines
a diagonal matrix with the standard errors on the diagonal. Using results from
Equation 4.2

VAR[m] = ZVZ
′

= Zσ2
mIZ

′

= σ2
mZZ

′
(4.2)

fixing σ2
m = 1 in the prior, the expected variance in the measurement er-

rors are therefore the standard errors squared (the sampling variance) and all
measurement errors are assumed to be independent of each other. The random
regression therefore fits a random effect meta-analysis.

4.5 Splines

blah blah

> random = ~idv(spl(covariate))

fits a penalised thin-plate spline,

> random = ~idv(smspline(covariate))

fits a penalised cubic spline. The coefficients are random effects, stored in
the Sol element of the model output and the single variance component (the
penalising bit) is in the VCV element. Its usually a good idea to scale the covariate
to lie in the interval [0,1] or some such thing.

Chapter 5

Multi-response models

So far we have only fitted models to a single response variable. Multi-response
models are not that widely used, except perhaps in quantitative genetics, and
deserve wider use. They allow some of the assumptions of single response models
to be relaxed and can be an effective way of dealing with missing data problems.

5.1 Relaxing the univariate assumptions of causal-
ity

Imagine we knew how much money 200 people had spent on their holiday and
on their car in each of four years, and we want to know whether a relationship
exists between the two. A simple correlation would be one possibility, but then
how do we control for the repeated measures? An often used solution to this
problem is to choose one variable as the response (lets say the amount spent on
a car) and have the other variable as a fixed covariate (the amount spent on a
holiday). The choice is essentially arbitrary, highlighting the belief that any re-
lationship between the two types of spending maybe in part due to unmeasured
variables, rather than being completely causal.

In practice does this matter? Lets imagine there was only one unmeasured
variable: disposable income. There are repeatable differences between individu-
als in their disposable income, but also some variation within individuals across
the four years. Likewise, people vary in what proportion of their disposable
income they are willing to spend on a holiday versus a car, but this also changes
from year to year. We can simulate some toy data to get a feel for the issues:

> id<-gl(200,4) # 200 people recorded four times

> av_wealth<-rlnorm(200, 0, 1)

> ac_wealth<-av_wealth[id]+rlnorm(800, 0, 1)

> # expected disposable incomes + some year to year variation

>

88

CHAPTER 5. MULTI-RESPONSE MODELS 89

> av_ratio<-rbeta(200,10,10)

> ac_ratio<-rbeta(800, 2*(av_ratio[id]), 2*(1-av_ratio[id]))

> # expected proportion spent on car + some year to year variation

>

> y.car<-(ac_wealth*ac_ratio)^0.25 # disposable income * proportion spent on car

> y.hol<-(ac_wealth*(1-ac_ratio))^0.25 # disposable income * proportion spent on holiday

> Spending<-data.frame(y.hol=y.hol, y.car=y.car, id=id)

A simple regression suggests the two types of spending are negatively related
but the association is weak with the R2 = 0.026.

> summary(lm(y.car ~ y.hol, data = Spending))

Call:
lm(formula = y.car ~ y.hol, data = Spending)

Residuals:
Min 1Q Median 3Q Max

-0.84680 -0.18109 0.00306 0.18174 0.96048

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.15186 0.03864 29.809 < 2e-16 ***
y.hol -0.16784 0.03668 -4.576 5.49e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2975 on 798 degrees of freedom
Multiple R-squared: 0.02557, Adjusted R-squared: 0.02435
F-statistic: 20.94 on 1 and 798 DF, p-value: 5.49e-06

With id added as a random term to deal with the the repeated measures, a
similar conclusion is reached although the estimate is more negative:

> m5a.1 <- MCMCglmm(y.car ~ y.hol, random = ~id, data = Spending,

+ verbose = FALSE)

> summary(m5a.1$Sol[, "y.hol"])

Iterations = 3001:12991
Thinning interval = 10
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE

CHAPTER 5. MULTI-RESPONSE MODELS 90

-0.227195 0.038001 0.001202 0.001052

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
-0.3003 -0.2517 -0.2276 -0.2024 -0.1519

We may be inclined to stop there, but lets proceed with a multi-response
model of the problem. The two responses are passed as a matrix using cbind(),
and the rows of this matrix are indexed by the reserved variable units, and the
columns by the reserved variable trait.

It is useful to think of a new data frame where the response variables have
been stacked column-wise and the other predictors duplicated accordingly. Be-
low is the original data frame on the left (Spending) and the stacked data frame
on the right:

y.hol y.car id
1 1.546097 0.863953 1
2 0.848580 1.246807 1
...

...
...

800 0.737174 0.992691 200

=⇒

y trait id units
1 1.546097 y.hol 1 1
2 0.848580 y.hol 1 2
...

...
...

...
800 0.737174 y.hol 200 800
801 0.863953 y.car 1 1
802 1.246807 y.car 1 2

...
...

...
...

1600 0.992691 y.car 200 800

From this we can see that fitting a multi-response model is a direct extension
to how we fitted models with categorical random interactions (Chapter 3):

> m5a.2 <- MCMCglmm(cbind(y.hol, y.car) ~ trait - 1, random = ~us(trait):id,

+ rcov = ~us(trait):units, data = Spending, family = c("gaussian",

+ "gaussian"), verbose = FALSE)

We have fitted the fixed effect trait so that the two types of spending can
have different intercepts. I usually suppress the intercept (-1) for these types
of models so the second coefficient is not the difference between the intercept
for the first level of trait (y.hol) and the second level (y.car) but the actual
trait specific intercepts. In other words the design matrix for the fixed effects
has the form:

CHAPTER 5. MULTI-RESPONSE MODELS 91

trait[1]=="y.hol" trait[1]=="y.car"
trait[2]=="y.hol" trait[2]=="y.car"

...
...

trait[800]=="y.hol" trait[800]=="y.car"
trait[801]=="y.hol" trait[801]=="y.car"
trait[802]=="y.hol" trait[802]=="y.car"

...
...

trait[1600]=="y.hol" trait[1600]=="y.car"

=

1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1

A 2 × 2 covariance matrix is estimated for the random term where the di-

agonal elements are the variance in consistent individual effects for each type
of spending. The off-diagonal is the covariance between these effects which if
positive suggests that people that consistently spend more on their holidays
consistently spend more on their cars. A 2×2 residual covariance matrix is also
fitted. In Section 3.4 we fitted heterogeneous error models using idh():units
which made sense in this case because each level of unit was specific to a par-
ticular datum and so any covariances could not be estimated. In multi-response
models this is not the case because both traits have often been measured on the
same observational unit and so the covariance can be measured. In the context
of this example a positive covariance would indicate that in those years an in-
dividual spent a lot on their car they also spent a lot on their holiday.

A univariate regression is defined as the covariance between the response
and the predictor divided by the variance in the predictor. We can therefore
estimate a regression coefficient for these two levels of random variation, and
compare them with the regression coefficient we obtained in the simpler model:

> id.regression <- m5a.2$VCV[, 2]/m5a.2$VCV[, 1]

> units.regression <- m5a.2$VCV[, 6]/m5a.2$VCV[, 5]

> plot(mcmc.list(m5a.1$Sol[, "y.hol"], id.regression, units.regression),

+ density = FALSE)

The regression coefficients (see Figure 5.1) differ substantially at the within
individual (green) and between individual (red) levels, and neither is entirely
consistent with the regression coefficient from the univariate model (black). The
process by which we generated the data gives rise to this phenomenon - large
variation between individuals in their disposable income means that people who
are able to spend a lot on their holiday can also afford to spend a lot on their
holidays (hence positive covariation between id effects). However, a person that
spent a large proportion of their disposable income in a particular year on a hol-
iday, must have less to spend that year on a car (hence negative residual (within
year) covariation).

CHAPTER 5. MULTI-RESPONSE MODELS 92

4000 6000 8000 10000 12000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Iterations

univariate regression

id regression

units regression

Figure 5.1: MCMC summary plot of the coefficient from a regression of car
spending on holiday spending in black. The red and green traces are from a
model where the regression coefficient is estimated at two levels: within an
individual (green) and across individuals (red). The relationship between the
two types of spending is in part mediating by a third unmeasured variable,
disposable income.

When fitting the simpler univariate model we make the assumption that the
effect of spending money on a car directly effects how much you spend on a
holiday. If this relationship was purely causal then all regression coefficients
would have the same expectation, and the simpler model would be justified.

For example, we could set up a simpler model where two thirds of the varia-
tion in holiday expenditure is due to between individual differences, and holiday
expenditure directly affects how much an individual will spend on their car (us-
ing a regression coefficient of -0.3). The variation in car expenditure not caused
by holiday expenditure is also due to individual differences, but in this case they
only explain a third of the variance.

> Spending$y.hol2 <- rnorm(200, 0, sqrt(2))[Spending$id] + rnorm(800,

+ 0, sqrt(1))

CHAPTER 5. MULTI-RESPONSE MODELS 93

> Spending$y.car2 <- Spending$y.hol2 * -0.3 + rnorm(200, 0, sqrt(1))[Spending$id] +

+ rnorm(800, 0, sqrt(2))

We can fit the univariate and multivariate models to these data, and compare
the regression coefficients as we did before. Figure 5.2 shows that the regression
coefficients are all very similar and a value of -0.3 has a reasonably high posterior
probability. However, it should be noted that the posterior standard deviation is
smaller in the simpler model because the more strict assumptions have allowed
us to pool information across the two levels to get a more precise answer.

4000 6000 8000 10000 12000

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

Iterations

Posterior Standard Deviation
univariate regression = 0.040

id regression = 0.064
units regression = 0.055

Figure 5.2: MCMC summary plot of the coefficient from a regression of car
spending on holiday spending in black. The red and green traces are from a
model where the regression coefficient is estimated at two levels: within an in-
dividual (green) and across individuals (red). In this model the relationship
between the two types of spending is causal and the regression coefficients have
the same expectation. However, the posterior standard deviation from the sim-
ple regression is smaller because information from the two different levels is
pooled.

CHAPTER 5. MULTI-RESPONSE MODELS 94

5.2 Multinomial Models

Multinomial models are difficult - both to fit and interpret. This is particu-
larly true when each unit of observation only has a single realisation from the
multinomial. In these instances the data can be expressed as a single vector of
factors, and the family argument can be specified as categorical. To illustrate,
using a very simple example, we’ll use data collected on 666 Soay sheep from
the island of Hirta in the St. Kilda archipelago (Clutton-Brock and Pemberton,
2004, Table A2.5).

> data(SShorns)

> head(SShorns)

id horn sex
1 1 scurred female
2 2 scurred female
3 3 scurred female
4 4 scurred female
5 5 polled female
6 6 polled female

The sex and horn morph were recorded for each individual, giving the con-
tingency table:

> Ctable <- table(SShorns$horn, SShorns$sex)

> Ctable

female male
normal 83 352
polled 65 0
scurred 96 70

and we’ll see if the frequencies of the three horn types differ, and if the trait
is sex dependent. The usual way to do this would be to use a Chi square test,
and to address the first question we could add the counts of the two sexes:

> chisq.test(rowSums(Ctable))

Chi-squared test for given probabilities

data: rowSums(Ctable)
X-squared = 329.5225, df = 2, p-value < 2.2e-16

which strongly suggests the three morphs differ in frequency. We could then
ask whether the frequencies differ by sex:

> chisq.test(Ctable)

CHAPTER 5. MULTI-RESPONSE MODELS 95

Pearson's Chi-squared test

data: Ctable
X-squared = 202.2962, df = 2, p-value < 2.2e-16

which again they do, which is not that surprising since the trait is partly sex
limited, with males not expressing the polled phenotype.

If there were only two horn types, polled and normal for example, then we
could have considered transforming the data into the binary variable polled or
not? and analysing using a glm with sex as a predictor. In doing this we have
reduced the dimension of the data from J = 2 categories to a single (J − 1 = 1)
contrast. The motivation for the dimension reduction is obvious; if being a
male increased the probability of expressing normal horns by 10%, it must by
necessity reduce the probability of expressing polled horn type by 10%, because
an individual cannot express both horn types simultaneously. The dimension
reduction essentially constrains the probability of expressing either horn type
to unity:

Pr(horn[i] = normal) + Pr(horn[i] = polled) = 1 (5.1)

These concepts can be directly translated into situations with more than two
categories where the unit sum constraint has the general form:

J∑
k=1

Pr(yi = k) = 1 (5.2)

For binary data we designated one category to be the success (polled) and
one category to be the failure (normal) which we will call the baseline category.
The latent variable in this case was the log-odds ratio of succeeding versus
failing:

li = log
(
Pr(horn[i] = polled)
Pr(horn[i] = normal)

)
= logit (Pr(horn[i] = polled)) (5.3)

With more than two categories we need to have J−1 latent variables, which
in the original horn type example are:

li,polled = log
(
Pr(horn[i] = polled)
Pr(horn[i] = normal)

)
(5.4)

and

li,scurred = log
(
Pr(horn[i] = scurred)
Pr(horn[i] = normal)

)
(5.5)

CHAPTER 5. MULTI-RESPONSE MODELS 96

The two latent variables are indexed as trait, and the unit of observation
(i) as units, as in multi-response models. As with binary models the residual
variance is not identified, and can be set to any arbitrary value. For reasons
that will become clearer later I like to work with the residual covariance matrix
1
J (I + J) where I and J are J − 1 dimensional identity and unit matrices, re-
spectively.

To start we will try a simple model with an intercept:

> IJ <- (1/3) * (diag(2) + matrix(1, 2, 2))

> prior = list(R = list(V = IJ, fix = 1))

> m5c.1 <- MCMCglmm(horn ~ trait - 1, rcov = ~us(trait):units,

+ prior = prior, data = SShorns, family = "categorical", verbose = FALSE)

The posterior distribution for the intercepts is shown in Figure 5.3, and the
model clearly needs to be run for longer (Figure 5.3). However...

4000 8000 12000

−
2.

6
−

2.
2

−
1.

8

Iterations

Trace of traithorn.polled

−2.8 −2.4 −2.0 −1.6

0.
0

1.
0

2.
0

3.
0

N = 1000 Bandwidth = 0.03507

Density of traithorn.polled

4000 8000 12000

−
1.

4
−

1.
2

−
1.

0
−

0.
8

Iterations

Trace of traithorn.scurred

−1.4 −1.2 −1.0 −0.8

0
1

2
3

4

N = 1000 Bandwidth = 0.02573

Density of traithorn.scurred

Figure 5.3: Posterior distribution of fixed effects from model m5c.1: a simple
multinomial logit model with intercepts only

CHAPTER 5. MULTI-RESPONSE MODELS 97

The problem can also be represented using the contrast matrix ∆ (Bunch,
1991):

∆ =

 −1 −1
1 0
0 1

 (5.6)

where the rows correspond to the factor levels (normal, polled and scurred)
and the columns to the two latent variables. For example column one corre-
sponds to li,polled which on the log scale is Pr(horn[i] = polled)−Pr(horn[i] =
normal).

exp
(

(∆∆
′
)−1∆li

)
∝ E

 Pr(horn[i] = normal)
Pr(horn[i] = polled)
Pr(horn[i] = scurred)

 (5.7)

The residual and any random effect covariance matrices are for estimability
purposes estimated on the J − 1 space with V = ∆

′
Ṽ∆ where Ṽ is the co-

variance matrix estimated on the J − 1 space. To illustrate, we will rescale the
intercepts as if the residual covariance matrix was zero (see Sections and) and
predict the expected probability for each horn type:

> Delta <- cbind(c(-1, 1, 0), c(-1, 0, 1))

> c2 <- (16 * sqrt(3)/(15 * pi))^2

> D <- ginv(Delta %*% t(Delta)) %*% Delta

> Int <- t(apply(m5c.1$Sol, 1, function(x) {

+ D %*% (x/sqrt(1 + c2 * diag(IJ)))

+ }))

> summary(mcmc(exp(Int)/rowSums(exp(Int))))

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
[1,] 0.65296 0.01800 0.0005691 0.001871
[2,] 0.09992 0.01109 0.0003508 0.001439
[3,] 0.24712 0.01626 0.0005143 0.001660

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
var1 0.61730 0.64107 0.6536 0.6649 0.6872

CHAPTER 5. MULTI-RESPONSE MODELS 98

var2 0.07643 0.09303 0.1002 0.1073 0.1210
var3 0.21683 0.23680 0.2465 0.2578 0.2800

which agrees well with those observed:

> prop.table(rowSums(Ctable))

normal polled scurred
0.6531532 0.0975976 0.2492492

To test for the effects of sex specific expression we can also fit a model with
a sex effect:

> m5c.2 <- MCMCglmm(horn ~ trait + sex - 1, rcov = ~us(trait):units,

+ data = SShorns, family = "categorical", prior = prior, verbose = FALSE)

In this case we have not interacted sex with trait, and so we are estimating
the difference between the sexes in their expression of normal and polled+scurred
jointly. The posterior distribution is plotted in Figure 5.4 and clearly shows that
males are more likely to express the normal horn phenotype than females.

A more general model would be to estimate separate probabilities for each
cell, but the contingency table indicates that one cell (polled males) has zero
counts which will cause extreme separation problems. We could choose to have
a better prior for the fixed effects, that is close to being flat for the two-way (i.e.
polled vs scurred, normal vs.scurred & polled vs. normal) marginal probabilities
within each sex:

> prior$B = list(mu = rep(0, 4), V = kronecker(IJ, diag(2)) * (1.7 +

+ pi^2/3))

> m5c.3 <- MCMCglmm(horn ~ at.level(sex, 1):trait + at.level(sex,

+ 2):trait - 1, rcov = ~us(trait):units, data = SShorns, family = "categorical",

+ prior = prior, verbose = FALSE)

The female specific probabilities appear reasonable:

> Int <- t(apply(m5c.3$Sol[, 1:2], 1, function(x) {

+ D %*% (x/sqrt(1 + c2 * diag(IJ)))

+ }))

> summary(mcmc(exp(Int)/rowSums(exp(Int))))

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

CHAPTER 5. MULTI-RESPONSE MODELS 99

4000 6000 8000 10000 12000

−
1.

4
−

0.
8

−
0.

2

Iterations

Trace of traithorn.polled

−1.5 −1.0 −0.5 0.0

0.
0

1.
0

2.
0

N = 1000 Bandwidth = 0.05058

Density of traithorn.polled

4000 6000 8000 10000 12000

0.
0

0.
4

0.
8

Iterations

Trace of traithorn.scurred

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

N = 1000 Bandwidth = 0.04292

Density of traithorn.scurred

4000 6000 8000 10000 12000

−
3.

0
−

2.
4

−
1.

8

Iterations

Trace of sexmale

−3.0 −2.5 −2.0

0.
0

1.
0

N = 1000 Bandwidth = 0.05832

Density of sexmale

Figure 5.4: Posterior distribution of fixed effects from model m5c.2 in which a
main effect of sex was included

Mean SD Naive SE Time-series SE
[1,] 0.3488 0.03183 0.0010067 0.003566
[2,] 0.2610 0.02791 0.0008827 0.003023
[3,] 0.3903 0.03104 0.0009816 0.003958

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
var1 0.2853 0.3274 0.3494 0.3708 0.4072
var2 0.2107 0.2405 0.2591 0.2798 0.3219
var3 0.3320 0.3688 0.3890 0.4108 0.4542

compared to the observed frequencies:

> prop.table(Ctable[, 1])

normal polled scurred
0.3401639 0.2663934 0.3934426

CHAPTER 5. MULTI-RESPONSE MODELS 100

as do the male probabilities:

> Int <- t(apply(cbind(m5c.3$Sol[, 3:4]), 1, function(x) {

+ D %*% (x/sqrt(1 + c2 * diag(IJ)))

+ }))

> summary(mcmc(exp(Int)/rowSums(exp(Int))))

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
[1,] 0.829098 0.018842 5.958e-04 0.0022915
[2,] 0.004747 0.002500 7.904e-05 0.0003109
[3,] 0.166155 0.018429 5.828e-04 0.0022339

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
var1 0.791170 0.816698 0.828961 0.842545 0.86381
var2 0.001683 0.002902 0.004118 0.005874 0.01073
var3 0.133267 0.152669 0.165986 0.178549 0.20210

compared to the observed frequencies:

> prop.table(Ctable[, 2])

normal polled scurred
0.8341232 0.0000000 0.1658768

5.3 Zero-inflated Models

Each datum in a zero-inflated model is associated with two latent variables. The
first latent variable is associated with the named distribution and the second
latent variable is associated with zero inflation. I’ll work through a zero-inflated
Poisson (ZIP) model to make things clearer. As the name suggests, a ZIP
distribution is a Poisson distribution with extra zero’s. The observed zeros
are modelled as a mixture distribution of zero’s originating form the Poisson
process and zero’s arising through zero-inflation. It is the probability (on the
logit scale) that a zero is from the zero-inflation process that we aim to model
with the second latent variable. The likelihood has the form:

CHAPTER 5. MULTI-RESPONSE MODELS 101

Pr(y = 0) = plogis(l2) + plogis(−l2) ∗ dpois(0, exp(l1))
Pr(y|y > 0) = plogis(−l2) ∗ dpois(y, exp(l1)) (5.8)

pscl fits zero-inflated models very well through the zeroinfl function, and
I strongly recommend using it if you do not want to fit random effects. To
illustrate the syntax for fitting ZIP models in MCMCglmm I will take one of
their examples:

> data("bioChemists", package = "pscl")

> head(bioChemists)

art fem mar kid5 phd ment
1 0 Men Married 0 2.52 7
2 0 Women Single 0 2.05 6
3 0 Women Single 0 3.75 6
4 0 Men Married 1 1.18 3
5 0 Women Single 0 3.75 26
6 0 Women Married 2 3.59 2

art is the response variable - the number of papers published by a Ph.D
student - and the remaining variables are to be fitted as fixed effects. Naively,
we may expect zero-inflation to be a problem given 30% of the data are zeros,
and based on the global mean we only expect around 18%.

> table(bioChemists$art == 0)

FALSE TRUE
640 275

> ppois(0, mean(bioChemists$art))

[1] 0.1839859

As with binary models we do not observe any residual variance for the
zero-inflated process, and in addition the residual covariance between the zero-
inflation and the Poisson process cannot be estimated because both processes
cannot be observed in a single data point. To deal with this I’ve fixed the resid-
ual variance for the zero-inflation at 1, and the covariance is set to zero using the
idh structure. Setting V=diag(2) and nu=0.0021 we have the inverse-gamma
prior with shape=scale=0.001 for the residual component of the Poisson pro-
cess which captures over-dispersion:

1Earlier versions of the CourseNotes had nu=1.002. In versions <2.05 the marginal prior
of a variance associated with an idh structure was inverse-Wishart with nu∗ = nu − 1 where
nu∗ is the marginal degree of belief. In versions >=2.05 I changed this so that nu∗ = nu as it
was leading to confusion.

CHAPTER 5. MULTI-RESPONSE MODELS 102

> prior.m5d.1 = list(R = list(V = diag(2), nu = 0.002, fix = 2))

> m5d.1 <- MCMCglmm(art ~ trait - 1 + at.level(trait, 1):fem +

+ at.level(trait, 1):mar + at.level(trait, 1):kid5 + at.level(trait,

+ 1):phd + at.level(trait, 1):ment, rcov = ~idh(trait):units,

+ data = bioChemists, prior = prior.m5d.1, family = "zipoisson",

+ verbose = FALSE)

As is often the case the parameters of the zero-inflation model mixes poorly
(See Figure 5.5) especially when compared to equivalent hurdle models (See
Section 5.4). Poor mixing is often associated with distributions that may not
be zero-inflated but instead over-dispersed.

4000 6000 8000 10000 12000

−
0.

6

Iterations

Trace of traitart

−0.6 −0.4 −0.2 0.0 0.2 0.4
0.

0

N = 1000 Bandwidth = 0.038

Density of traitart

4000 6000 8000 10000 12000

−
5.

5

Iterations

Trace of traitzi_art

−6 −5 −4 −3

0.
0

N = 1000 Bandwidth = 0.1707

Density of traitzi_art

4000 6000 8000 10000 12000

0.
0

Iterations

Trace of at.level(trait, 1):femMen

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

0
4

N = 1000 Bandwidth = 0.01983

Density of at.level(trait, 1):femMen

4000 6000 8000 10000 12000

−
0.

1

Iterations

Trace of at.level(trait, 1):marMarried

−0.1 0.0 0.1 0.2 0.3 0.4

0
3

N = 1000 Bandwidth = 0.02212

Density of at.level(trait, 1):marMarried

Figure 5.5: Posterior distribution of fixed effects from model m5d.1 in which
trait 1 (art) is the Poisson process and trait 2 (zi.art) is the zero-inflation.

The model would have to be run for (much) longer to say something concrete
about the level of zero-inflation but my guess would be it’s not a big issue, given
the probability is probably quite small:

> quantile(plogis(m5d.1$Sol[, 2]/sqrt(1 + c2)))

CHAPTER 5. MULTI-RESPONSE MODELS 103

0% 25% 50% 75% 100%
0.00737162 0.01423150 0.02057921 0.03502319 0.07429820

5.3.1 Posterior predictive checks

Another useful check is to fit the standard Poisson model and use posterior
predictive checks to see how many zero’s you would expect under the simple
model:

> prior.m5d.2 = list(R = list(V = diag(1), nu = 0.002))

> m5d.2 <- MCMCglmm(art ~ fem + mar + kid5 + phd + ment, data = bioChemists,

+ prior = prior.m5d.2, family = "poisson", saveX = TRUE, verbose = FALSE)

> nz <- 1:1000

> oz <- sum(bioChemists$art == 0)

> for (i in 1:1000) {

+ pred.l <- rnorm(915, (m5d.2$X %*% m5d.2$Sol[i,])@x, sqrt(m5d.2$VCV[i]))

+ nz[i] <- sum(rpois(915, exp(pred.l)) == 0)

+ }

Figure 5.6 shows a histogram of the posterior predictive distribution of zero’s
(nz) from the model compared to the observed number of zeros (oz). The
simpler model seems to be consistent with the data, suggesting that a ZIP
model may not be required.

5.4 Hurdle Models

Hurdle models are very similar to zero-inflated models but they can be used to
model zero-deflation as well as zero-inflation and seem to have much better mix-
ing properties in MCMCglmm. As in ZIP models each datum in the hurdle model is
associated with two latent variables. However, whereas in a ZIP model the first
latent variable is the mean parameter of a Poisson distribution the equivalent
latent variable in the hurdle model is the mean parameter of a zero-truncated
Possion distribution (i.e. a Poisson distribution without the zeros observed). In
addition the second latent variable in a ZIP model is the probability that an
observed zero is due to zero-inflation rather than the Poisson process. In hurdle
models the second latent variable is simply the probability (on the logit scale)
that the response variable is zero or not. The likelihood is:

Pr(y = 0) = plogis(l2)
Pr(y|y > 0) = plogis(−l2) ∗ dpois(y, exp(l1))/(1− ppois(0, exp(l1)))

(5.9)
To illustrate, we will refit the ZIP model (m5d.1) as a hurdle-Poisson model.

> m5d.3 <- MCMCglmm(art ~ trait - 1 + at.level(trait, 1):fem +

+ at.level(trait, 1):mar + at.level(trait, 1):kid5 + at.level(trait,

CHAPTER 5. MULTI-RESPONSE MODELS 104

Histogram of nz

nz

F
re

qu
en

cy

220 240 260 280 300 320

0
20

40
60

80
10

0
12

0

Figure 5.6: Posterior predictive distribution of zeros from model m5d.2 with the
observed number in red.

+ 1):phd + at.level(trait, 1):ment, rcov = ~idh(trait):units,

+ data = bioChemists, prior = prior.m5d.1, family = "hupoisson",

+ verbose = FALSE)

Plotting the Markov chain for the equivalent parameters that were plotted
for the ZIP model shows that the mixing properties are much better (compare
Figure 5.5 with Figure 5.7).

The interpretation of the model is slightly different. Fitting just an intercept
in the hurdle model implies that the proportion of zeros observed across different
combinations of those fixed effects fitted for the Poisson process is constant. Our
95% credible intervals for this proportion is (See section 5.2):

> c2 <- (16 * sqrt(3)/(15 * pi))^2

> HPDinterval(plogis(m5d.3$Sol[, 2]/sqrt(1 + c2)))

lower upper
var1 0.2643427 0.3252414

CHAPTER 5. MULTI-RESPONSE MODELS 105

4000 6000 8000 10000 12000

−
0.

2
Iterations

Trace of traitart

−0.4 0.0 0.2 0.4 0.6 0.8

0.
0

N = 1000 Bandwidth = 0.04317

Density of traitart

4000 6000 8000 10000 12000

−
1.

3

Iterations

Trace of traithu_art

−1.3 −1.1 −0.9 −0.7

0
3

N = 1000 Bandwidth = 0.02302

Density of traithu_art

4000 6000 8000 10000 12000

−
0.

1

Iterations

Trace of at.level(trait, 1):femMen

0.0 0.2 0.4 0.6

0
3

N = 1000 Bandwidth = 0.02348

Density of at.level(trait, 1):femMen

4000 6000 8000 10000 12000

−
0.

2

Iterations

Trace of at.level(trait, 1):marMarried

−0.2 0.0 0.2 0.4

0
3

N = 1000 Bandwidth = 0.02506

Density of at.level(trait, 1):marMarried

Figure 5.7: Posterior distribution of fixed effects from model m5d.3 in which
trait 1 (art) is the zero-truncated Poisson process and trait 2 (hu.art) is the
binary trait zero or non-zero.

attr(,"Probability")
[1] 0.95

and we can compare this to the predicted number of zero’s from the Poisson
process if it had not been zero-truncated:

> HPDinterval(ppois(0, exp(m5d.3$Sol[, 1] + 0.5 * m5d.3$VCV[, 1])))

lower upper
var1 0.1434883 0.355015
attr(,"Probability")
[1] 0.95

The credible intervals largely overlap, strongly suggesting a standard Poisson
model would be adequate. However, our prediction for the number of zero’s that
would arise form a non-truncated Poisson process only involved the intercept
term. This prediction therefore pertains to the number of articles published by

CHAPTER 5. MULTI-RESPONSE MODELS 106

single women with no young children who obtained their Ph.D’s from depart-
ments scoring zero for prestige (phd) and whose mentors had published nothing
in the previous 3 years. Our equivalent prediction for men is a little lower

> HPDinterval(ppois(0, exp(m5d.3$Sol[, 1] + m5d.3$Sol[, 3] + 0.5 *

+ m5d.3$VCV[, 1])))

lower upper
var1 0.08777781 0.2791189
attr(,"Probability")
[1] 0.95

suggesting that perhaps the number of zero’s is greater than we expected for
this group. However, this may just be a consequence of us fixing the proportion
of zero’s to be constant across these groups. We can relax this assumption by
fitting a separate term for the proportion of zeros for men:

> m5d.4 <- MCMCglmm(art ~ trait - 1 + at.level(trait, 1:2):fem +

+ at.level(trait, 1):mar + at.level(trait, 1):kid5 + at.level(trait,

+ 1):phd + at.level(trait, 1):ment, rcov = ~idh(trait):units,

+ data = bioChemists, prior = prior.m5d.1, family = "hupoisson",

+ verbose = FALSE)

which reveals that although this proportion is expected to be (slightly)
smaller:

> HPDinterval(plogis((m5d.4$Sol[, 2] + m5d.4$Sol[, 4])/sqrt(1 +

+ c2)))

lower upper
var1 0.2246004 0.3081946
attr(,"Probability")
[1] 0.95

the proportion of zeros expected for men is probably still less than what
we expect from a non-truncated Poisson process for which the estimates have
changed very little:

> HPDinterval(ppois(0, exp(m5d.4$Sol[, 1] + m5d.4$Sol[, 3] + 0.5 *

+ m5d.4$VCV[, 1])))

lower upper
var1 0.07848261 0.2548844
attr(,"Probability")
[1] 0.95

This highlights one of the disadvantages of hurdle models. If explanatory
variables have been fitted that affect the expectation of the Poisson process then

CHAPTER 5. MULTI-RESPONSE MODELS 107

this implies that the proportion of zero’s observed will also vary across these
same explanatory variables, even in the absence of zero-inflation. It may then
be necessary to fit an equally complicated model for both processes even though
a single parameter would suffice in a ZIP model. However, in the absence of
zero-inflation the intercept of the zero-inflation process in a ZIP model is −∞
on the logit scale causing numerical and inferential problems. An alternative
type of model are zero-altered models.

5.5 Zero-altered Models

Zero-altered Poisson (ZAP) models are identical to Poisson-hurdle models except
a complementary log-log link is used instead of the logit link when modeling the
proportion of zeros. However for reasons that will become clearer below, the
zero-altered process (za) is predicting non-zeros as opposed to the ZIP and
hurdle-Poisson models where it is the number of zeros. The likelihood is:

Pr(y = 0) = 1− pexp(exp(l2))
Pr(y|y > 0) = pexp(exp(l2)) ∗ dpois(y, exp(l1))/(1− ppois(0, exp(l1)))

(5.10)
since the inverse of the complementary log-log transformation is the distri-

bution function of the extreme value (log-exponential) distribution.

It happens that ppois(0, exp(l)) = dpois(0, exp(l)) = 1 − pexp(exp(l)) so
that if l = l1 = l2 then the likelihood reduces to:

Pr(y = 0) = dpois(0, exp(l))
Pr(y|y > 0) = dpois(y, exp(l)) (5.11)

which is equivalent to a standard Poisson model.

We can then test for zero-flation by constraining the over-dispersion to be
the same for both process using a trait by units interaction in the R-structure,
and by setting up the contrasts so that the zero-altered regression coefficients
are expressed as differences from the Poisson regression coefficients. When this
difference is zero the variable causes no zero-flation, when it is negative it causes
zero-inflation and when it is positive it causes zero-deflation:

> m5d.5 <- MCMCglmm(art ~ trait * (fem + mar + kid5 + phd + ment),

+ rcov = ~trait:units, data = bioChemists, family = "zapoisson",

+ verbose = FALSE)

> summary(m5d.5)

Iterations = 3001:12991
Thinning interval = 10
Sample size = 1000

CHAPTER 5. MULTI-RESPONSE MODELS 108

DIC: 3040.376

R-structure: ~trait:units

post.mean l-95% CI u-95% CI eff.samp
trait:units 0.3625 0.2649 0.4819 44.52

Location effects: art ~ trait * (fem + mar + kid5 + phd + ment)

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.354307 0.018751 0.722566 247.1 0.050 .
traitza_art -0.557501 -1.082135 0.023301 149.7 0.062 .
femWomen -0.196230 -0.366242 -0.025177 273.0 0.026 *
marMarried 0.083418 -0.119004 0.275218 338.7 0.384
kid5 -0.127666 -0.255902 -0.007852 279.1 0.044 *
phd 0.010019 -0.066849 0.109910 261.8 0.824
ment 0.019604 0.011848 0.026272 519.6 <0.001 ***
traitza_art:femWomen 0.029483 -0.251392 0.331420 158.3 0.852
traitza_art:marMarried 0.158735 -0.186851 0.466027 228.0 0.326
traitza_art:kid5 -0.086248 -0.283190 0.102363 204.7 0.390
traitza_art:phd 0.016784 -0.132600 0.154293 202.8 0.794
traitza_art:ment 0.028152 0.013927 0.044001 177.8 <0.001 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

we can see from this that the more papers a mentor produces, the more
zero-deflation (or conversely the less papers a mentor produces, the more zero-
inflation).

Chapter 6

Pedigrees and Phylogenies

> library(kinship)

Pedigrees and phylogenies are similar things: they are both ways of repre-
senting shared ancestry. Under a quantitative genetic model of inheritance, or
a Brownian motion model of evolution, GLMM’s can be readily extended to
model the similarities that exist between the phenotypes of related individuals
or taxa. In the context of quantitative genetics these models are known as ‘an-
imal’ models (Henderson, 1976), and in the context of the comparative method
these models are known as phylogenetic mixed models (Lynch, 1991). The two
models are almost identical, and are relatively minor modifications to the basic
mixed model (Hadfield and Nakagawa, 2010).

6.1 Pedigree and phylogeny formats

6.1.1 Pedigrees

MCMCglmm handles pedigrees stored in 3-column tabular form, with each row
representing a single individual. The first column should contain the unique
identifier of the individual, and columns 2 and 3 should be the unique identifiers
of the individual’s parents. Parents must appear before their offspring in the
table. I usually have the dam (mother) in the first column and the sire (father)
in the third. I prefer the words dam and sire because if I subscript things with
m and f I can never remember whether I mean male and female, or mother
and father. In hermaphrodite systems the same individual may appear in both
columns, even within the same row if an individual was produced through selfing.
This is not a problem, but MCMCglmm will issue a warning in case hermaphrodites
are not present and a data entry mistake has been made. Impossible pedigrees
(for example individual’s that give birth to their own mother) are a problem
and MCMCglmm will issue an error, hopefully with an appropriate message, when
impossibilities are detected.

109

CHAPTER 6. PEDIGREES AND PHYLOGENIES 110

If the parent(s) of an individual are unknown then a missing value (NA)
should be assigned in the relevant column. All individuals appearing as dams or
sires need to have their own record, even if both of their parents are unknown.
Often the number of individuals in a pedigree will be greater than the number of
individuals for which phenotypic data exist. MCMCglmm can handle this, as long
as all the individuals appearing in the data frame passed to data also appear in
the pedigree.

To illustrate, we can load a pedigree for a population of blue tits and dis-
play the pedigree for the nuclear family that has individuals "R187920" and
"R187921" as parents:

> data(BTped)

> Nped <- BTped[which(apply(BTped, 1, function(x) {

+ any(x == "R187920" | x == "R187921")

+ })),]

> Nped

animal dam sire
66 R187920 <NA> <NA>
172 R187921 <NA> <NA>
325 R187726 R187920 R187921
411 R187724 R187920 R187921
503 R187723 R187920 R187921
838 R187613 R187920 R187921
932 R187612 R187920 R187921
1030 R187609 R187920 R187921

Both parents form part of what is known as the base population - they are
outbred and unrelated to anybody else in the pedigree.

MCMCglmm and MasterBayes have several pedigree manipulation functions.
(MasterBayes::orderPed) orders a pedigree so parents appear before their off-
spring, (MasterBayes::insertPed) inserts records for individuals that only ap-
pear as parents (or a vector of specified individuals). When the number of
individuals with phenotypic data is less than the number of individuals in the
pedigree it is sometimes possible to remove uninformative individuals from the
pedigree and thus reduce the computation time. This is known as pruning
the pedigree and is implemented in the MCMCglmm function prunePed. A vec-
tor of measured individuals is specified in the argument keep and specifying
make.base=TRUE implements the most complete pruning. Note, make.base=FALSE
is the default argument so you’ll need to explicitly specify TRUE in the call to
prunePed. Michael Morrissey’s pedantics package, and the kinship package
also have many other useful pedigree orientated functions. In fact, the orderPed
function in MasterBayes is built around functions provided by kinship.

CHAPTER 6. PEDIGREES AND PHYLOGENIES 111

6.1.2 Phylogenies

Phylogenies can be expressed in tabular form, although only two columns are
required because each species only has a single parent. In general however, phy-
logenies are not expressed in this form presumably because it is hard to traverse
phylogenies (and pedigrees) backwards in time when they are stored this way.
For phylogenetic mixed models we generally only need to traverse phylogenies
forward in time (if at all) but I have stuck with convention and used the phylo
class from the ape package to store phylogenies. As with pedigrees, all species
appearing in the data frame passed to data need to appear in the phylogeny.
Typically, this will only include species at the tips of the phylogeny and so the
measured species should appear in the tip.label element of the phylo object.
An error message will be issued if this is not the case. Data may also exist
for ancestral species, or even for species present at the tips but measured many
generations before. It is possible to include these data as long as the phylogeny
has labelled internal nodes. If nodes are unlabeled then MCMCglmm names them
internally using the default arguments of makeNodeLabel from ape.

To illustrate, lets take the phylogeny of bird families included in the ape pack-
age, and extract the phylogeny in tabular form for the Paridae (Tits), Certhiidae
(Treecreepers), Gruidae (Cranes) and the Struthionidae (Ostriches):

> data("bird.families")

> bird.families <- makeNodeLabel(bird.families)

> some.families <- c("Certhiidae", "Paridae", "Gruidae", "Struthionidae")

> Nphylo <- drop.tip(bird.families, setdiff(bird.families$tip.label,

+ some.families))

> INphylo <- inverseA(Nphylo)

> INphylo$pedigree

node.names
[1,] "Node58" NA NA
[2,] "Node122" "Node58" NA
[3,] "Struthionidae" NA NA
[4,] "Gruidae" "Node58" NA
[5,] "Certhiidae" "Node122" NA
[6,] "Paridae" "Node122" NA

The full phylogeny, with these families and their connecting notes displayed,
is shown in Figure 6.1. You will notice that Node1 - the root - does not appear in
the phylogeny in tabular form. This is because the root is equivalent to the base
population in a pedigree analysis, an issue which we will come back to later.
Another piece of information that seems to be lacking in the tabular form is the
branch length information. Branch lengths are equivalent to inbreeding coeffi-
cients in a pedigree. As with pedigrees the inbreeding coefficients are calculated
by inverseA:

> INphylo$inbreeding

CHAPTER 6. PEDIGREES AND PHYLOGENIES 112

StruthionidaeRheidaeCasuariidaeApterygidaeTinamidaeCracidaeMegapodiidaePhasianidaeNumididaeOdontophoridaeAnhimidaeAnseranatidaeDendrocygnidaeAnatidaeTurnicidaeIndicatoridaePicidaeMegalaimidaeLybiidaeRamphastidaeGalbulidaeBucconidaeBucerotidaeBucorvidaeUpupidaePhoeniculidaeRhinopomastidaeTrogonidaeCoraciidaeLeptosomidaeMeropidaeMomotidaeTodidaeAlcedinidaeDacelonidaeCerylidaeColiidaeCuculidaeCentropidaeCoccyzidaeOpisthocomidaeCrotophagidaeNeomorphidaePsittacidaeApodidaeHemiprocnidaeTrochilidaeMusophagidaeTytonidaeStrigidaeAegothelidaePodargidaeBatrachostomidaeSteatornithidaeNyctibiidaeEurostopodidaeCaprimulgidaeColumbidaeEurypygidaeOtididaeGruidaeHeliornithidaePsophiidaeCariamidaeRhynochetidaeRallidaePteroclidaeThinocoridaePedionomidaeScolopacidaeRostratulidaeJacanidaeChionididaeBurhinidaeCharadriidaeGlareolidaeLaridaeAccipitridaeSagittariidaeFalconidaePodicipedidaePhaethontidaeSulidaeAnhingidaePhalacrocoracidaeArdeidaeScopidaePhoenicopteridaeThreskiornithidaePelecanidaeCiconiidaeFregatidaeSpheniscidaeGaviidaeProcellariidaeAcanthisittidaePittidaeEurylaimidaeTyrannidaeThamnophilidaeFurnariidaeFormicariidaeConopophagidaeRhinocryptidaeClimacteridaeMenuridaePtilonorhynchidaeMaluridaeMeliphagidaePardalotidaeEopsaltriidaeIrenidaeOrthonychidaePomatostomidaeLaniidaeVireonidaeCorvidaeBombycillidaeCinclidaeMuscicapidaeSturnidaeSittidaeCerthiidaeParidaeAegithalidaeHirundinidaeRegulidaePycnonotidaeCisticolidaeZosteropidaeSylviidaeAlaudidaeNectariniidaeMelanocharitidaeParamythiidaePasseridaeFringillidae

Figure 6.1: A phylogeny of bird families from Sibley and Ahlquist (1990)
The families in red are the Tits (Paridae), Treecreepers (Certhiidae), Cranes
(Gruidae) and the Ostriches (Struthionidae) from top to bottom. Blue tits are
in the Paridae, and the word pedigree comes from the french for crane’s foot.

[1] 0.2285714 0.3857143 1.0000000 0.7714286 0.3857143 0.3857143

You will notice that the Struthionidae have an inbreeding coefficient of 1 be-
cause we used the default scale=TRUE in the call to inverseA. Only ultrametric
trees can be scaled in MCMCglmm and in this case the sum of the inbreeding co-
efficients connecting the root to a terminal node is one. To take the Paridae as
an example:

> sum(INphylo$inbreeding[which(INphylo$pedigree[, 1] %in% c("Paridae",

+ "Node122", "Node58"))])

[1] 1

The inbreeding coefficients for the members of the blue tit nuclear family
are of course all zero:

> inverseA(Nped)$inbreeding

CHAPTER 6. PEDIGREES AND PHYLOGENIES 113

[1] 0 0 0 0 0 0 0 0

6.2 The animal model and the phylogenetic mixed
model

The structure of pedigrees and phylogenies can be expressed in terms of the
relatedness matrix A. This matrix is symmetric, square, and has dimensions
equal to the number of individuals in the pedigree (or the number of taxa in the
phylogeny). For pedigrees, element Ai,j is twice the probability that an allele
drawn from individual i is identical by descent to an allele in individual j. For
phylogenies, element Ai,j is the amount of time that elapsed (since the common
ancestor of all sampled taxa) before the speciation event that resulted in taxa
i and j. Simple, but perhaps slow, recursive methods exist for calculating A in
both cases:

> Aped <- 2 * kinship::kinship(Nped[, 1], Nped[, 2], Nped[, 3])

> Aped

R187920 R187921 R187726 R187724 R187723 R187613 R187612 R187609
R187920 1.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5
R187921 0.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5
R187726 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5
R187724 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5
R187723 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
R187613 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5
R187612 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5
R187609 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0

> Aphylo <- vcv.phylo(Nphylo, cor = T)

> Aphylo

Struthionidae Gruidae Certhiidae Paridae
Struthionidae 1 0.0000000 0.0000000 0.0000000
Gruidae 0 1.0000000 0.2285714 0.2285714
Certhiidae 0 0.2285714 1.0000000 0.6142857
Paridae 0 0.2285714 0.6142857 1.0000000

Note that specifying cor=T is equivalent to scaling the tree as we did in the
argument to inverseA.

In fact, all of the mixed models we fitted in earlier sections also used an A
matrix, but in those cases the matrix was an identity matrix (i.e. A = I) and
we didn’t have to worry about it. Let’s reconsider the Blue tit model m3a.1
from Section 3 where we were interested in estimating sex effects for tarsus
length together with the amount of variance explained by genetic mother (dam)
and foster mother (fosternest):

CHAPTER 6. PEDIGREES AND PHYLOGENIES 114

> m3a.1 <- MCMCglmm(tarsus ~ sex, random = ~dam + fosternest, data = BTdata,

+ verbose = FALSE)

All individuals that contributed to that analysis are from a single generation
and appear in BTped together with their parents. However, individuals in the
parental generation do not have tarsus length measurements so they do not have
their own records in BTdata.

The model can be expressed as:

y = Xβ + Z1u1 + Z2u2 + e (6.1)

where the design matrices contain information relating each individual to a
sex (X) a dam (Z1) and a fosternest(Z2). The associated parameter vectors
(β, u1 and u2) are the effects of each sex, mother and fosternest on tarsus
length, and e is the vector of residuals.

In the model, the u’s are treated as random so we estimate their variance
instead of fixing it in the prior at some (large) value, as we did with the β’s.
We can be a little more explicit about what this means:

u1 ∼ N(0, Iσ2
1) (6.2)

where ∼ stands for ‘is distributed as’ and N a (multivariate) normal dis-
tribution. The distribution has two sets of parameters; a vector of means and
a covariance matrix. We assume the random effects are deviations around the
fixed effect part of the model and so they have a prior expectation of zero.
The (co)variance matrix of the random effects is Iσ2

1 where σ2
1 is the variance

component to be estimated. The use of the identity matrix makes two things
explicit. First, because all off-diagonal elements of an identity matrix are zero
we are assuming that all dam effects are independent (no covariance exists be-
tween any two dam effects). Second, all diagonal elements of an identity matrix
are 1 implying that the range of possible values the dam effect could take is
equivalent for every dam, this range being governed by the magnitude of the
variance component.

Since dam’s have very little interaction with the subset of offspring that were
moved to a fosternest), we may be willing to assume that any similarity that
exists between the tarsus lengths of this susbset and the subset that remained at
home must be due to genetic effects. Although not strictly true we can assume
that individuals that shared the same dam also shared the same sire, and so
share around 50% of their genes.

to be completed ...

Chapter 7

Technical Details

7.1 Model Form

The probability of the ith data point is represented by:

fi(yi|li) (7.1)

where fi is the probability density function associated with yi. For example,
if yi was assumed to be Poisson distributed and we used the canonical log link
function, then Equation 7.1 would have the form:

fP (yi|λ = exp(li)) (7.2)

where λ is the canonical parameter of the Poisson denisty function pF . Table
7.1 has a full list of supported distributions and link functions.

The vector of latent variables follow the linear model

l = Xβ + Zu + e (7.3)

where X is a design matrix relating fixed predictors to the data, and Z is
a design matrix relating random predictors to the data. These predictors have
associated parameter vectors β and u, and e is a vector of residuals. In the
Poisson case these residuals deal with any over-dispersion in the data after ac-
counting for fixed and random sources of variation.

The location effects (β and u), and the residuals (e) are assumed to come
from a multivariate normal distribution: β

u
e

 ∼ N
 β0

0
0

 ,
 B 0 0

0 G 0
0 0 R

 (7.4)

115

CHAPTER 7. TECHNICAL DETAILS 116

where β0 is a vector of prior means for the fixed effects with prior (co)variance
B, and G and R are the expected (co)variances of the random effects and resid-
uals respectively. The zero off-diagonal matrices imply a priori independence
between fixed effects, random effects, and residuals. Generally, G and R are
large square matrices with dimensions equal to the number of random effects or
residuals. Typically they are unknown, and must be estimated from the data,
usually by assuming they are structured in a way that they can be parameterised
by few parameters. Below we will focus on the structure of G, but the same
logic can be applied to R.

At its most general, MCMCglmm allows variance structures of the form:

G = (V1 ⊗A1)⊕ (V2 ⊗A2)⊕ . . . (7.5)

where the parameter (co)variance matrices (V) are usually low-dimensional
and are to be estimated, and the structured matrices (A) are usually high
dimensional and treated as known.

7.2 MCMC Sampling Schemes

7.2.1 Updating the latent variables l

The conditional density of l is given by:

Pr(li|y,θ,R,G) ∝ fi(yi|li)fN (ei|riR−1
/i e/i, ri − riR−1

/i r
′

i) (7.6)

where fN indicates a Multivariate normal density with specified mean vector
and covariance matrix. Equation 7.6 is the probability of the data point yi
with linear predictor li on the link scale for distribution fi, multiplied by the
probability of the linear predictor residual. The linear predictor residual follows
a conditional normal distribution where the conditioning is on the residuals
associated with data points other than i. Vectors and matrices with the row
and/or column associated with i removed are denoted /i. In practice, this
conditional distribution only involves other residuals which are expected to show
some form of residual covariation, as defined by the R structure. Because of
this we actually update latent variables in blocks, where the block is defined as
groups of residuals which are expected to be correlated:

Pr(lj |y,θ,R,G) ∝
∏
i∈j

pi(yi|li)fN (ej |0,Rj) (7.7)

where j indexes blocks of latent variables that have non-zero residual co-
variances. A special case arises for multi-parameter distributions in which each
parameter is associated with a linear predictor. For example, in the zero-inflated
Poisson two linear predictors are used to model the same data point, one to pre-
dict zero-inflation, and one to predict the Poisson variable. In this case the two
linear predictors are updated in a single block even when the residual covariance

CHAPTER 7. TECHNICAL DETAILS 117

between them is set to zero, because the first probability in Equation 7.7 cannot
be factored:

Pr(lj |y,θ,R,G) ∝ pi(yi|lj)fN (ej |0,Rj) (7.8)

We use adaptive methods during the burn-in phase to determine an efficient
multivariate normal proposal distribution entered at the previous value of lj
with covariance matrix mM. For computational efficiency we use the same M
for each block j, where M is the average posterior (co)variance of lj within
blocks and is updated each iteration of the burn-in period Haario et al. (2001).
The scalar m is chosen using the method of Ovaskainen et al. (2008) so that the
proportion of successful jumps is optimal, with a rate of 0.44 when lj is a scalar
declining to 0.23 when lj is high dimensional (Gelman et al., 2004).

For the standard linear mixed model with a Gaussian response and identity
link, Pr(li = yi|y,θ,R,G) is always unity and so the Metropolis-Hastings steps
are always omitted. When the latent variables within a block j are associated
with missing data then their conditional distribution is multivariate normal and
can be Gibbs sampled directly:

Pr(lj |y,θ,R,G) ∼ N(Xjβ + Zju,Rj) (7.9)

where design matrices subscripted by j are the rows of the original design
matrices associated with the latent variables in block j.

7.2.2 Updating the location vector θ =
[
β
′
u
′]′

Garcia-Cortes and Sorensen (2001) provide a method for sampling θ as a com-
plete block that involves solving the sparse linear system:

θ̃ = C−1W
′
R−1(l−Wθ? − e?) (7.10)

where C is the mixed model coefficient matrix:

C = W
′
R−1W +

[
B−1 0

0 G−1

]
(7.11)

and W = [X Z], and B is the prior (co)variance matrix for the fixed effects.

θ? and e? are random draws from the multivariate normal distributions:

θ? ∼ N
([

β0

0

]
,

[
B 0
0 G

])
(7.12)

and

e? ∼ N (Wθ?,R) (7.13)

θ̃ + θ? gives a realisation from the required probability distribution:

CHAPTER 7. TECHNICAL DETAILS 118

Pr(θ|l,W,R,G) (7.14)

Equation 7.10 is solved using Cholesky factorisation. Because C is sparse
and the pattern of non-zero elements fixed, an initial symbolic Cholesky fac-
torisation of PCP

′
is preformed where P is a fill-reducing permutation matrix

(Davis, 2006). Numerical factorisation must be performed each iteration but
the fill-reducing permutation (found via a minimum degree ordering of C + C

′
)

reduces the computational burden dramatically compared to a direct factorisa-
tion of C (Davis, 2006).

Forming the inverse of the variance structures is usually simpler because
they can be expressed as a series of direct sums and Kronecker products:

G = (V1 ⊗A1)⊕ (V2 ⊗A2)⊕ . . . (7.15)

and the inverse of such a structure has the form

G−1 =
(
V−1

1 ⊗A−1
1

)
⊕
(
V−1

2 ⊗A−1
2

)
⊕ . . . (7.16)

which involves inverting the parameter (co)variance matrices (V), which are
usually of low dimension, and inverting A. For many problems A is actually
an identity matrix and so inversion is not required. When A is a relationship
matrix associated with a pedigree, Henderson (1976); Meuwissen and Luo (1992)
give efficient recursive algorithms for obtaining the inverse, and Hadfield and
Nakagawa (2010) derive a similar procedure for phylogenies.

7.2.3 Updating the variance structures G and R

Components of the direct sum used to construct the desired variance structures
are conditionally independent. The sum of squares matrix associated with each
component term has the form:

S = U
′
A−1U (7.17)

where U is a matrix of random effects where each column is associated
with the relevant row/column of V and each row associated with the relevant
row/column of A. The parameter (co)variance matrix can then be sampled
from the inverse Wishart distribution:

V ∼ IW ((Sp + S)−1, np + n) (7.18)

where n is the number of rows in U, and Sp and np are the prior sum of
squares and prior degree’s of freedom, respectively.

In some models, some elements of a parameter (co)variance matrix cannot be
estimated from the data and all the information comes from the prior. In these
cases it can be advantageous to fix these elements at some value and Korsgaard

CHAPTER 7. TECHNICAL DETAILS 119

et al. (1999) provide a strategy for sampling from a conditional inverse-Wishart
distribution which is appropriate when the rows/columns of the parameter ma-
trix can be permuted so that the conditioning occurs on some diagonal sub-
matrix. When this is not possible Metropolis-Hastings updates can be made.

7.2.4 Ordinal Models

For ordinal models it is necessary to update the cutpoints which define the bin
boundaries for latent variables associated with each category of the outcome.
To achieve good mixing we used the method developed by (Cowles, 1996) that
allows the latent variables and cutpoints to be updated simultaneously using a
Hastings-with-Gibbs update.

7.2.5 Deviance and DIC

The deviance D is defined as:

D = −2log(Pr(y|Ω)) (7.19)

where Ω is some parameter set of the model. The deviance can be calculated
in different ways depending on what is in ‘focus’, and MCMCglmm calculates
this probability for the lowest level of the hierarchy (Spiegelhalter et al., 2002).
For Gaussian response variables the likelihood is the density:

fN (y|Xβ + Zu, R) (7.20)

where Ω = {θ, R} but for other response variables variables it is the prod-
uct: ∏

i

fi(yi|li) (7.21)

with Ω = l.

For multivariate models with mixtures of Gaussian and non-Gaussian data
(including missing values) the likelihood of the Gaussian data is the density of
yg in the conditional density:

fN

(
yg|Xgβ + Zgu + Rg,lR−1

l,l (l−Xlβ − Zlu), Rg,g −Rg,lR−1
l,l Rl,g

)
(7.22)

where the subscripts g and l denote rows of the data vector/design matrices
that pertain to Gaussian data, and non-Gaussian data respectively. Subscripts
on the R-structure index both rows and columns. The likelihood of the non-
Gaussian data are identical to Equation 7.21 giving the complete parameter set
Ω = {θg,R, l}.

CHAPTER 7. TECHNICAL DETAILS 120

The deviance is calculated at each iteration if DIC=TRUE and stored each
thinth iteration after burn-in. The mean deviance (D̄) is calculated over all
iterations, as is the mean of the latent variables (l) the R-structure and the
vector of predictors (Xβ+Zu). The deviance is calculated at the mean estimate
of the parameters (D(Ω̄)) and the deviance information criterion calculated as:

DIC = 2D̄ −D(Ω̄) (7.23)

CHAPTER 7. TECHNICAL DETAILS 121

D
is

tr
ib

ut
io

n
N

o.
D

at
a

N
o.

la
te

nt
D

en
si

ty
fu

nc
ti

on
ty

pe
co

lu
m

ns
co

lu
m

ns

"
g
a
u
s
s
i
a
n
"

1
1

P
r(
y
)

=
f N

(w
θ
,σ

2 e
)

"
p
o
i
s
s
o
n
"

1
1

P
r(
y
)

=
f P

(e
xp

(l
))

"
c
a
t
e
g
o
r
i
c
a
l
"

1
J

-1
P
r(
y

=
k
|k
6=

1)
=

ex
p(
l k

)

1
+

P J−
1

j
=

1
ex

p(
l j

)

P
r(
y

=
1)

=
1

1
+

P J−
1

j
=

1
ex

p(
l j

)

"
m
u
l
t
i
n
o
m
i
a
l
J
"

J
J

-1
P
r(
y k

=
n
k
|k
6=
J

)
=

(
ex

p(
l k

)

1
+

P J−
1

j
=

1
ex

p(
l j

)

) n k
P
r(
y k

=
n
k
|k

=
J

)
=

(
1

1
+

P J−
1

j
=

1
ex

p(
l j

)

) n k
"
o
r
d
i
n
a
l
"

1
1

P
r(
y

=
k
)

=
F
N

(γ
k
|l,

1)
−
F
N

(γ
k
−

1
|l,

1)

"
e
x
p
o
n
e
n
t
i
a
l
"

1
1

P
r(
y
)

=
f E

(e
xp

(−
l)

)

"
g
e
o
m
e
t
r
i
c
"

1
1

P
r(
y
)

=
f G

(
ex

p(
l)

1
+

ex
p(
l)

)

"
c
e
n
g
a
u
s
s
i
a
n
"

2
1

P
r(
y 1
>
y
>
y 2

)
=

F
N

(y
2
|w
θ
,σ

2 e
)
−
F
N

(y
1
|w
θ
,σ

2 e
)

"
c
e
n
p
o
i
s
s
o
n
"

2
1

P
r(
y 1
>
y
>
y 2

)
=

F
P

(y
2
|l)
−
F
P

(y
1
|l)

"
c
e
n
e
x
p
o
n
e
n
t
i
a
l
"

2
1

P
r(
y 1
>
y
>
y 2

)
=

F
E

(y
2
|l)
−
F
E

(y
1
|l)

CHAPTER 7. TECHNICAL DETAILS 122

"
z
i
p
o
i
s
s
o
n
"

1
2

P
r(
y

=
0)

=
ex

p(
l 2

)
1
+

ex
p(
l 2

)
+
(1
−

ex
p(
l 2

)
1
+

ex
p(
l 2

)

) f P
(y
|e

xp
(l

1
))

P
r(
y
|y
>

0)
=

(1
−

ex
p(
l 2

)
1
+

ex
p(
l 2

)

) f P
(y
|e

xp
(l

1
))

"
z
t
p
o
i
s
s
o
n
"

1
1

P
r(
y
)

=
f

P
(y
|e

xp
(l

))
1
−
f

P
(0
|e

xp
(l

))

"
h
u
p
o
i
s
s
o
n
"

1
2

P
r(
y

=
0)

=
ex

p(
l 2

)
1
+

ex
p(
l 2

)

P
r(
y
|y
>

0)
=

(1
−

ex
p(
l 2

)
1
+

ex
p(
l 2

)

) f P
(y
|e

xp
(l

1
))

1
−
f

P
(0
|e

xp
(l

1
))

"
z
a
p
o
i
s
s
o
n
"

1
2

P
r(
y

=
0)

=
ex

p(
−

ex
p(
l 2

))
P
r(
y
|y
>

0)
=

(1
−

ex
p(
−

ex
p(
l 2

))
)

f
P

(y
|e

xp
(l

1
))

1
−
f

P
(0
|e

xp
(l

1
))

"
z
i
b
i
n
o
m
i
a
l
"

2
2

P
r(
y 1

=
0)

=
ex

p(
l 2

)
1
+

ex
p(
l 2

)
+
(1
−

ex
p(
l 2

)
1
+

ex
p(
l 2

)

) f B
(0
,n

=
y 1

+
y 2
|

ex
p(
l 1

)
1
+

ex
p(
l 1

)
)

P
r(
y 1
|y

1
>

0)
=

(1
−

ex
p(
l 2

)
1
+

ex
p(
l 2

)

) f B
(y

1
,n

=
y 1

+
y 2
|

ex
p(
l 1

)
1
+

ex
p(
l 1

)
)

T
ab

le
7.

1:
D

is
tr

ib
ut

io
n

ty
pe

s
th

at
ca

n
fit

te
d

us
in

g
M
C
M
C
g
l
m
m
.

T
he

pr
efi

xe
s
"
z
i
"
,"

z
t
"
,"

h
u
"

an
d
"
z
a
"

st
an

d
fo

r
ze

ro
-i

nfl
at

ed
,z

er
o-

tr
un

ca
te

d,
hu

rd
le

an
d

ze
ro

-a
lt

er
ed

re
sp

ec
ti

ve
ly

.
T

he
pr

efi
x
"
c
e
n
"

st
an

da
rd

s
fo

r
ce

ns
or

ed
w

he
re
y 1

an
d
y 2

ar
e

th
e

up
pe

r
an

d
lo

w
er

bo
un

ds
fo

r
th

e
un

ob
se

rv
ed

da
tu

m
y
.
J

st
an

ds
fo

r
th

e
nu

m
be

r
of

ca
te

go
ri

es
in

th
e

m
ul

ti
no

m
ia

l/
ca

te
go

ri
ca

l
di

st
ri

bu
ti

on
s

an
d

th
is

m
us

t
be

sp
ec

ifi
ed

in
th

e
fa

m
ily

ar
gu

m
en

t
fo

r
th

e
m

ul
ti

no
m

ia
l

di
st

ri
bu

ti
on

.
T

he
de

ns
it

y
fu

nc
ti

on
is

fo
r

a
si

ng
le

da
tu

m
in

a
un

iv
ar

ia
te

m
od

el
w

it
h

w
be

in
g

a
ro

w
ve

ct
or

of
W

.
f

an
d
F

ar
e

th
e

de
ns

it
y

an
d

di
st

ri
bu

ti
on

fu
nc

ti
on

s
fo

r
th

e
su

bs
cr

ip
te

d
di

st
ri

bu
ti

on
(N

=
N

or
m

al
,
P

=
P

oi
ss

on
,
E

=
E

xp
on

en
ti

al
,
G

=
G

eo
m

et
ri

c,
B

=
B

in
om

ia
l)

.
T

he
J
−

1
γ

’s
in

th
e

or
di

na
l

m
od

el
s

ar
e

th
e

cu
tp

oi
nt

s,
w

it
h
γ

1
se

t
to

ze
ro

.

Chapter 8

Parameter Expansion

As the covariance matrix approaches a singularity the mixing of the chain be-
comes notoriously slow. This problem is often encountered in single-response
models when a variance component is small and the chain becomes stuck at
values close to zero. Similar problems occur for the EM algorithm and Liu et al.
(1998) introduced parameter expansion to speed up the rate of convergence.
The idea was quickly applied to Gibbs sampling problems (Liu and Wu, 1999)
and has now been extensively used to develop more efficient mixed-model sam-
plers (e.g. van Dyk and Meng, 2001; Gelman et al., 2008; Browne et al., 2009).

The columns of the design matrix (W) can be multiplied by the non-identified
working parameters α = [1, α1, α2, . . . αk]

′
:

Wα = [X Z1α1 Z2α2 . . . Zkαk] (8.1)

where the indices denote submatrices of Z which pertain to effects associated
with the same variance component. Replacing W with Wα we can sample the
new location effects θα as described above, and rescale them to obtain θ:

θ = (Iβ ⊕ki=1 Iui
αi)θα (8.2)

where the identity matrices are of dimension equal to the length of the sub-
scripted parameter vectors.

Likewise, the (co)variance matrices can be rescaled by the set of α’s associ-
ated with the variances of a particular variance structure component (αV):

V = Diag(αV)VαDiag(αV) (8.3)

The working parameters are not identifiable in the likelihood, but do have
a proper conditional distribution. Defining the n × (k + 1) design matrix Xα

with each column equal to the submatrices in Equation 8.1 postmultiplied by the
relevant subvectors of θα, we can see that α is a vector of regression coefficients:

123

CHAPTER 8. PARAMETER EXPANSION 124

l = Xαα+ e (8.4)

and so the methods described above can be used to update them.

8.0.6 Variances close to zero

To use parameter exapnsion in MCMCglmm it is necessary to specify a prior co-
variance matrix for α which is non-null. In section 8.0.7 I discuss what this
prior means in the context of posterior inference but for now we will specify two
models, one parameter expanded and the other not. To illustrate I will fit a
model that estimates the between mother variation in offsping sex ratio using
parameter expansions:

> BTdata$sex[which(BTdata$sex == "UNK")] <- NA

> BTdata$sex <- gdata::drop.levels(BTdata$sex)

> prior1b = list(R = list(V = 1, fix = 1), G = list(G1 = list(V = 1,

+ nu = 1, alpha.mu = 0, alpha.V = 1000)))

> m7b.1 <- MCMCglmm(sex ~ 1, random = ~dam, data = BTdata, family = "categorical",

+ prior = prior1b, verbose = FALSE)

and fit a model that does not use parameter expansion:

> prior2b = list(R = list(V = 1, fix = 1), G = list(G1 = list(V = 1e-10,

+ nu = -1)))

> m7b.2 <- MCMCglmm(sex ~ 1, random = ~dam, data = BTdata, family = "categorical",

+ prior = prior2b, verbose = FALSE)

The prior densities in the two models are very similar across the range of
variances with reasonable posterior support, and running the models for long
enough will verify that they are sampling from very similar posterior densities.
However, the mixing properties of the two chains are very different, with the
non-parameter expanded chain (in red) getting stuck at values close to zero
(Figure 8.1).

The parameter expanded model is 25% slower per iteration but the effective
sample size is 6.258 times greater:

> effectiveSize(m7b.1$VCV[, 1])

var1
213.5645

> effectiveSize(m7b.2$VCV[, 1])

var1
34.12889

CHAPTER 8. PARAMETER EXPANSION 125

4000 8000 12000

0.
0

0.
1

0.
2

0.
3

0.
4

Iterations

0.0 0.2 0.4

0
5

10
15

20
25

30

N = 1000 Bandwidth = 0.009794

Figure 8.1: Traces of the sampled posterior distribution for between female
variance in sex ratio. The black trace is from a parameter expanded model, and
the red trace from a non-parameter expanded model.

8.0.7 Parameter expanded priors

The original aim of applying parameter expanded methods to Gibbs sampling
was to speed up the convergence and mixing properties of the chain. They
achieve this by introducing parameters that are not identified in the likeli-
hood, and for which all information comes from the prior distribution. By
placing priors on these parameters we can induce different prior distributions
for the variance components. These priors are all from the non-central scaled F-
distribution, which implies the prior for the standard deviation is a non-central
folded scaled t-distribution (Gelman, 2006). To use parameter expansion it is
necessary to specify the prior means (alpha.mu) and prior covariance matrix
(alpha.V) in the prior. Without loss of generality V can be set to one, so that
the prior for the variance (v) has density function:

> df(v/alpha.V, df1 = 1, df2 = nu, ncp = (alpha.mu^2)/alpha.V)

and the prior for the standard deviation:

CHAPTER 8. PARAMETER EXPANSION 126

> 2 * dt(sqrt(v)/sqrt(alpha.V), df = nu, ncp = alpha.mu/sqrt(alpha.V))

where v> 0.

To illustrate I’ll use the original Schools example from (Gelman, 2006)

> data(schools)

> head(schools)

school estimate sd
1 A 28.39 14.9
2 B 7.94 10.2
3 C -2.75 16.3
4 D 6.82 11.0
5 E -0.64 9.4
6 F 0.63 11.4

The response variable estimate is the relative effect of Scholastic Aptitude
Test coaching programs in 8 schools, and sd are the standard errors of the
estimate. In the original example Gelman focused on the standard deviation of
the between school effects and so we will place an improper flat prior on the
standard deviation:

> prior1 <- list(R = list(V = diag(schools$sd^2), fix = 1), G = list(G1 = list(V = 1e-10,

+ nu = -1)))

> m7a.1 <- MCMCglmm(estimate ~ 1, random = ~school, rcov = ~idh(school):units,

+ data = schools, prior = prior1, verbose = FALSE)

In this example there is information on the between school variance although
we only have a single estimate for each school. This is possible because the
within school variance was available for each school and we were able to fix the
residual variance for each school at this value (See Section 4.4). The posterior
distribution of the between school standard deviation is shown in Figure 8.2
with the flat prior shown as a solid line.

We can also use the inverse-gamma prior with scale and shape equal to 0.001:

> prior2 <- list(R = list(V = diag(schools$sd^2), fix = 1), G = list(G1 = list(V = 1,

+ nu = 0.002)))

> m7a.2 <- MCMCglmm(estimate ~ 1, random = ~school, rcov = ~idh(school):units,

+ data = schools, prior = prior2, verbose = FALSE)

but Figure 8.3 indicates that such a prior in this context may put too much
density and values close to zero.

For the final prior we have V=1, nu=1, alpha.mu=0 which is equivalent to a
proper Cauchy prior for the standard deviation with scale equal to

√
alpha.V.

Following Gelman.2006 we use a scale of 25:

CHAPTER 8. PARAMETER EXPANSION 127

between school standard deviation

F
re

qu
en

cy

0 10 20 30

0
20

40
60

80
10

0

Figure 8.2: Between school standard deviation in educational test scores, with
an improper uniform prior

> prior3 <- list(R = list(V = diag(schools$sd^2), fix = 1), G = list(G1 = list(V = 1,

+ nu = 1, alpha.mu = 0, alpha.V = 25^2)))

> m7a.3 <- MCMCglmm(estimate ~ 1, random = ~school, rcov = ~idh(school):units,

+ data = schools, prior = prior3, verbose = FALSE)

and Figure 8.4 shows that the prior may have better properties than the
inverse-gamma, and that the posterior is less distorted.

8.0.8 Binary response models

When analysing binary responses the residual variance is not identified in the
likelihood and without a prior the posterior is improper. If a weak prior is
placed on the residual variance then the chain appears to mix poorly and the
MCMC output often looks terrible. However, this poor mixing is in some ways
superficial. As discussed in section 5.2 we can rescale the location effects and
variances by the estimated residual variance to obtain the posterior distribution
for some fixed value of the actual residual variance. For example, we can refit
the sex ratio model using a residual variance fixed at ten rather than one:

CHAPTER 8. PARAMETER EXPANSION 128

between school standard deviation

F
re

qu
en

cy

0 10 20 30

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 8.3: Between school standard deviation in educational test scores, with
an inverse-gamma prior with shape and scale set to 0.001

> prior3b = list(R = list(V = 10, fix = 1), G = list(G1 = list(V = 1,

+ nu = 1, alpha.mu = 0, alpha.V = 1000)))

> m7b.3 <- MCMCglmm(sex ~ 1, random = ~dam, data = BTdata, family = "categorical",

+ prior = prior3b, verbose = FALSE)

The two models appear to give completely different posteriors (Figure 8.6)

> plot(mcmc.list(m7b.1$VCV[, 1], m7b.3$VCV[, 1]))

but rescaling indicates that they are very similar:

> c2 <- (16 * sqrt(3)/(15 * pi))^2

> plot(mcmc.list(m7b.1$VCV[, 1]/(1 + c2 * m7b.1$VCV[, "units"]),

+ m7b.3$VCV[, 1]/(1 + c2 * m7b.3$VCV[, "units"])))

The prior specification for the between mother variance is different in the two
models but Figure 8.6 suggests that the difference has little influence. However,
the mixing properties of the second chain are much better (van Dyk and Meng,
2001):

CHAPTER 8. PARAMETER EXPANSION 129

between school standard deviation

F
re

qu
en

cy

0 10 20 30

0
20

40
60

80
10

0
12

0

Figure 8.4: Between school standard deviation in educational test scores, with
a Cauchy prior with a scale of 25.

> effectiveSize(m7b.1$VCV[, 1]/(1 + c2 * m7b.1$VCV[, "units"]))

var1
213.5645

> effectiveSize(m7b.3$VCV[, 1]/(1 + c2 * m7b.3$VCV[, "units"]))

var1
466.903

Although the chain mixes faster as the residual variance is set to be larger,
numerical problem are often encountered because the latent variables can take
on extreme values. For most models a variance of 1 is safe, but care needs to be
taken so that the absolute value of the latent variable is less than 20 in the case
of the logit link and less than 7 for the probit link. If the residual variance is
not fixed but has an alternative proper prior placed on it then the Metropolis-
Hastings proposal distribution for the latent variables may not be well suited
to the local properties of the conditional distribution and the acceptance ratio

CHAPTER 8. PARAMETER EXPANSION 130

4000 8000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Iterations

0.0 0.5 1.0 1.5

0
5

10
15

N = 1000 Bandwidth = 0.01995

Figure 8.5: Between mother variation in sex ratio with the residual variance
fixed at 1 (black trace) and 10 (red trace).

may fluctuate widely around the optimal 0.44. This can be fixed by using the
slice sampling methods outlined in Damien et al. (1999) by passing slice=TRUE
to MCMCglmm. Slice sampling can also be more efficient even if the prior is fixed
at some value:

> m7b.4 <- MCMCglmm(sex ~ 1, random = ~dam, data = BTdata, family = "categorical",

+ prior = prior3b, verbose = FALSE, slice = TRUE)

> effectiveSize(m7b.4$VCV[, 1]/(1 + c2 * m7b.3$VCV[, "units"]))

var1
816.6899

CHAPTER 8. PARAMETER EXPANSION 131

4000 8000 12000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Iterations

0.00 0.10 0.20 0.30

0
10

20
30

N = 1000 Bandwidth = 0.007873

Figure 8.6: Between mother variation in sex ratio with the residual variance
fixed at 1 (black trace) and 10 (red trace) but with both estimates rescaled to
what would be observed under no residual variance.

Chapter 9

Simultaneity & Recursion

There are many situations where it would seem reasonble to put some apsect of
a response variable in as a predictor, and the only thing that stops us is some
(often vague) notion that this is a bad thing to do from a statistical point of
view. The approach appears to have a long history in economics but I came
across the idea in a paper written by Gianola and Sorensen (2004). The nota-
tion of this section, and indeed the sampling strategy employed in MCMCglmm
is derived from this paper.

Λ = I−
∑
l

S(l)λl (9.1)

Having XΛ =
[
S(1) S(2) . . .S(L−1) S(L)

]
we have

Λ = I−XΛ (λ⊗ I) (9.2)

where λ = [λ1 λ2 . . . λL−1 λL]>, and:

Y = XΛ(IL ⊗ y) (9.3)

S are square matrices of dimension n × n. Element s(l)
i,j = k sets up the

equation yi = λlkyj

Each S can be formed using the function sir which takes two formulae.
S = X1X>2 where X1 and X2 are the model matrices defined by the formulae
(with intercept removed). X1 and X>2 have to be conformable, and although
this could be achieved in many ways, one way to ensure this is to have categorical
predictors in each which have common factor levels. To give a concrete example,
lets take a sample of individuals measured a variable number of times for 2 traits:

> id <- sample(1:100, 100, replace = T)

> y1 <- rnorm(100)

132

CHAPTER 9. SIMULTANEITY & RECURSION 133

> y2 <- rnorm(100)

> y <- c(y1, y2)

> trait <- gl(2, 100)

Lets then imagine that each of these indiviuals interacts with another ran-
domly chosen individual - indexed in the vector id1

> id1 <- sample(id, 100, replace = T)

> id <- as.factor(c(id, id))

> id1 <- factor(c(id1, id1), levels = levels(id))

we will adopt a recursive model where by the phenotypes of indiviuals in the
id1 vector affect those in the id vector:

> S <- sir(~id1, ~id)

we can see that the first record for individual id[1]=78 is directly affected
by individual id1[1]=86’s traits:

> S[1, which(id == id1[1])]

58 77 87 158 177 187
1 1 1 1 1 1

i.e indiviual id1[1]=86 has 6 records.

We can build on this simple model by stating that only trait 2 affects trait
1:

> S <- sir(~id1:at.level(trait, 1), ~id:at.level(trait, 2))

> S[c(1, 101), which(id == id1[1])]

58 77 87 158 177 187
1 0 0 0 1 1 1
101 0 0 0 0 0 0

or that trait 2 affect both trait 2 and trait 1:

> S <- sir(~id1, ~id:at.level(trait, 2))

> S[c(1, 101), which(id == id1[1])]

58 77 87 158 177 187
1 0 0 0 1 1 1
101 0 0 0 1 1 1

> my.data <- data.frame(y1 = y1, y2 = y2, id = id[1:100], id1 = id1[1:100],

+ x = rnorm(100))

> m1 <- MCMCglmm(y1 ~ x + sir(~id1, ~id) + y2, data = my.data,

+ verbose = FALSE)

One problem is that e? the residual vector that appears in the likelihood for
the latent variable does not have a simple (block) diagonal structure:

e? ∼ N
(
0,Λ−1RΛ−>

)
(9.4)

Acknowledgments

MCMCglmm relies heavily on sparse matrix operations facilitated by the CSparse
library written by Tim Davis, whom I thank. Countless people have given me
feedback, suggestions and bug reports. In particular, I’d like to thank Shinichi
Nakagawa, Michael Morrissey & Laura Ross, and also Loeske Kruuk who pro-
vided funding for this work through a Leverhulme trust award. More recently
this work has been funded by NERC.

134

Bibliography

Barnard J, McCulloch R, Meng XL (2000). “Modeling covariance matrices in
terms of standard deviations and correlations, with application to shrinkage.”
Statistica Sinica, 10(4), 1281–1311.

Box GE, Tiao GC (1973). Bayesian Inference in Statistical Analysis. John
Wiley & Sons, New York.

Browne WJ, Steele F, Golalizadeh M, Green MJ (2009). “The use of simple
reparameterizations to improve the efficiency of Markov chain Monte Carlo
estimation for multilevel models with applications to discrete time survival
models.” Journal of the Royal Statistical Society Series A - Statistics in So-
ciety, 172, 579–598.

Bunch DS (1991). “Estimability in the Multinomial Probit Model.” Transporta-
tion Research Part B-Methodological, 25(1), 1–12.

Clutton-Brock TH, Pemberton JM (eds.) (2004). Soay Sheep: Dynamics and
Selection in an Island Population. Cambridge University Press.

Cowles MK (1996). “Accelerating Monte Carlo Markov chain convergence for
cumulative–link generalized linear models.” Statistics and Computing, 6(2),
101–111.

Damien P, Wakefield J, Walker S (1999). “Gibbs sampling for Bayesian non–
conjugate and hierarchical models by using auxiliary variables.” Journal of
the Royal Statistical Society Series B-Statistical Methodology, 61, 331–344.

Davis TA (2006). Direct Methods for Sparse Linear Systems. Fundamentals of
Algorithms. SIAM, Philadelphia.

Diggle P, Heagerty P, Liang K, Zeger S (2004). Analysis of Longitudinal Data.
Ii edition. Oxford University Press.

Garcia-Cortes LA, Sorensen D (2001). “Alternative implementations of Monte
Carlo EM algorithms for likelihood inferences.” Genetics Selection Evolution,
33(4), 443–452.

Gelman A (2006). “Prior distributions for variance parameters in hierarchical
models.” Bayesian Analysis, 1(3), 515–533.

135

BIBLIOGRAPHY 136

Gelman A, Carlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis.
Texts in Statistical Science, 2nd edition. Chapman & Hall.

Gelman A, van Dyk DA, Huang ZY, Boscardin WJ (2008). “Using redundant
parameterizations to fit hierarchical models.” Journal of Computational and
Graphical Statistics, 17(1), 95–122.

Gianola D, Sorensen D (2004). “Quantitative genetic models for describing
simultaneous and recursive relationships between phenotypes.” Genetics,
167(3), 1407–1424.

Haario H, Saksman E, Tamminen J (2001). “An adaptive Metropolis algorithm.”
Bernoulli, 7(2), 223–242.

Hadfield JD (2010). “MCMC methods for Multi–response Generalised Linear
Mixed Models: The MCMCglmm R Package.” Journal of Statistical Software,
33(2), 1–22.

Hadfield JD, Nakagawa S (2010). “General Quantitative Genetic Methods for
Comparative Biology: Phylogenies, Taxonomies, Meta-analysis and Multi-
trait Models for Continuous and Categorical Characters.” Journal of Evolu-
tionary Biology, 23(3), 494–508.

Hadfield JD, Nutall A, Osorio D, Owens IPF (2007). “Testing the phenotypic
gambit: phenotypic, genetic and environmental correlations of colour.” Jour-
nal of Evolutionary Biology, 20(2), 549–557.

Henderson CR (1976). “Simple Method for Computing Inverse of a Numerator
Relationship Matrix Used in Prediction of Breeding Values.” Biometrics,
32(1), 69–83.

Korsgaard IR, Andersen AH, Sorensen D (1999). “A useful reparameterisation
to obtain samples from conditional inverse Wishart distributions.” Genetics
Selection Evolution, 31(2), 177–181.

Liu CH, Rubin DB, Wu YN (1998). “Parameter expansion to accelerate EM:
The PX–EM algorithm.” Biometrika, 85(4), 755–770.

Liu JS, Wu YN (1999). “Parameter expansion for data augmentation.” Journal
of the American Statistical Association, 94(448), 1264–1274.

Liu XF, Daniels MJ (2006). “A new algorithm for simulating a correlation
matrix based on parameter expansion and reparameterization.” Journal of
Computational and Graphical Statistics, 15(4), 897–914.

Lynch M (1991). “Methods for the Analysis of Comparative Data in Evolution-
ary Biology.” Evolution, 45(5), 1065–1080.

McCulloch CE, Searle SR (2001). Generalized, Linear and Mixed Models. Wiley
Series in Probability and Statistics. John Wiley & Sons, New York.

BIBLIOGRAPHY 137

Meuwissen THE, Luo Z (1992). “Computing Inbreeding Coefficients in Large
Populations.” Genetics Selection Evolution, 24(4), 305–313.

Ovaskainen O, Rekola H, Meyke E, Arjas E (2008). “Bayesian methods for an-
alyzing movements in heterogeneous landscapes from mark–recapture data.”
Ecology, 89(2), 542–554.

Pletcher SD, Geyer CJ (1999). “The genetic analysis of age-dependent traits:
Modeling the character process.” Genetics, 153(2), 825–835.

Sibley CG, Ahlquist JE (1990). Phylogeny and classification of birds: a study
in molecular evolution. Yale University Press., New Haven.

Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002). “Bayesian
measures of model complexity and fit.” Proceedings of the Royal Society of
London Series B - Biological Sciences, 64(4), 583–639.

van Dyk DA, Meng XL (2001). “The art of data augmentation.” Journal of
Computational and Graphical Statistics, 10(1), 1–50.

	Introduction
	Contents
	Bayesian Statistics & MCMC
	Likelihood
	Maximum Likelihood (ML)
	Restricted Maximum Likelihood (REML)

	Prior Distribution
	Posterior Distribution
	Marginal Posterior Distribution

	MCMC
	Starting values
	Metrpolis-Hastings updates
	Gibbs Sampling
	Slice Sampling
	MCMC Diagnostics

	Improper Priors
	Flat Improper Prior
	Non-Informative Improper Prior

	GLMM
	Linear Model (LM)
	Linear Predictors

	Generalised Linear Model (GLM)
	Over-dispersion
	Multiplicative Over-dispersion
	Additive Over-dispersion

	Random effects
	Prediction with Random effects
	Categorical Data
	A note on fixed effect priors and covariances

	Categorical Random Interactions
	idh Variance Structure
	us Variance Structure
	Compound Variance Structures
	Heterogenous Residual Variance
	Contrasts and Covariances
	Priors for Covariance Matrices
	Priors for us structures
	Priors for idh structures
	Priors for cor structures

	Continuous Random Interactions
	Random Regression
	Expected Variances and Covariances
	us versus idh and mean centering
	Meta-analysis
	Splines

	Multi-response models
	Relaxing the univariate assumptions of causality
	Multinomial Models
	Zero-inflated Models
	Posterior predictive checks

	Hurdle Models
	Zero-altered Models

	Pedigrees and Phylogenies
	Pedigree and phylogeny formats
	Pedigrees
	Phylogenies

	The animal model and the phylogenetic mixed model

	Technical Details
	Model Form
	MCMC Sampling Schemes
	Updating the latent variables
	Updating the location vector
	Updating the variance structures
	Ordinal Models
	Deviance and DIC

	Parameter Expansion
	Variances close to zero
	Parameter expanded priors
	Binary response models

	Simultaneity & Recursion
	Acknowledgments
	Bibliography

