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Abstract

This introduction to the R package MFSAS is a (slightly) modified version of Childs
and Chen (2011), published in the Journal of Statistical Software.

Multilevel acceptance sampling for attributes is used to decide whether a lot from an
incoming shipment or outgoing production is accepted or rejected when the product has
multiple levels of product quality or multiple types of (mutually exclusive) possible defects.
This paper describes a package which provides the tools to create, evaluate, plot, and
display the acceptance sampling plans for such lots for both fixed and sequential sampling.
The functions for calculating cumulative probabilities for several common multivariate
distributions (which are needed in the package) are provided as well.

Keywords: multilevel quality control, multinomial distribution, multivariate hypergeometric
distribution, negative multinomial distribution, negative multivariate hypergeometric distri-
bution.

Acceptance sampling is used to decide whether a lot from a manufacturer should be accepted
or rejected by making an inference about the lot quality based on a sample. The product
quality can be described by classifying a single characteristic of the product using more than
two discrete levels in many circumstances. For example, a food product could be classified
as good, marginal, or bad, depending on the concentration of harmful microorganisms in
the product. In MIL-STD-105E (1989) the U.S. Department of Defense establishes military
standards for sampling plans in which products are classified as critical defective, major
defective, minor defective, or nondefective. Other examples of three or more classifications
can be found in Radhakrishnan and Sankar (2009), Cassady and Nachlas (2003), Bray, Lyon,
and Burr (1973), Newcombe and Allen (1988), Thatcher and Clarke (1978), and Shapiro and
Zaheda (1990).

In this paper we describe a new R (R Development Core Team 2011) package for multilevel
acceptance sampling in which two types of sampling plans are provided. The first type is
"fixed" sampling, in which a sample of size n is selected from the lot for inspection. After
inspection, the consumer will either accept or reject the lot, depending on the number of
defectives of each type that are found in the sample. Let k (≥ 2) denote the number of
different levels of product quality, k − 1 of which are considered to be defective items, and
one of which consists of nondefective or good items. Let Xi be the number of defectives of
type i in the sample, for i = 1, 2, . . . , k − 1, and let Xk denote the number of good items. A
fixed sampling plan requires a sample size n and rejection numbers ri with the property that
the lot will be rejected if Xi ≥ ri for any i in {1, 2, . . . , k− 1}. That is, the sample is rejected
if there are too many of any one type of defect.
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The second type of plan that we provide is for "sequential" sampling, in which items in
the lot are selected one at a time for inspection. A sequential sampling plan requires a
cell quota m for the good items and cell quotas ri for the each of the defective items, for
i = 1, 2, . . . , k − 1. Sampling continues until either the number of good items or any of the
k − 1 types of defectives reaches its respective quota. If the former occurs first, then the lot
is accepted; otherwise it is rejected.

Sequential sampling has the advantage that it will require, on average, less items to be in-
spected than for fixed sampling. This will be advantageous if the testing is expensive, or if
the units are destroyed in the testing. Fixed sampling, however, allows for units in the sample
to be tested simultaneously, whereas in sequential sampling the items have to be tested one
at a time. Therefore sequential sampling will not be as practical if the testing of items is time
consuming.

For each type of sampling plan we provide the option for the sampling to be with or without
replacement. These sampling modes are determined by specifying the type of distribution,
which can be either multinomial (for sampling with replacement) or hypergeom (for sampling
without replacement). When sampling is without replacement, the lot size N also needs to
be specified.

In addition, all plans require a matrix pd whose rows contain the proportions of each of the
k− 1 types of defectives in the lot. Thus the rows of the matrix pd determine different levels
of lot quality.

Once a sampling plan has been determined, the probability pa of accepting lots can be cal-
culated for various levels of lot quality to obtain the operating characteristic (OC) function.
For 2-level or 3-level acceptance sampling plans the OC function can then be plotted as a
curve or surface, respectively. Two particular levels of lot quality that are used to assess a
sampling plan are the producer’s quality level (PQL), which consists of proportions of each
type of defective considered by the producer to be acceptable, and the consumer’s quality level
(CQL), consisting of proportions of each type of defective considered by the consumer to be
unacceptable. Since the decision to accept or reject the lot is based only on a sample, there
is always the possibility that an incorrect decision is made. This would occur if a lot which
has the producer’s quality level is rejected by the plan, or if a lot which has the consumer’s
quality level is accepted by the plan. Then the probability of an incorrect decision is either

� The producer’s risk α, which is the probability that a lot which has the producer’s
quality level is rejected by the plan,

or

� The consumer’s risk β, which is the probability that a lot which has the consumer’s
quality level is accepted by the plan.

In other words, the producer’s risk α is the probability that a batch of high quality is rejected,
and the consumer’s risk β is the probability that a batch of low quality is accepted. These
two risks are analogous to the Type-I and Type-II errors in hypothesis testing.

For each of the four possible combinations of sampling type (fixed and sequential) and sam-
pling mode (with and without replacement) this package allows the user to create sampling
plans that have pre-specified maximum values for α and β, given values for the PQL and
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CQL. The user can also evaluate whether a given sampling plan meets specified maximum
values for α and β, to plot the OC curve or surface for 2-level or 3-level plans, and to display
acceptance probabilities for any given levels of lot quality.

A related R package called AcceptanceSampling was developed by Kiermeier (2008) and can
be used when the sample size is fixed and there are k = 2 levels of product quality. The
MFSAS package described here extends the functionality of the AcceptanceSampling package
by allowing for more than two levels of product quality, and by allowing the sampling type
to be sequential, in addition to fixed. However, fixed sampling in the MFSAS package is
restricted to single stage sampling for attributes, whereas the AcceptanceSampling package
allows the sampling to be multi-stage (in which the decision at each stage of sampling can
be to accept the lot, reject the lot, or take an additional sample of items) and provides
functionality for sampling inspection by variables, in addition to attributes. Further details
about the AcceptanceSampling package, as well as some background on acceptance sampling
in general can be found in Kiermeier (2008). For an up-to-date and complete reference on all
aspects of acceptance sampling the reader is referred to Schilling and Neubauer (2009).

1. The MFSAS package

The MFSAS package is based on formal S4 classes and methods. It provides functionality for
creating, evaluating, and plotting k-level acceptance sampling plans for attributes according
to different distributional assumptions.

1.1. Object classes

The package consists of a virtual class, Ocmult. In this class the two parameters are type

(the type of distribution) and stype (the type of sampling). The distributions that can be
specified for type are

� multinomial which is used if the number of items in the lot is assumed to be large
relative to the sample size, or if the sample is taken with replacement.

� hypergeom which is used when the lot is finite and the sample is taken without replace-
ment.

The types of sampling that can be specified with stype are

� fixed for fixed sampling, in which a sample of size n is selected from the lot. For
this type of sampling, calculations are based on either the multinomial or multivariate
hypergeometric distribution, depending on the value specified for type.

� sequential for sequential sampling, in which items are selected one at a time for in-
spection. Here calculations are based on either the negative multinomial or negative
multivariate hypergeometric distribution, depending on the value specified for type

(which is still either multinomial or hypergeom).

The two actual classes, Ocmult.multinomial and Ocmult.hypergeom are derived from Ocmult

(see Figure 1).
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Figure 1: Class structure.

Both classes contain the Ocmult virtual class, hence its slots. Objects of the two classes can
be generated by the Ocmult function which takes the following arguments.

rn: A vector of length k−1 consisting of rejection numbers for fixed sampling, or cell quotas
for the defective items for sequential sampling.

pd: A matrix with k−1 columns, whose rows contain the proportions of each type of defective
in the lot.

stype: The type of sampling.

type: The type of distribution on which the plans are based.

...: Additional arguments which depend on the distribution to be used and the type of
sampling. When type="hypergeom" the lot size N needs to be specified. Since pd*N is
a matrix containing the actual number of each type of defective in the lot, its entries
must be nonnegative integers. The stype="fixed" needs n (the sample size), and for
stype="seq" m (the cell quota for good items) must be provided.

Arguments for the Ocmult function for the different types of distribution and sampling are
summarized in Table 1. If the value of n is not specified then it takes the default value of 30.
The default value for N is 100. For the proportion of defectives pd the default value depends
on k, and on the type of distribution. These default values for pd are given in Table 2.

The new object is created and returned after the arguments are initialized and validated by
the initialize and validation functions which are part of the class building.

type stype Arguments Distribution

"multinomial" "fixed" rn, pd, n Multinomial

"sequential" rn, pd, m Negative Multinomial

"hypergeom" "fixed" rn, pd, n, N Multivariate Hypergeometric

"sequential" rn, pd, m, N Negative Multivariate Hypergeometric

Table 1: Arguments and sampling distributions for the Ocmult class.
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k Default Values for pd

2 All values of p ∈ {0, 0.01, 0.02, . . . , 0.1}
3 A 121× 2 matrix whose rows consist of all possible combinations

(p1, p2) where p1, p2 ∈ {0, 0.01, 0.02, . . . , 0.1}

> 3 type="multinom"

A 10×(k − 1) matrix whose ith row is given by
i

25k(k−1)c(1:(k-1)) (for i = 1, 2, . . . , 10)

(so that the ith row has a total of 2i% defectives)

type="hypergeom"

round(N*pd)/N, where pd is the same as for type="multinom"
(so that N*pd gives integer values)

Table 2: Default values for the proportion of defectives pd.

1.2. Initialize and validation methods

When creating an object, the initialize function creates the value for each argument according
to the specified distribution. Then the validation functions for the virtual class and actual
classes validate if the sampling plan makes sense for the specified distribution. The validation
functions for the virtual class applies to both actual classes because of inheritance.

The validation function for the virtual class Ocmult checks that the vector rn contains no
NAs, the values in the vector rn are greater than zero, the matrix pd contains no NAs, none
of the entries in the matrix pd are less than 0, the sum of the values in each row of the
matrix pd is not greater than 1, and that the length of the vector rn is equal to the number
of columns in the matrix pd.

In the validation functions for the actual class Ocmult.multinomial, the arguments for fixed
sampling are validated by checking that the sample size n has length one, is not NA, and is
greater than 0, and that none of the values in rn are greater than n. For sequential sampling,
the additional checks are that the cell quota m for good items has length one, is not NA, and
is greater than 0.

For both fixed and sequential sampling, the validation function for Ocmult.hypergeom per-
forms the same checks as for Ocmult.multinomial given above. In addition, the validation
function for Ocmult.hypergeom also checks that the lot size N is not NA, the value of N is
greater than n, the length of N is equal to 1, the entries in the matrix of pd*N are all integers,
and that the length of the vector rn is less then N. Note that this last condition is needed due
to the fact that the rn vector has length k − 1 and the number k of different types of items
in the lot can’t be bigger than the lot size N.

1.3. Plot methods

The OC function of 2-level acceptance sampling plans can be presented by plotting the 2-
dimensional OC curve corresponding to the sampling plans. In this package plot methods
have been created for the actual classes with the proportion of defectives pd on the horizontal
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axis and the probabilities of acceptance pa on the vertical axis in the graph. To plot the OC
curve corresponding to the sampling plan, only an object of the particular class needs to be
specified and all relevant details are extracted from the object (see Section 2 for examples).

The OC function of 3-level acceptance sampling plans can be presented by two types of plots,
persp and contour. In the persp methods for the actual classes, the proportions of defectives
pd are on the two horizontal axes x, y and the probabilities of acceptance pa are on the vertical
axis z in the graph. In the contour graph, the curves represent the probabilities of acceptance
pa for specific values corresponding the proportions of defectives pd on the two axes x, y. An
example is provided in Section 2.

1.4. Summary methods

The generic summary method is used to summarize the object. The show method gives a brief
summary of the supplied object. For fixed sampling it displays the type of distribution, the
sample size n, and the rejection number(s) rn. For sequential sampling, it displays the type
of distribution and the cell quotas m and rn for the good and the defective item(s). If the
type of distribution is hypergeometric, then the lot size N is also shown.

The summary method shows the same detail as the show method by default, but provides the
additional logical argument detail. If detail=TRUE, then all the information for the object
is printed, including all values of pd and the corresponding values of pa as well as ASN (average
sampling number) for sequential sampling.

Examples of these methods are given in Section 2.

1.5. Assessing a sampling plan

The function assess.multi can be used to assess whether a user-specified sampling plan can
meet certain criteria. The two types of criteria, the producer’s risk point (PRP) and the
consumer’s risk point (CRP), can be specified singly or together by the arguments PRP and
CRP, respectively.

PRP is a vector of length k which contains two parts. The first part consists of k− 1 elements
that are the proportions of each type of defective in the lot which are considered by the
producer to be acceptable, i.e., the PQL. The second part is the kth element which represents
a lower limit for the corresponding probability of acceptance. For the producer’s risk point to
be met, the acceptance probability of the plan must be at least equal to the value specified by
the user in the kth component of PRP when the proportions of defectives are equal to the values
specified by the user in the first k−1 components of PRP. This means that the producer’s risk
α for the user-specified plan must be at most equal to 1 minus the kth component of PRP for
the risk point to be met.

Similarly the CRP vector contains the consumer’s quality level (CQL) in the first k − 1 com-
ponents and an upper limit for the corresponding probability of acceptance in the last com-
ponent. For the consumer’s risk point to be met, the acceptance probability of the plan must
be at most equal to the value specified by the user in the kth component of CRP when the
proportions of defectives are equal to the values specified by the user in the first k − 1 com-
ponents of CRP. This means that the consumer’s risk β for the user-specified plan must be at
most equal to the kth component of CRP

The argument print in the function assess.multi indicates whether a summary of the
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assessment should be printed. The default value is print=TRUE. The remaining arguments
and parameters are the same as the classes, which are summarized in Table 1.

1.6. Finding a sampling plan

The function find.multi.plan allows the user to find a multilevel acceptance sampling plan
which meets specified producer and consumer risk points (see Section 1.5). Both points must
be specified in the function and the CRP must have worse quality than the PRP.

In the case of type="multinomial", only the PRP and CRP need to be specified. For type

="hypergeom", the additional argument N (the lot size) must be provided.

For fixed sampling, the function finds the smallest sample size n and the corresponding
rejection numbers for each type of defective which will meet the PRP and CRP requirements.
The process of finding a plan is through trial starting with n = 1 and increasing n until the
appropriate plan is found. The rejection numbers for the defectives change appropriately at
each step. For the sequential sampling, the function finds the smallest quota m for the good
items and the corresponding cell quotas for each type of defective, which will meet the PRP
and CRP requirements. The process is through trial starting with m = 1 and increasing m
until the appropriate plan is found. The cell quotas for defectives change appropriately at
each step but do not exceed the quota for the good items.

2. Examples

2.1. Creating Ocmult plans

A new object of the sampling plan can be created by using the Ocmult function. For example,
a sampling plan with n = 20 and rn = (2, 4, 3) for a large lot size can be obtained as follows:

R> library("MFSAS")

R> plan.mf <- Ocmult(rn = c(2, 4, 3), n = 30)

R> plan.mf

4-Level Acceptance Sampling Plan Multinomial:

Sample size: 30

Rej. Number(s): 2 4 3

Optionally, the types of defectives can be specified by using the built-in R function names to
name the components of the rn vector:

R> rn <- c(2, 4, 3)

R> names(rn) <- c("Critical", "Major", "Minor")

R> plan.mf <- Ocmult(rn = rn, n = 30)

R> plan.mf

4-Level Acceptance Sampling Plan Multinomial:

Sample size: 30

Critical Major Minor

Rej. Number(s): 2 4 3
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For a finite lot of size N = 100, type="hyper" should be specified. (Note that argument
matching is used for the type and stype arguments, so it is only necessary to enter enough
letters to uniquely identify the distribution and the type of sampling.) If the sample size is
n = 15, and if rn = (2, 3), then the sampling plan is obtained as:

R> plan.hf <- Ocmult(rn = c(2, 3), n = 15, N = 100, type = "hyper")

R> plan.hf

3-Level Acceptance Sampling Plan Multivariate Hypergeom: N = 100

Sample size: 15

Rej. Number(s): 2 3

Now consider a sequential sampling plan in which sampling continues until we obtain either
5 good items or 3 defectives. In this case we use stype="seq", and the target number m of
good items must be specified:

R> plan.ms <- Ocmult(rn = 3, m = 5, stype = "seq", pd = seq(0,

+ 0.99, 0.01))

R> plan.ms

2-Level Sequential Acceptance Sampling Plan Negative Multinomial:

Acc. Number: 5

Rej. Number(s): 3

If the defective items are classified as “Marginal” or “Bad” in a lot of size N = 100, and we
continue to sample until we obtain either 4 good items, 5 Marginal items, or 2 Bad items,
then the 3-level sequential sampling plan can be obtained as follows:

R> rn <- c(5, 2)

R> names(rn) <- c("Marginal", "Bad")

R> plan.hs <- Ocmult(rn = rn, m = 4, N = 100, type = "hyper",

+ stype = "seq")

R> plan.hs

3-Level Sequential Acceptance Sampling Plan Negative Multivariate Hypergeom: N = 100

Acc. Number: 4

Marginal Bad

Rej. Number(s): 5 2

2.2. Plotting sampling plans

The OC curve or surface can be plotted when the sampling plans are 2-level or 3-level.

For the 2-level sequential sampling plan with type="multinomial" given in the example
above, the plot is shown in Figure 2:

R> plot(plan.ms)
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Figure 2: OC curve for sequential sampling, with replacement.

All arguments for the standard plot method can be passed directly to the generic plot method
in this package. For the binomial and negative binomial distributions the OC curve is, by
default, plotted with both lines and points by using type="o" in the standard plot type. The
OC curve for the hypergeometric and negative hypergeometric distributions are, by default,
plotted only with points by using type="p" in the standard plot type.

The following example is for 2-level sampling plans for all four combinations of the sampling
type and distribution. Since the proportion of defectives in the population is typically small,
we use values of pd so that the probabilities of acceptance for proportions of defectives between
0 and 0.2 can be more clearly seen on the y-axis of the resulting graphs, which are given in
Figure 3.

R> x.mn <- Ocmult(n = 8, rn = 3, pd = seq(0, 0.22, 0.01))

R> x.mh <- Ocmult(n = 8, rn = 3, N = 50, type = "hyper",

+ pd = seq(0, 0.2, 0.02))

R> x.nmn <- Ocmult(rn = 2, m = 4, stype = "seq", pd = seq(0,

+ 0.22, 0.01))

R> x.nmh <- Ocmult(rn = 2, m = 4, N = 50, type = "hyper",

+ stype = "seq", pd = seq(0, 0.2, 0.02))

R> par(mfrow = c(1, 2))

R> main = "Fixed Sampling Plan \nn = 8, rn = 3"

R> plot(x.mn, type = "l", xlim = c(0, 0.2), ylim = c(0.75,

+ 1), main = main)

R> grid(lty = "solid")

R> points(x.mh@pd, x.mh@pa, col = 3)
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Figure 3: OC curve for fixed sampling and sequential sampling.

R> legend(0.01, 0.81, c("binomial", "hypergeometric"), col = c(1,

+ 3), lty = c(1, -1), pch = c(-1, 1), bg = "gray95")

R> main = "Sequential Sampling Plan \nm = 4, rn = 2"

R> plot(x.nmn, type = "l", xlim = c(0, 0.2), ylim = c(0.7,

+ 1), main = main)

R> grid(lty = "solid")

R> points(x.nmh@pd, x.nmh@pa, col = 3)

R> legend(0.01, 0.77, c("negative binomial", "negative hypergeometric"),

+ col = c(1, 3), lty = c(1, -1), pch = c(-1, 1), bg = "gray96")

From both graphs in Figure 3 we see that the probabilities for acceptance are higher for
the hypergeometric distribution than for the binomial. So, for example, if the lot size is
N = 50 and a proportion of defectives of 5% is considered acceptable, then sampling without
replacement will result in a smaller value for the producer’s risk. On the other hand, if a
proportion of defectives of 15% is considered unacceptable, then sampling without replacement
will result in a larger value for the consumer’s risk. This relationship between binomial and
hypergeometric probabilities will generally be true for small values of pd. But for large values
of pd the binomial probabilities will be higher.

For 3-level sampling plans, all arguments for the ‘persp’ and ‘contour’ methods can be passed
directly to the generic persp and contour functions in this package, respectively. For example,
in Figure 4 we use light blue color for the surface and 4 contour levels for the contour plot,

R> par(mfrow = c(1, 2))

R> px <- matrix(c(seq(0, 0.2, 0.01), seq(0, 0.8, 0.04)),

+ ncol = 2)

R> p.multinom <- Ocmult(n = 15, rn = c(2, 10), pd = px)
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Figure 4: OC surface and contour curve for fixed sampling without replacement, with N =
100, n = 15, rn = (2, 3).

R> persp(p.multinom, col = "light blue")

R> contour(p.multinom, nlevel = 4)

2.3. Sampling plan summary

The summary method gives a summary of the sampling plan with an option for detailed
output, as in the following example.

R> px <- matrix(c(seq(0, 0.5, 0.1), seq(0, 0.2, 0.04), seq(0,

+ 0.1, 0.02)), ncol = 3)

R> rn <- c(5, 4, 2)

R> names(rn) <- c("Critical", "Major", "Minor")

R> p.multinom <- Ocmult(n = 30, rn = rn, pd = px)

R> summary(p.multinom, detail = TRUE)

4-Level Acceptance Sampling Plan Multinomial:

Sample size: 30

Critical Major Minor

Rej. Number(s): 5 4 2

Detailed acceptance probabilities:

Critical Major Minor P.nondef P(accept)

0.0 0.00 0.00 1.00 1.0000000

0.1 0.04 0.02 0.84 0.6977166

0.2 0.08 0.04 0.68 0.1103746

0.3 0.12 0.06 0.52 0.0026117
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0.4 0.16 0.08 0.36 0.0000045

0.5 0.20 0.10 0.20 0.0000000

Note that pd is a matrix with k − 1 columns, where each row contains the proportions for
each type of defective in the lot. However, if a vector is provided, then it is converted to a
matrix by row according to the length of rn. The vector will be truncated (with a warning)
if its length is not an integer multiple of the length of rn. An example follows:

R> px <- c(0.02, 0.06, 0.04, 0.06, 0.08, 0.02, 0.02, 0.08,

+ 0.04, 0.1)

R> pmh <- Ocmult(rn = c(2, 3, 2, 4), n = 20, N = 100, pd = px,

+ type = "hyper")

Warning message:

In .local(.Object, ...) :

The length of the pd vector should be an integer

multiple of the length of the rn vector.

The truncated pd in use is:

0.02 0.06 0.04 0.06 0.08 0.02 0.02 0.08

2.4. Assessing a sampling plan

The assess.multi function is used to assess a sampling plan given the PRP and/or CRP
(see Section 1.5 for a description). For example, suppose that we have two types of defectives,
“Marginal” and “Bad”, and we want a 3-level plan to meet the producer’s risk point which has
an acceptance probability of at least 0.95 when the proportions of the 2 types of defectives
are equal to 0.05 and 0.06, and for the plan to also meet the consumer’s risk point, which has
an acceptance probability at most 0.1 when the proportions of the 2 types of defectives are
equal to 0.14, and 0.18. We can assess whether the sequential plan with cell quotas of m = 5
good items and rn = (2, 3) defectives meets the given PRP and CRP as follows:

R> rn <- c(2, 3)

R> names(rn) <- c("Marginal", "Bad")

R> assess.multi(rn = rn, m = 5, PRP = c(0.05, 0.06, 0.95),

+ CRP = c(0.14, 0.18, 0.1), stype = "seq")

3-Level Acceptance Sampling Plan Negative Multinomial:

Acc. Number: 5

Marginal Bad

Rej. Number(s): 2 3

Plan CANNOT meet desired risk point(s):

Marginal Bad RP P(accept) Plan P(accept) ASN

PRP 0.05 0.06 0.95 0.9564935 5.502048

CRP 0.14 0.18 0.10 0.6278492 5.922620
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The output shows that the plan cannot meet both risk points. Although the PRP is satisfied
since the actual value for P(accept) is 0.956, which exceeds minimum desired level of 0.95,
the value of P(accept) for CRP is 0.628 which is greater than the maximum allowable level of
0.1. For sequential sampling, the output also displays the average sampling number(s) ASN
for the risk point(s).

2.5. Finding a sampling plan

The find.multi.plan function provides a method to find a plan which will meet the spec-
ified risk points PRP and CRP. For example, the implementation of find.multi.plan for
sequential sampling from a lot of size 100 is:

R> find.multi.plan(PRP = c(0.06, 0.04, 0.06, 0.8), CRP = c(0.14,

+ 0.16, 0.2, 0.1), N = 100, type = "hyper", stype = "seq")

The optimal plan is:

4-Level Acceptance Sampling Plan Negative Multivariate Hypergeometric: N = 100

Acc. Number: 7

Rej. Number(s): 2 2 2

type 1 type 2 type 3 RP P(accept) Plan P(accept) ASN

PRP 0.06 0.04 0.06 0.8 0.8056496 7.589796

CRP 0.14 0.16 0.20 0.1 0.0814709 5.510192

This shows that, in order to meet both risk points, we should take observations one at a time
until we get either m = 7 good items, or 2 of any type of defective. If the former occurs
first then the lot should be accepted; otherwise it is rejected. The probability of acceptance
at the producer’s quality level is 0.806 and at the consumer’s quality level is 0.081. The
average sampling number is ASN = 7.6 at the producer’s quality level, and ASN = 5.5 at the
consumer’s quality level.

We can also find a plan with the same risk points PRP, CRP, and lot size as above but for
fixed sampling:

R> find.multi.plan(PRP = c(0.06, 0.04, 0.06, 0.8), CRP = c(0.14,

+ 0.16, 0.2, 0.1), N = 100, type = "hyper")

The optimal plan is:

4-Level Acceptance Sampling Plan Multivariate Hypergeometric: N = 100

Sample size: 11

Rej. Number(s): 2 2 3

type 1 type 2 type 3 RP P(accept) Plan P(accept)

PRP 0.06 0.04 0.06 0.8 0.8023994

CRP 0.14 0.16 0.20 0.1 0.0904328
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The above output shows that if we want to meet both risk points, we need a sample of size
n = 11. The lot is rejected if the sample contains at least 2 of either of the first two types
of defectives, or at least 3 of the third type of defective. Hence to meet both risk points, the
sequential sampling procedure requires on average a smaller sample size (ASN = 7.6) than
the corresponding fixed sample size procedure (n = 11).

3. Cumulative distribution functions

The MFSAS package also includes functions to calculate the cumulative distribution functions
(CDFs) for the multinomial, negative multinomial, multivariate hypergeometric, and negative
multivariate hypergeometric distributions which are required for the calculation of acceptance
probabilities for the multilevel sampling plans in this package. A brief description follows,
and the reader is referred to Johnson, Kotz, and Balakrishnan (1997) for further details about
these distributions.

pmultinom - The multinomial CDF

The multinomial distribution is used for sampling with replacement, or if the lot is large
compared to the sample size. If a sample of size n is drawn from a lot whose k classes have
probabilities p1, . . . , pk−1, pk, let X1, . . . , Xk−1, Xk denote the number of observations drawn
from each of the k classes. Let x be a vector of length k − 1 corresponding to the observed
number of items drawn from the first k − 1 classes, and let p be a vector containing the
probabilities for each of those k − 1 classes. Then the cumulative probability pmultinom(x,

size=n, prob=p) is given by

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

P (X1 = y1, . . . , Xk−1 = yk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

n!
y1!...yk−1!(n−

∑k−1
i=1 yi)!

py11 . . . p
yk−1

k−1

(
1−

k−1∑
i=1

pi

)(n−
k−1∑
i=1

yi

)

where the sum is over all values of y such that
k−1∑
i=1

yi ≤ n.

pmultinom is computed using recursive algorithms for the Dirichlet J function given in Sobel,
Uppuluri, and Frankowski (1977) and Sobel and Frankowski (2004).

pnmultinom - The negative multinomial CDF

The negative multinomial distribution is used for sequential sampling with replacement.
Suppose that the lot has k − 1 different types of failures, with corresponding probabilities
p1, . . . , pk−1 in each trial. Let X1, . . . , Xk−1 denote the number of failures of each type that
are selected in a sequence of trials before a target number m of successes is reached. (Note
that success corresponds to selecting a nondefective or good item.) Then pnmultinom(x, m,
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prob=p) is the cumulative probability:

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

P (X1 = y1, . . . , Xk−1 = yk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

(
k−1∑
i=1

yi+m−1

)
!

(m−1)!y1!...yk−1!
py11 . . . p

yk−1

k−1

(
1−

k−1∑
i=1

pi

)m

Note that for this distribution to makes sense, the probability of success cannot be zero.

Therefore we must have that
k−1∑
i=1

pi < 1.

When k = 2 this gives the negative binomial CDF, but is parameterized differently from
the pnbinom function in the stats package in which prob denotes the probability of success.
Therefore for scalars x, m, and p we have that pnmultinom(x,m,p) = pnbinom(x,m,1-p).

pnmultinom is computed using recursive algorithms for the Dirichlet D function given in
Sobel, Uppuluri, and Frankowski (1985) and Sobel and Frankowski (2004).

pmultihyper - The multivariate hypergeometric CDF

The multivariate hypergeometric distribution is used for sampling from a finite lot without
replacement. If a sample of size n is drawn from a lot of size N which has Mi objects of type i
(for i = 1, 2, . . . , k), let Xi be the number of objects of type i in the sample (for i = 1, 2, . . . , k).
Let x be a vector of length k−1 corresponding to the observed number of objects drawn from
each of the first k− 1 classes, and let M be a vector containing the sizes for each of those k− 1
classes. Then the cumulative probability pmultihyper(x, n, M, N) is given by,

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

P (X1 = y1, . . . , Xk−1 = yk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

(
M1
y1

)
...

(
Mk−1
yk−1

)N−
k−1∑
i=1

Mi

n−
k−1∑
i=1

yi


(N

n )

where the sum is over all values of y such that
k−1∑
i=1

yi ≤ n and n−
k−1∑
i=1

yi ≤ N −
k−1∑
i=1

Mi.

pmultihyper is computed using recursive algorithms for the Dirichlet HJ function given in
Sobel and Frankowski (1994).

Note that if Mi and N approach infinity in such a way that the ratio Mi/N = pi is fixed
(for i = 1, 2, . . . , k) then the multivariate hypergeometric density function converges to the
multinomial density function. Therefore the multinomial distribution can be used as an
approximation to the multivariate hypergeometric distribution when sampling is without re-
placement and the population size is large. When k = 2, a general guideline for the use of
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this approximation is that the population size N should be at least 20 times the sample size
n. For k > 2 the situation is not as straightforward, but error bounds for this approximation
can be found in Loh (1992). A numerical example illustrating this convergence is given in
Section 3.1 below.

pnmultihyper - The negative multivariate hypergeometric CDF

The negative multivariate hypergeometric distribution is used for sequential sampling from
a finite lot without replacement. Suppose that the lot of size N has k − 1 different types of
failures represented M1, . . . ,Mk−1 times, respectively. Let X1, . . . , Xk−1 denote the number
of failures of each type that are selected in a sequence of trials before a target number m of
successes is reached. Then pnmultihyper(x, m, M, N) is the cumulative probability:

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

P (X1 = y1, . . . , Xk−1 = yk−1)

=
x1∑

y1=0
· · ·

xk−1∑
yk−1=0

(
M1
y1

)
···
(

Mk−1
yk−1

)N−
k−1∑
i=1

Mi

m−1


 N

m−1+
k−1∑
i=1

yi


N−m+1−

k−1∑
i=1

Mi

N−m+1−
k−1∑
i=1

yi

where the sum is over all values of y such that
k−1∑
i=1

yi ≤ N −m.

Note that the target number of successes m cannot be bigger than the total number of
successes in the population. Therefore for this distribution to makes sense, we must have that

0 < m ≤ N −
k−1∑
i=1

Mi.

As with the multivariate hypergeometric and multinomial distributions, if Mi and N approach
infinity in such a way that the ratio Mi/N = pi is fixed (for i = 1, 2, . . . , k) then the negative
multivariate hypergeometric density function converges to the negative multinomial density
function. Therefore the negative multinomial distribution can be used as an approximation to
the negative multivariate hypergeometric distribution when sampling is without replacement
and the population size is large. See Section 3.1 below for an example.

pnmultihyper is computed using recursive algorithms for the Dirichlet HD function. See
Childs (2010) and Sobel and Frankowski (1995).

3.1. Examples of calculating cumulative probabilities

The following are examples of how to calculate the lower tail cumulative probabilities for each
of the above distributions.

� Multivariate hypergeometric distribution:

Suppose that a lot of size N = 100 contains products which are classified according to
4 levels of product quality, one of which is good items. If M = (8, 10, 14) is the number
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of items in the lot which fall into each of the three categories of defectives, and we draw
a sample of size n = 15 (without replacement) from the lot, then the probability that
the sample contains no more than 1 item with the first type of defect, no more than 3
items with the second type of defect, and no more than 4 items with the third type of
defect is calculated as follows:

R> X <- c(1, 3, 4)

R> n <- 15

R> M <- c(8, 10, 14)

R> N <- 100

R> pr <- pmultihyper(X, n, M, N)

R> pr

[1] 0.599595

� Multinomial distribution:

In the same setting as above, if the sampling is done with replacement, or equivalently
if the lot size is large and the proportions of each of the 3 types of defects in the lot
is given by p = (0.08, 0.10, 0.14), then the corresponding probability is calculated using
the multinomial CDF:

R> X <- c(1, 3, 4)

R> n <- 15

R> pr <- c(0.08, 0.1, 0.14)

R> cdf <- pmultinom(x = X, size = n, prob = pr)

R> cdf

[1] 0.5816256

Alternatively, since the multinomial distribution is the limiting form of the multivariate
hypergeometric distribution, the same result can be obtained using pmultihyper and
a numerical limiting process by letting M and N in the previous example approach
infinity in such a way that the ratio M/N = (0.08, 0.10, 0.14) is fixed:

R> for (i in c(0:6)) print(pmultihyper(X, n, 10^i * M, 10^i *

+ N))

[1] 0.599595

[1] 0.5832931

[1] 0.5817911

[1] 0.5816421

[1] 0.5816272

[1] 0.5816257

[1] 0.5816256

� Negative multivariate hypergeometric distribution:

Suppose that a lot of size N = 130 contains items with 4 different types of product
defects with M = (5, 7, 8, 3) of each type. If we select and inspect items one at a time
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(without replacement) until we obtain 5 good items then the probability that we end
up with no more than X = (2, 3, 4, 1) items with each type of defect (at the time when
the 5th good item is selected) is calculated as follows:

R> X <- c(2, 3, 4, 1)

R> m <- 5

R> M <- c(5, 7, 8, 3)

R> N <- 130

R> cdf <- pnmultihyper(X, m, M, N)

R> cdf

[1] 0.990882

� Negative multinomial distribution:

In the same setting as above, if the sampling is done with replacement then the corre-
sponding probability is calculated using the negative multinomial distribution:

R> X <- c(2, 3, 4, 1)

R> m <- 5

R> pr <- c(5/130, 7/130, 8/130, 3/130)

R> pnmultinom(x = X, m = m, prob = pr)

[1] 0.9860325

As with the multinomial distribution, the same result can be obtained using
pnmultihyper and a numerical limiting process:

R> for (i in c(0:6)) print(pnmultihyper(X, m, 10^i * M,

+ 10^i * N))

[1] 0.990882

[1] 0.9865194

[1] 0.9860812

[1] 0.9860374

[1] 0.986033

[1] 0.9860325

[1] 0.9860325

4. Discussion

The MFSAS package provides the user with the tools to create, evaluate, plot, and display
multilevel acceptance sampling plans for both fixed and sequential sampling. We have also
provided cumulative distribution functions for several discrete multivariate distributions.

Our sampling plans are currently restricted to one-stage sampling. Multi-stage sampling may
be incorporated into future versions of the package. For users interested in multi-stage fixed
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sampling plans for two levels of product quality, the AcceptanceSampling package can be
used.

We should also note that all of the procedures used for the calculations in this package are
exact (aside from possible rounding errors) and are written entirely in R. As a result there is
the potential for the calculations to be slow for large values of k, m, and n. Consequently the
find.multi.plan function can be slow if the probability given in the last component of the
producer’s risk point is too close to 1 or if the corresponding probability in CRP is too close
to 0. Therefore the package could be improved by developing and incorporating asymptotic
approximations into the calculations, or by using compiled code for the CDFs.

Our cumulative distribution functions currently do not have the option for calculating upper
tail probabilities. This option is available for most (if not all) of the currently available R
functions for discrete univariate CDFs. However, the relationship between upper and lower
tail probabilities is not as straight forward in the multivariate case. Efficient calculation of
upper tail probabilities would require a different (but related) set of recursive algorithms. As
a result of this, and the fact that upper tail probabilities are not needed in this package, our
CDFs do not currently have this functionality. Since upper tail probabilities may be useful
in other applications, this is another area in which the package can be improved.

Finally, we hope that practitioners will find this package useful and we welcome any other
suggestions for improvements, or for added functionality.
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