
A tutorial for the spatial Analysis of Principal

Components (sPCA) using adegenet 1.3-1

Thibaut Jombart

September 1, 2011

Abstract

This vignette provides a tutorial for the spatial analysis of principal
components (sPCA, [1]) using the adegenet package [2] for the R software
[3]. sPCA is first illustrated using a simple simulated dataset, and then
using empirical data of Chamois (Rupicapra rupicapra) from the Bauges
mountains (France). In particular, we illustrate how sPCA complements
classical PCA by being more powerful for retrieving non-trivial spatial
genetic patterns.

1

Contents

1 Introduction 3
1.1 Rationale of sPCA . 3
1.2 The spca function . 4
1.3 Contents of a spca object . 7
1.4 Graphical display of spca results 10

2 Case study: spatial genetic structure of the chamois in the
Bauges mountains 21
2.1 An overview of the data . 21
2.2 Summarising the genetic diversity 23
2.3 Mapping and testing PCA results 29
2.4 Multivariate tests of spatial structure 35
2.5 Spatial Principal Component Analysis 36

2

1 Introduction

This tutorial goes through the spatial Principal Component Analysis (sPCA,
[1]), a multivariate method devoted to the identification of spatial genetic
patterns. The purpose of this tutorial is to provide guidelines for the application
of sPCA as well as to illustrate its usefulness for the investigation of spatial
genetic patterns. After briefly going through the rationale of the method, we
introduce the different tools implemented for sPCA in adegenet. This technical
overview is then followed by the analysis of an empirical dataset which illustrates
the advantage of sPCA over classical PCA for investigating spatial patterns.

1.1 Rationale of sPCA

Mathematical notations used in this tutorial are identical to the original
publication [1]. The sPCA analyses a matrix of relative allele frequencies X
which contains genotypes or populations (later refered to as ’entities’) in rows
and alleles in columns. Spatial information is stored inside a spatial weighting
matrix L which contains positive terms corresponding to some measurement
(often binary) of spatial proximity among entities. Most often, these terms can
be derived from a connection network built upon a given algorithm (for instance,
pp.572-576 in [4]). This matrix is row-standardized (i.e., each of its rows sums
to one), and all its diagonal terms are zero. L can be used to compute the
spatial autocorrelation of a given centred variable x (i.e., with mean zero)
with n observations (x ∈ Rn) using Moran’s I [5, 6, 7]:

I(x) =
xTLx

xTx
(1)

In the case of genetic data, x contains frequencies of an allele. Moran’s
I can be used to measure spatial structure in the values of x: it is highly
positive when values of x observed at neighbouring sites tend to be similar
(positive spatial autocorrelation, referred to as global structures), while
it is strongly negative when values of x observed at neighbouring sites tend
to be dissimilar (negative spatial autocorrelation, referred to as local structures).

However, since it is standardized by the variance of x, Moran’s index
measures only spatial structures and not genetic variability. The sPCA defines
the following function to measure both spatial structure and variability in x:

C(x) = var(x)I(x) =
1

n
xTLx (2)

C(x) is highly positive when x has a large variance and exhibits a global
structure; conversely, it is largely negative when x has a high variance and
displays a local structure. This function is the criterion used in sPCA, which
finds linear combinations of the alleles of X (denoted Xv) decomposing C from
its maximum to its minimum value. Because C(Xv) is a product of variance
and autocorrelation, it is important, when interpreting the results, to detail

3

both components and to compare their value with their range of variation
(maximum attainable variance, as well as maximum and minimum I are known
analytically). A structure with a low spatial autocorrelation can barely be
interpreted as a spatial pattern; similarly, a structure with a low variance would
likely not reflect any genetic structure. We will later see how these information
can be retrieved from spca results.

1.2 The spca function

The simulated dataset used to illustrate this section has been analyzed in [1],
and corresponds to Figure 2A of the article. In adegenet, the matrix of alleles
frequencies previously denoted X exactly corresponds to the @tab slot of genind
or genpop objects:

> library(adegenet)
> library(adehabitat)
> data(spcaIllus)
> obj <- spcaIllus$dat2A
> obj

#####################
Genind object
#####################

- genotypes of individuals -

S4 class: genind
@call: old2new(object = obj)

@tab: 80 x 192 matrix of genotypes

@ind.names: vector of 80 individual names
@loc.names: vector of 20 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 192 columns of @tab
@all.names: list of 20 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

@other: a list containing: xy

> head(truenames(obj[loc = "L01"])$tab)

L01.1 L01.2 L01.3 L01.4 L01.5 L01.6 L01.7 L01.8 L01.9
0035 0 0 0.0 0 0.5 0.5 0 0.0 0.0
0352 0 0 0.5 0 0.5 0.0 0 0.0 0.0
0423 0 0 0.0 0 0.5 0.0 0 0.0 0.5
0289 0 0 0.0 0 0.0 0.5 0 0.0 0.5
0487 0 0 0.0 0 0.0 0.5 0 0.5 0.0
0053 0 0 0.0 0 0.5 0.5 0 0.0 0.0

The object obj is a genind object; note that here, we only displayed the table
for the first locus (loc="L01").

The function performing the sPCA is spca; it accepts a bunch of arguments,
but only the first two are mandatory to perform the analysis (see ?spca for
further information):

4

> args(spca)

function (obj, xy = NULL, cn = NULL, matWeight = NULL, scale = FALSE,
scale.method = c("sigma", "binom"), scannf = TRUE, nfposi = 1,
nfnega = 1, type = NULL, ask = TRUE, plot.nb = TRUE, edit.nb = FALSE,
truenames = TRUE, d1 = NULL, d2 = NULL, k = NULL, a = NULL,
dmin = NULL)

NULL

The argument obj is a genind/genpop object. By definition in sPCA, the
studied entities are georeferenced. The spatial information can be provided to
the function spca in several ways, the first being through the xy argument,
which is a matrix of spatial coordinates with ’x’ and ’y’ coordinates in columns.
Alternatively, these coordinates can be stored inside the genind/genpop object,
preferably as @other$xy, in which case the spca function will detect and use
this information, and not request an xy argument. Note that obj already
contains spatial coordinates at the appropriate place. Hence, we can use the
following command to run the sPCA (ask and scannf are set to FALSE to
avoid interactivity):

> mySpca <- spca(obj, ask = FALSE, type = 1, scannf = FALSE)

Note, however, that spatial coordinates are not directly used in sPCA: the
spatial information is included in the analysis by the spatial weighting matrix
L derived from a connection network (eq. 1 and 2). Technically, the spca

function can incorporate spatial weightings as a matrix (argument matWeight),
as a connection network with the classes nb or listw (argument cn), both
implemented in the spdep package. The function chooseCN is a wrapper for
different functions scattered across several packages implementing a variety
of connection networks. If only spatial coordinates are provided to spca,
chooseCN is called to construct an appropriate graph. See ?chooseCN for more
information. Note that many of the spca arguments are in fact arguments for
chooseCN: type, ask, plot.nb, edit.nb, d1, d2, k, a, and dmin. For instance,
the command:

> mySpca <- spca(obj, type = 1, ask = FALSE, scannf = FALSE)

performs a sPCA using the Delaunay triangulation as connection network
(type=1, see ?chooseCN), while the command:

> mySpca <- spca(obj, type = 5, d1 = 0, d2 = 2, scannf = FALSE)

computes a sPCA using a connection network which defines neighbouring
entities based on pairwise geographic distances (type=5), considering as
neighbours two entities whose distance between 0 (d1=0) and 2 (d2=2).

Another possibility is of course to provide directly a connection network (nb
object) or a list of spatial weights (listw object) to the spca function; this can
be done via the cn argument. For instance:

5

> myCn <- chooseCN(obj$other$xy, type = 6, k = 10, plot = FALSE)
> myCn

Neighbour list object:
Number of regions: 80
Number of nonzero links: 932
Percentage nonzero weights: 14.5625
Average number of links: 11.65

> class(myCn)

[1] "nb"

> mySpca2 <- spca(obj, cn = myCn, scannf = FALSE)

produces a sPCA using myCn (k = 10 nearest neighbours) as a connection
network.

When used interactively (scannf=TRUE), spca displays a barplot of
eigenvalues and asks the user for a number of positive axes (’first number of
axes’) and negative axes (’second number of axes’) to be retained. For the object
mySpca, this barplot would be (here we indicate in red the retained eigenvalue):

> barplot(mySpca$eig, main = "Eigenvalues of sPCA", col = rep(c("red",
+ "grey"), c(1, 100)))

Eigenvalues of sPCA

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

6

Positive eigenvalues (on the left) correspond to global structures, while negative
eigenvalues (on the right) indicate local patterns. Actual structures should
result in more extreme (positive or negative) eigenvalues; for instance, the object
mySpca likely contains one single global structure, and no local structure. If
one does not want to choose the number of retained axes interactively, the
arguments nfposi (number of retained factors with positive eigenvalues) and
nfnega (number of retained factors with negative eigenvalues) can be used.
Once this information has been provided to spca, the analysis is computed and
stored inside an object with the class spca.

1.3 Contents of a spca object

Let us consider a spca object resulting from the analysis of the object obj, using
a Delaunay triangulation (type=1) as connection network:

> mySpca <- spca(obj, type = 1, scannf = FALSE, plot.nb = FALSE,
+ nfposi = 1, nfnega = 0)
> class(mySpca)

[1] "spca"

> mySpca

##
spatial Principal Component Analysis
##

class: spca
$call: spca(obj = obj, scannf = FALSE, nfposi = 1, nfnega = 0, type = 1,

plot.nb = FALSE)

$nfposi: 1 axis-components saved
$nfnega: 0 axis-components saved
Positive eigenvalues: 0.2309 0.1118 0.09379 0.07817 0.06911 ...
Negative eigenvalues: -0.08421 -0.07376 -0.06978 -0.06648 -0.06279 ...

vector length mode content
1 $eig 79 numeric eigenvalues

data.frame nrow ncol content
1 $c1 192 1 principal axes: scaled vectors of alleles loadings
2 $li 80 1 principal components: coordinates of entities ('scores')
3 $ls 80 1 lag vector of principal components
4 $as 2 1 pca axes onto spca axes

$xy: matrix of spatial coordinates
$lw: a list of spatial weights (class 'listw')

other elements: NULL

An spca object is a list containing all required information about a performed
sPCA. Details about the different components of such a list can be found in the
spca documentation (?spca). The purpose of this section is to explicit how the
elements described in [1] are stored inside a spca object.

First, eigenvalues of the analysis are stored inside the $eig component as a
numeric vector stored in decreasing order:

> head(mySpca$eig)

7

[1] 0.23087862 0.11184721 0.09378750 0.07816561 0.06910536 0.06429596

> tail(mySpca$eig)

[1] -0.05480010 -0.06279067 -0.06647896 -0.06978457 -0.07375563 -0.08421213

> length(mySpca$eig)

[1] 79

> myPal <- colorRampPalette(c("red", "grey", "blue"))
> barplot(mySpca$eig, main = "A variant of the plot\n of sPCA eigenvalues",
+ col = myPal(length(mySpca$eig)))
> legend("topright", fill = c("red", "blue"), leg = c("Global structures",
+ "Local structures"))
> abline(h = 0, col = "grey")

A variant of the plot
 of sPCA eigenvalues

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Global structures
Local structures

The axes of the analysis, denoted v in eq. (4) [1] are stored as columns inside
the $c1 component. Each column contains loadings for all the alleles:

> head(mySpca$c1)

8

Axis 1
L01.1 1.268838e-02
L01.2 2.220446e-16
L01.3 -1.119979e-01
L01.4 -4.440892e-16
L01.5 -2.766095e-02
L01.6 -4.477031e-02

> tail(mySpca$c1)

Axis 1
L20.3 0.28715850
L20.4 0.01485180
L20.5 -0.01500353
L20.6 0.01659481
L20.7 -0.14260743
L20.8 -0.15388988

> dim(mySpca$c1)

[1] 192 1

The entity scores, denoted ψ = Xv in the article, are stored in columns in the
$li component:

> head(mySpca$li)

Axis 1
0035 -0.4367748
0352 -0.8052723
0423 -0.4337114
0289 0.1434650
0487 -0.4802931
0053 -0.5421831

> tail(mySpca$li)

Axis 1
1074 -0.06178196
1187 -0.08144162
1260 0.41491795
1038 0.25643986
1434 0.35618737
1218 0.21433977

> dim(mySpca$li)

[1] 80 1

The lag vectors of the scores can be used to better perceive global structures.
Lag vectors are stored in the $ls component:

> head(mySpca$ls)

9

Axis 1
0035 -0.7076732
0352 -0.6321654
0423 -0.4822952
0289 0.3947791
0487 -0.2803381
0053 -0.4848376

> tail(mySpca$ls)

Axis 1
1074 0.4930238
1187 -0.8384871
1260 0.6887072
1038 0.3665794
1434 0.3109197
1218 0.3329688

> dim(mySpca$ls)

[1] 80 1

Lastly, we can compare the axes of an classical PCA (denoted u in the paper)
to the axes of the sPCA (v). This is achieved by projecting u onto v, but this
projection is a particular one: because both u and v are centred to mean zero
and scaled to unit variance, the value of the projection simply is the correlation
between both axes. This information is stored inside the $as component:

> mySpca$as

Axis 1
PCA Axis1 -0.7363595
PCA Axis2 0.3395674

1.4 Graphical display of spca results

The information contained inside a spca object can be displayed in several
ways. While we have seen that a simple barplot of sPCA eigenvalues can give
a first idea of the global and local structures to be retained, we have also
seen that each eigenvalue can be decomposed into a variance and a spatial
autocorrelation (Moran’s I) component. This information is provided by the
summary function, but it can also be represented graphically. The corresponding
function is screeplot, and can be used on any spca object:

> screeplot(mySpca)

10

0.0 0.1 0.2 0.3 0.4 0.5

Variance

S
pa

tia
l a

ut
oc

or
re

la
tio

n
(I

)

λ1

λ2λ3λ4λ5λ6λ7λ8λ9
λ10λ11λ12λ13λ14λ15λ16

λ17λ18λ19λ20λ21
λ22
λ23

λ24λ25λ26λ27λ28λ29λ30λ31λ32λ33λ34λ35λ36λ37λ38λ39λ40λ41λ42λ43
λ44λ45

λ46λ47λ48λ49
λ50λ51λ52

λ53λ54λ55λ56λ57
λ58λ59
λ60λ61

λ62λ63λ64λ65λ66λ67
λ68λ69λ70λ71 λ72λ73λ74 λ75

λ76λ77λ78
λ79

−0.5

−0.1
0

0.3

0.6

1

Spatial and variance components of the eigenvalues

The resulting figure represents eigenvalues of sPCA (denoted λi with
i = 1, . . . , r, where λ1 is the highest positive eigenvalue, and λr is the highest
negative eigenvalue) according the their variance and Moran’s I components.
These eigenvalues are contained inside a rectangle indicated in dashed lines.
The maximum attainable variance by a linear combination of alleles is the
one from an ordinary PCA, indicated by the vertical dashed line on the right.
The two horizontal dashed lines indicate the range of variation of Moran’s
I, given the spatial weighting matrix that was used. This figure is useful to
assess whether a given score of entities contains relatively enough variability
and spatial structuring to be interpreted. For instance, here, λ1 clearly is the
largest eigenvalue in terms of variance and of spatial autocorrelation, and can
be well distinguished from all the other eigenvalues. Hence, only the first global
structure, associated to λ1, should be interpreted.

The global and local tests proposed in [1] can be used to reinforce the decision
of interpreting or not interpreting global and local structures. Each test can
detect the presence of one kind of structure. We can apply them to the object
obj, used in our sPCA:

> myGtest <- global.rtest(obj$tab, mySpca$lw, nperm = 99)
> myGtest

Monte-Carlo test
Call: global.rtest(X = obj$tab, listw = mySpca$lw, nperm = 99)

11

Observation: 0.01658103

Based on 99 replicates
Simulated p-value: 0.01
Alternative hypothesis: greater

Std.Obs Expectation Variance
4.000250e+00 1.291909e-02 8.380064e-07

> plot(myGtest)

Histogram of sim

sim

F
re

qu
en

cy

0.011 0.012 0.013 0.014 0.015 0.016 0.017

0
5

10
15

20

The produced object is a randtest object (see ?randtest), which is the class
of objects for Monte-Carlo tests in the ade4 package. As shown, such object
can be plotted using a plot function: the resulting figure shows an histogram of
permuted test statistics and indicates the observed statistics by a black dot and
a segment. Here, the plot clearly shows that the oberved test statistic is larger
than most simulated values, leading to a likely rejection of the null hypothesis
of absence of spatial structure. Note that because 99 permutations were used,
the p-value cannot be lower than 0.01. In practice, more permutations should
be used (like 999 or 9999 for results intended to be published).

The same can be done with the local test, which here we do not expect to
be significant:

> myLtest <- local.rtest(obj$tab, mySpca$lw, nperm = 99)
> myLtest

12

Monte-Carlo test
Call: local.rtest(X = obj$tab, listw = mySpca$lw, nperm = 99)

Observation: 0.01397349

Based on 99 replicates
Simulated p-value: 0.18
Alternative hypothesis: greater

Std.Obs Expectation Variance
1.024857e+00 1.320579e-02 5.611282e-07

> plot(myLtest)

Histogram of sim

sim

F
re

qu
en

cy

0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018

0
5

10
15

20
25

30

Once we have an idea of which structures shall be interpreted, we can try
to visualize spatial genetic patterns. There are several ways to do so. The first,
most simple approach is through the function plot (see ?plot.spca):

> plot(mySpca)

13

This figure displays various information, that we detail from the top to
bottom and from left to right (also see ?plot.spca). The first plot shows
the connection network that was used to define spatial weightings. The
second, third, and fourth plots are different representations of a score of
entities in space, the first global score being the default (argument axis).
In each, the values of scores ($li[,axis] component of the spca object)
are represented using black and white symbols (a variant being grey levels):
white for negative values, and black for positive values. The second plot
is a local interpolation of scores (function s.image in ade4), using grey
levels, with contour lines. The closer the contour lines are from each other,
the stepest the genetic differentiation is. The third plot uses different sizes
of squares to represent different absolute values (s.value in ade4): large
black squares are well differentiated from large white squares, but small
squares are less differentiated. The fourth plot is a variant using grey levels
(s.value in ade4, with ’greylevel’ method). Here, all the three representations
of the first global score show that genotypes are splitted in two genetical
clusters, one in the west (or left) and one in the east (right). The last two
plots of the plot.spca function are the two already seen displays of eigenvalues.

While the default plot function for spca objects provides a useful summary
of the results, more flexible tools are needed e.g. to map the principal
components onto the geographic space. This can be achieved using the

14

colorplot function. This function can summarize up to three scores at the
same time by translating each score into a channel of color (red, green, and
blue). The obtained values are used to compose a color using the RGB system.
See ?colorplot for details about this function. The original idea of such
representation is due to [8]. Despite the colorplot clearly is more powerful
to represent more than one score on a single map, we can use it to represent the
first global structure that was retained in mySpca:

> colorplot(mySpca, cex = 3, main = "colorplot of mySpca, first global score")

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

0 2 4 6 8 10

0
2

4
6

8
10

colorplot of mySpca, first global score

x

y

See examples in ?colorplot and ?spca for more examples of applications of
colorplot to represent sPCA scores.

Another common practice is interpolating principal components to get maps
of genetic clines. Note that it is crucial to perform this interpolation after the
analysis, and not before, which would add artefactual structures to the data.
Interpolation is easy to realize using interp from the akima package, and image,
or filled.contour to display the results:

> library(akima)
> x <- other(obj)$xy[, 1]
> y <- other(obj)$xy[, 2]

> temp <- interp(x, y, mySpca$li[, 1])
> image(temp)

15

Note that for better clarity, we can use the lagged principal scores ($ls) rather
than the original scores ($li); we also achieve a better resolution using specific
interpolated coordinates:

> interpX <- seq(min(x), max(x), le = 200)
> interpY <- seq(min(y), max(y), le = 200)
> temp <- interp(x, y, mySpca$ls[, 1], xo = interpX, yo = interpY)
> image(temp)

16

Alternatively, filled.contour can be used for the display, and a customized
color palette can be specified:

> myPal <- colorRampPalette(c("firebrick2", "white", "lightslateblue"))
> annot <- function() {
+ title("sPCA - interpolated map of individual scores")
+ points(x, y)
+ }
> filled.contour(temp, color.pal = myPal, nlev = 50, key.title = title("lagged \nscore 1"),
+ plot.title = annot())

17

Besides assessing spatial patterns, it is sometimes valuable to assess which
alleles actually exhibit the structure of interest. In sPCA, the contribution of
alleles to a specific structure is given by the corresponding squared loading. We
can look for the alleles contributing most to e.g. the first axis of sPCA, using the
function loadingplot (see ?loadingplot for a description of the arguments):

> myLoadings <- mySpca$c1[, 1]^2
> names(myLoadings) <- rownames(mySpca$c1)
> loadingplot(myLoadings, xlab = "Alleles", ylab = "Weight of the alleles",
+ main = "Contribution of alleles \n to the first sPCA axis")

18

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Contribution of alleles
 to the first sPCA axis

Alleles

W
ei

gh
t o

f t
he

 a
lle

le
s

L01.3

L01.8
L01.9L02.05L02.09

L03.4
L03.5L04.1

L04.2
L05.8

L05.9L06.07L06.08
L07.3

L08.06L08.07

L09.01

L09.05L09.06

L10.5

L11.4

L11.5L11.6

L12.4

L12.7

L12.8

L13.05

L13.06
L14.03L14.05

L14.11

L15.03L15.09

L16.02L16.10

L17.1

L17.2

L17.4

L17.6
L17.7

L18.05L18.06

L19.04

L19.05

L19.12

L20.3

L20.7
L20.8

See ?loadingplot for more information about this function, in particular for the
definition of the threshold value above which alleles are annotated. Note that
it is possible to also separate the alleles by markers, using the fac argument,
to assess if all markers have comparable contributions to a given structure.
In our case, we would only have to specify fac=obj@loc.fac; also note that
loadingplot invisibly returns information about the alleles whose contribution
is above the threshold. For instance, to identify the 5% of alleles with the
greatest contributions to the first global structure in mySpca, we need:

> temp <- loadingplot(myLoadings, threshold = quantile(myLoadings,
+ 0.95), xlab = "Alleles", ylab = "Weight of the alleles",
+ main = "Contribution of alleles \n to the first sPCA axis",
+ fac = obj$loc.fac, cex.fac = 0.6)
> temp

$threshold
95%

0.02345973

$var.names
[1] "L08.06" "L08.07" "L11.4" "L12.4" "L14.11" "L16.02" "L16.10" "L17.2"
[9] "L20.3" "L20.8"

$var.idx
L08.06 L08.07 L11.4 L12.4 L14.11 L16.02 L16.10 L17.2 L20.3 L20.8

71 72 99 105 130 146 154 157 187 192

$var.values
L08.06 L08.07 L11.4 L12.4 L14.11 L16.02 L16.10

0.03044687 0.03037709 0.06111338 0.03199067 0.02799529 0.02873923 0.02806079
L17.2 L20.3 L20.8

0.05793290 0.08246000 0.02368209

19

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Contribution of alleles
 to the first sPCA axis

Alleles

W
ei

gh
t o

f t
he

 a
lle

le
s

L01 L02 L03 L04 L05 L06 L07 L08 L09 L10L11L12 L13 L14 L15 L16 L17 L18 L19 L20

L08.06L08.07

L11.4

L12.4
L14.11 L16.02L16.10

L17.2

L20.3

L20.8

But to assess the average contribution of each marker, the boxplot probably
is a better tool:

> boxplot(myLoadings ~ obj$loc.fac, las = 3, ylab = "Contribution",
+ xlab = "Marker", main = "Contributions by markers \nto the first global score",
+ col = "grey")

20

●

●●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

L0
1

L0
2

L0
3

L0
4

L0
5

L0
6

L0
7

L0
8

L0
9

L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
8

L1
9

L2
0

0.
00

0.
02

0.
04

0.
06

0.
08

Contributions by markers
to the first global score

Marker

C
on

tr
ib

ut
io

n

2 Case study: spatial genetic structure of the
chamois in the Bauges mountains

The chamois (Rupicapra rupicapra) is a conserved species in France. The
Bauges mountains is a protected area in which the species has been recently
studied. One of the most important questions for conservation purposes relates
to whether individuals from this area form a single reproductive unit, or whether
they are structured into sub-groups, and if so, what causes are likely to induce
this structuring.

While field observations are very scarce and do not allow to answer this
question, genetic data can be used to tackle the issue, as departure from
panmixia should result in genetic structuring. The dataset rupica contains
335 georeferenced genotypes of Chamois from the Bauges mountains for 9
microsatellite markers, which we propose to analyse.

2.1 An overview of the data

We first load the data:

> data(rupica)
> rupica

21

#####################
Genind object
#####################

- genotypes of individuals -

S4 class: genind
@call: NULL

@tab: 335 x 55 matrix of genotypes

@ind.names: vector of 335 individual names
@loc.names: vector of 9 locus names
@loc.nall: number of alleles per locus
@loc.fac: locus factor for the 55 columns of @tab
@all.names: list of 9 components yielding allele names for each locus
@ploidy: 2
@type: codom

Optionnal contents:
@pop: - empty -
@pop.names: - empty -

@other: a list containing: xy mnt showBauges

rupica is a genind object, that is, the class of objects storing genotypes (as
opposed to population data) in adegenet. rupica also contains topographic
information about the sampled area, which can be displayed by calling
rupica$other$showBauges. Altitude maps are displayed using the adehabitat
package [9]. The spatial distribution of the sampling can be displayed as follows:

> rupica$other$showBauges()
> points(rupica$other$xy, col = "red", pch = 20)

22

This spatial distribution is clearly not random, but seems arranged into loose
clusters. However, superimposed samples can bias our visual assessment of the
spatial clustering. Use a two-dimensional kernel density estimation (function
s.kde2d) to overcome this possible issue.

> rupica$other$showBauges()
> s.kde2d(rupica$other$xy, add.plot = TRUE)
> points(rupica$other$xy, col = "red", pch = 20)

Unfortunately, geographical clustering is not strong enough to assign
unambiguously each individual to a group. Therefore, we need to carry all
analyses at the individual level, which precludes the use of most population
genetics tools.

2.2 Summarising the genetic diversity

As a prior clustering of genotypes is not known, we cannot employ usual FST -
based approaches to detect genetic structuring. However, genetic structure could
still result in a deficit of heterozygosity. Use the summary of genind objects to
compare expected and observed heterozygosity:

> rupica.smry <- summary(rupica)

Total number of genotypes: 335

Population sample sizes:

23

335

Number of alleles per locus:
L1 L2 L3 L4 L5 L6 L7 L8 L9
7 10 7 6 5 5 6 4 5

Number of alleles per population:
1
55

Percentage of missing data:
[1] 0

Observed heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.5880597 0.6208955 0.5253731 0.7582090 0.6597015 0.5283582 0.6298507 0.5552239
L9

0.4149254

Expected heterozygosity:
L1 L2 L3 L4 L5 L6 L7 L8

0.6076769 0.6532517 0.5314591 0.7259657 0.6601604 0.5706082 0.6412742 0.5473112
L9

0.4070709

> plot(rupica.smry$Hobs, rupica.smry$Hexp, main = "Observed vs expected heterozygosity")
> abline(0, 1, col = "red")

●

●

●

●

●

●

●

●

●

0.45 0.50 0.55 0.60 0.65 0.70 0.75

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Observed vs expected heterozygosity

rupica.smry$Hobs

ru
pi

ca
.s

m
ry

$H
ex

p

The red line indicate identity between both quantities. Observed heterozygosity
do not seem to deviate massively from theoretical expectations. This is
confirmed by a classical pairwise t-test::

> t.test(rupica.smry$Hexp, rupica.smry$Hobs, paired = TRUE, var.equal = TRUE)

24

Paired t-test

data: rupica.smry$Hexp and rupica.smry$Hobs
t = 0.9461, df = 8, p-value = 0.3718
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.01025068 0.02451318
sample estimates:
mean of the differences

0.007131251

We can seek a global picture of the genetic diversity among genotypes using a
Principal Component Analysis (PCA, function dudi.pca in the ade4 package).
The analysis is performed on a table of standardized alleles frequencies, obtained
by scaleGen (use the binomial scaling option). Note that we disable the scaling
option when performing the PCA, which would otherwise re-scale the data
and therefore erase the previous scaling of scaleGen. The function dudi.pca

displays a barplot of eigenvalues and asks for a number of retained principal
components:

> rupica.X <- scaleGen(rupica, method = "binom")
> rupica.pca1 <- dudi.pca(rupica.X, cent = FALSE, scale = FALSE,
+ scannf = FALSE, nf = 2)
> barplot(rupica.pca1$eig, main = "Rupica dataset - PCA eigenvalues",
+ col = heat.colors(length(rupica.pca1$eig)))

Rupica dataset − PCA eigenvalues

0.
0

0.
5

1.
0

1.
5

25

The output produced by dudi.pca is a dudi object. A dudi object contains
various information; in the case of PCA, principal axes (loadings), principal
components (synthetic variable), and eigenvalues are respectively stored in $c1,
$li, and $eig slots. Here is the content of the PCA:

> rupica.pca1

Duality diagramm
class: pca dudi
$call: dudi.pca(df = rupica.X, center = FALSE, scale = FALSE, scannf = FALSE,

nf = 2)

$nf: 2 axis-components saved
$rank: 45
eigen values: 1.561 1.34 1.168 1.097 1.071 ...

vector length mode content
1 $cw 55 numeric column weights
2 $lw 335 numeric row weights
3 $eig 45 numeric eigen values

data.frame nrow ncol content
1 $tab 335 55 modified array
2 $li 335 2 row coordinates
3 $l1 335 2 row normed scores
4 $co 55 2 column coordinates
5 $c1 55 2 column normed scores
other elements: cent norm

In general, eigenvalues represent the amount of genetic diversity — as
measured by the multivariate method being used — represented by each
principal component (PC). An abrupt decrease in eigenvalues is likely to
indicate the boundary between true patterns and non-interpretable structures.
In this case, the first two PCs may contain some relevant biological signal.

We can use s.label to display the two first components of the analysis.
Kernel density estimation (s.kde2d) is used for a better assessment of the
distribution of the genotypes onto the principal axes:

> s.label(rupica.pca1$li)
> s.kde2d(rupica.pca1$li, add.p = TRUE, cpoint = 0)
> add.scatter.eig(rupica.pca1$eig, 2, 1, 2)

26

 d = 5

 8

 63
 64 66
 67
 68 69

 70

 71
 72

 74
 76

 77 78
 81

 82

 83

 85
 86

 162
 163

 164

 165

 169

 170

 545
 556
 599 600

 616

 633
 636
 664

 665

 669
 734

 735

 862 863
 1170

 1171

 1429 1474 2000
 2002

 2004

 2051

 2053

 2057

 2158

 2183

 2198

 2307

 2309

 2317

 2319

 2320
 2321

 2323

 2329

 2332
 2333 2340

 2344
 2347

 2350

 2353

 2355

 2357

 2358

 2360

 2372 2373
 2374

 2379
 2401

 2402
 2406

 2408

 2412

 2418
 2443
 2454

 2459

 2469

 2485

 2498
 2503

 2508

 2514 2542 2546
 2562

 2564
 2569

 2577

 2581
 2588 2590

 2596
 2604

 2609
 2614

 2615

 2626 2628

 2632

 2638

 2643

 2645

 2672

 2680 2682
 2689

 2695

 2698

 2721
 5572

 5575

 5576

 5578

 5579
 5580 5583

 5584

 5852
 5853

 5855
 5856 5862

 5864

 5866

 5868

 5869
 5895

 5896

 5899

 5904

 5911
 5912

 5915
 5919

 5922 5924

 5938

 5939

 5948

 5951

 5954

 5956 5961
 5963

 5966 5969

 5971 5972

 5980

 5983 5988 5991
 5994 5995

 5996

 5997

 6001

 6004

 6007

 6008 6013

 6014 6016 6019
 6020

 6021

 6023

 6024
 6027

 6029

 6030

 6031 6033

 6034

 6035

 6036

 6037

 6043

 6045

 6071

 6087

 6100 6102

 6111

 6113 6132

 6133

 6142
 6146

 6147

 6148

 6149

 6150

 6151

 6152
 6153
 6154 6155
 6156 6157 6159

 6161

 6162
 6163

 6165

 6166

 6168 6184

 6214

 6216

 6217

 6218
 6219

 6220
 6222 6223

 6224 7072

 7077
 7090 7091
 7094
 7100

 7101

 7102

 7104

 7110

 7112

 7114

 7120

 7128

 7136

 7137

 7141

 7143 7161

 7173

 7174
 7175

 7176

 7178

 7179

 7185

 7186

 7188 7189
 7191

 7192
 7193 7194

 7197
 7199
 7203
 7206

 7207

 7209

 7222

 7224 7230

 7234 7237

 7239

 7241
 7244

 7379

 7380

 7382
 7385

 7402

 7435

 7438

 7443

 7451

 7456

 7466

 7469

 7473
 7474 7476 7477

 7478

 7480
 7483

 7484

 7485

 7496

 7497

 7500
 7501
 7502 7503 7505 7514

 7516

 7523
 7524

 7526

 7535

 7561

 7562

 7563
 7566

 7567 7570

 7630

 7634

 7635

 7636
 7639
 7641
 7642 7643
 7644 7647 7648

 7652

 7659

 7666

 7667

 7668

 6000b

 6160b

 6161b
 7101b

 7477b

 7480b

 7641b

 Eigenvalues

This scatterplot shows that the only structure identified by PCA points to a
few outliers. loadingplot confirms that this corresponds to the possession of a
few original alleles:

> loadingplot(rupica.pca1$c1^2)

27

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Loading plot

Variables

Lo
ad

in
gs

Bm203.221

Eth225.136Eth225.142

Eth225.146

Eth225.148

Eth225.151Hel1.120
Bm4505.260

Bm4505.266Bmc1009.230

Ilst030.161

Ilst030.173
Maf70.134Maf70.139

We can go back to the genotypes for the concerned markers (e.g., Bm203) to
check whether the highlighted genotypes are uncommon. truenames extracts
the table of allele frequencies from a genind object (restoring original labels for
markers, alleles, and individuals):

> X <- truenames(rupica)
> class(X)

[1] "matrix"

> dim(X)

[1] 335 55

> bm203.221 <- X[, "Bm203.221"]
> table(bm203.221)

bm203.221
0 0.00597014925373134 0.5

330 1 4

Only 4 genotypes possess one copy of the allele 221 of marker bm203 (the second
result corresponds to a replaced missing data). Which individuals are they?

> rownames(X)[bm203.221 == 0.5]

28

001 019 029 276
"8" "86" "600" "7385"

These are indeed our outliers. From the point of view of PCA, this would be
the only structure in the data. However, further analyses show that more is to
be seen...

2.3 Mapping and testing PCA results

A frequent practice in spatial genetics is mapping the first principal components
(PCs) onto the geographic space. ade4 ’s function s.value is well-suited to do
so, using black and white squares of variable size for positive and negative values.
To give a legend for this type of representation:

> s.value(cbind(1:11, rep(1, 11)), -5:5, cleg = 0)
> text(1:11, rep(1, 11), -5:5, col = "red", cex = 1.5)

 d = 2

−5 −4 −3 −2 −1 0 1 2 3 4 5

We apply this graphical representation to the first two PCs of the PCA:

> showBauges <- rupica$other$showBauges
> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[, 1], add.p = TRUE, cleg = 0.5)
> title("PCA - first PC", col.main = "yellow", line = -2, cex.main = 2)

29

> showBauges()
> s.value(rupica$other$xy, rupica.pca1$li[, 2], add.p = TRUE, csize = 0.7)
> title("PCA - second PC", col.main = "yellow", line = -2, cex.main = 2)

30

As we can see, none of these PCs seems to display a particular spatial pattern.
This visual assessment can be complemented by a test of spatial autocorrelation
in these PCs. This can be achieved using Moran’s I test. We use spdep’s
function moran.mc to perform these two tests. We first need to define the
spatial connectivity between the sampled individuals. For these data, spatial
connectivity is best defined as the overlap between home ranges of individuals,
modelled as disks with a radius of 1150m. chooseCN is used to create the
corresponding connection network:

> rupica.graph <- chooseCN(rupica$other$xy, type = 5, d1 = 0, d2 = 2300,
+ plot = FALSE, res = "listw")

The connection network should ressemble this:

> rupica.graph

Characteristics of weights list object:
Neighbour list object:
Number of regions: 335
Number of nonzero links: 18018
Percentage nonzero weights: 16.05525
Average number of links: 53.78507

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 335 112225 335 15.04311 1352.07

> plot(rupica.graph, rupica$other$xy)
> title("rupica.graph")

31

We perform Moran’s test for the first two PCs, and plot the results.

> pc1.mctest <- moran.mc(rupica.pca1$li[, 1], rupica.graph, 999)
> plot(pc1.mctest)

32

−0.02 0.00 0.02 0.04

0
10

20
30

40
50

Density plot of permutation outcomes

Monte−Carlo simulation of Moran's I
rupica.pca1$li[, 1]

D
en

si
ty

This result is surprisingly significant. Why is this? Moran’s plot (moran.plot)
represents the tested variable against its lagged vector; we apply it to the first
PC:

> moran.plot(rupica.pca1$li[, 1], rupica.graph)

33

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●●●●

●
●

●●

●

●

●

●

●●●●●
●

●●●●
●

●
●

●● ●●

●

●●●●
●●

●●●●
●

●
● ● ●

●●
●●
●
●●●●

●
●

●●●● ●●● ●●●●●● ●●● ●●●● ●●●
●●●

●
●
●●

●●●●●●
●

● ●

●
●●

●

●●●
●

●
●

●
●

●●●
●
●

●

●●
●● ●●

●
●
●

●●●●
●

●

●
●

●
●

●

●
●

●● ●●●●●●●
●●

●

●●
●

●
●●●

●●
●
●
●
●
●
●

●

●
●

●
●

●

●●
●
●●●●

●●●●●●●●●●

●●●

● ●● ●

●●

●●●●●●
●

●

●
●●

●●●●
●

● ●●
●
●
●●

●
●●

●

●

●●
●●●●●

●

●

●
●●

●
●● ●●●●

●

●●

●

●●
●
●
●●●

●●●●●● ●● ●

●
●●●

●
●●
●
●
●
●●●
●

●●●●
●●●

●
●
●

●
●●

●

●
●

●●
●●

●

●●
●●●●

●

●

−15 −10 −5 0

−
1.

5
−

1.
0

−
0.

5
0.

0

rupica.pca1$li[, 1]

sp
at

ia
lly

 la
gg

ed
 r

up
ic

a.
pc

a1
$l

i[,
 1

]

1

2

3

4

5
6

7

9

10
11

12151617

19

20

21

22
23

24

25

29

43

273

274275

276

Positive autocorrelation corresponds to a positive correlation between a variable
and its lag vector. Here, we can see that this relation is entirely driven by the
previously identified outliers, which turn out to be neighbours. This is therefore
a fairly trivial and uninteresting pattern. Results obtained on the second PC
are less surprisingly non-significant:

> pc2.mctest <- moran.mc(rupica.pca1$li[, 2], rupica.graph, 999)
> plot(pc2.mctest)

34

−0.04 −0.02 0.00 0.02 0.04

0
10

20
30

40

Density plot of permutation outcomes

Monte−Carlo simulation of Moran's I
rupica.pca1$li[, 2]

D
en

si
ty

2.4 Multivariate tests of spatial structure

So far, we have only tested the existence of spatial structures in the first two
principal components of a PCA of the data. Therefore, these tests only describe
one fragment of the data, and do not encompass the whole diversity in the
data. As a complement, we can use Mantel test (mantel.randtest) to test
spatial structures in the whole data, by assessing the correlation between genetic
distances and geographic distances. Pairwise Euclidean distances are computed
using dist. Perform Mantel test, using the scaled genetic data you used before
in PCA, and the geographic coordinates.

> mtest <- mantel.randtest(dist(rupica.X), dist(rupica$other$xy))
> plot(mtest, nclass = 30)

35

Histogram of sim

sim

F
re

qu
en

cy

−0.10 −0.05 0.00 0.05 0.10

0
20

40
60

Interestingly, this test turns out to be marginally significant, and would
encourage us to look for spatial patterns. This is the role of the spatial Principal
Component Analysis.

2.5 Spatial Principal Component Analysis

We apply an sPCA to the rupica dataset, using the connection network used
previously in Moran’s I tests:

> rupica.spca1 <- spca(rupica, cn = rupica.graph, scannf = FALSE,
+ nfposi = 2, nfnega = 0)
> barplot(rupica.spca1$eig, col = rep(c("red", "grey"), c(2, 1000)),
+ main = "rupica dataset - sPCA eigenvalues")

36

rupica dataset − sPCA eigenvalues

−
0.

00
5

0.
00

5
0.

01
5

0.
02

5

The principal components associated with the first two positive eigenvalues (in
red) shall be retained. The printing of spca objects is more explicit than dudi

objects, but named with the same conventions:

> rupica.spca1

##
spatial Principal Component Analysis
##

class: spca
$call: spca(obj = rupica, cn = rupica.graph, scannf = FALSE, nfposi = 2,

nfnega = 0)

$nfposi: 2 axis-components saved
$nfnega: 0 axis-components saved
Positive eigenvalues: 0.03018 0.01408 0.009211 0.006835 0.004529 ...
Negative eigenvalues: -0.008611 -0.006414 -0.004451 -0.003963 -0.003329 ...

vector length mode content
1 $eig 45 numeric eigenvalues

data.frame nrow ncol content
1 $c1 55 2 principal axes: scaled vectors of alleles loadings
2 $li 335 2 principal components: coordinates of entities ('scores')
3 $ls 335 2 lag vector of principal components
4 $as 2 2 pca axes onto spca axes

$xy: matrix of spatial coordinates
$lw: a list of spatial weights (class 'listw')

other elements: NULL

37

Unlike usual multivariate analyses, eigenvalues of sPCA are composite: they
measure both the genetic diversity (variance) and the spatial structure (spatial
autocorrelation measured by Moran’s I). This decomposition can also be used
to choose which principal component to interprete. The function screeplot

allows to display this information graphically:

> screeplot(rupica.spca1)

0.00 0.05 0.10 0.15 0.20 0.25

Variance

S
pa

tia
l a

ut
oc

or
re

la
tio

n
(I

)

λ1

λ2λ3λ4λ5λ6λ7λ8λ9λ10λ11λ12λ13λ14λ15λ16λ17λ18λ19λ20λ21λ22λ23λ24λ25λ26λ27λ28 λ29λ30λ31λ32λ33λ34 λ35λ36 λ37λ38λ39 λ40λ41 λ42λ43λ44 λ45

−0.4

00

0.3

0.7

1

Spatial and variance components of the eigenvalues

While λ1 indicates with no doubt a structure, the second eigenvalue, λ2 is less
clearly distinct from the successive values. Thus, we shall keep in mind this
uncertainty when interpreting the second principal component of the analysis.

We map the sPCA results using s.value and lagged scores ($ls) instead of
the PC ($li), which are a ’denoisified’ version of the PCs.

> showBauges()
> s.value(rupica$other$xy, rupica.spca1$ls[, 1], add.p = TRUE,
+ csize = 0.7)
> title("sPCA - first PC", col.main = "yellow", line = -2, cex.main = 2)

38

This first PC shows a remarkably clear structure opposing two high-altitude
areas separated by a valley, which is thought to be an obstacle to the dispersal
of Chamois (due to higher exposition to predation in low-altitude areas).

The second PC of sPCA shows an equally interesting structure:

> showBauges()
> s.value(rupica$other$xy, rupica.spca1$ls[, 2], add.p = TRUE,
+ csize = 0.7)
> title("sPCA - second PC", col.main = "yellow", line = -2, cex.main = 2)

39

The smaller clusters appearing on this map correspond to social units identified
by direct observation in the field. Therefore, this genetic structure is merely a
reflect of the social behaviour of these individuals.

Both genetic structures can be represented altogether using colorplot.
The final figure should ressemble this (although colors may change from one
computer to another):

> showBauges()
> colorplot(rupica$other$xy, rupica.spca1$ls, axes = 1:2, transp = TRUE,
+ add = TRUE, cex = 3)
> title("sPCA - colorplot of PC 1 and 2\n(lagged scores)", col.main = "yellow",
+ line = -2, cex = 2)

40

41

References

[1] Jombart T, Devillard S, Dufour A-B and Pontier D (2008) Revealing cryptic
spatial patterns in genetic variability by a new multivariate method. Heredity
101: 92-103.

[2] Jombart, T. (2008) adegenet: a R package for the multivariate analysis of
genetic markers. Bioinformatics 24: 1403-1405.

[3] R Development Core Team (2011) R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0.

[4] Legendre P and Legendre L (1998) Numerical ecology. Elsevier Science B.
V., Amsterdam.

[5] Moran P (1948). The interpretation of statistical maps. Journal of the Royal
Statistical Society, B 10: 243–251.

[6] Moran, P. (1950) Notes on continuous stochastic phenomena. Biometrika
37: 17–23.

[7] Cliff A and Ord J (1981) Spatial Processes. Model & Applications. London:
Pion.

[8] Menozzi P, Piazza A and Cavalli-Sforza LL (1978) Synthetic maps of human
gene frequencies in Europeans. Science 201: 786–792.

[9] Callenge C (2006) The package ”adehabitat” for the R software: a tool for
the analysis of space and habitat use by animals. Ecological Modelling 197:
516–519.

42

	Introduction
	Rationale of sPCA
	The spca function
	Contents of a spca object
	Graphical display of spca results

	Case study: spatial genetic structure of the chamois in the Bauges mountains
	An overview of the data
	Summarising the genetic diversity
	Mapping and testing PCA results
	Multivariate tests of spatial structure
	Spatial Principal Component Analysis

