
Cookbook—beadarrayMSV v1.0

Lars Gidskehaug∗

September 2, 2010

1 Installation

• Install R (>= 2.10.0) (http://www.r-project.org/)

• Install Bioconductor packages “Biobase”, “limma”, and “geneplotter”
(http://www.bioconductor.org/)
> source("http://bioconductor.org/biocLite.R")

> biocLite(c("Biobase","geneplotter","limma"))

• Install the interactive graphics package “GGobi” (http://www.ggobi.org/)

• Install packages “rggobi” and “beadarrayMSV” (http://cran.r-project.org/)
> install.packages(c("rggobi","beadarrayMSV"))

2 Data-files

sampleFile Text-file (e.g. tab-separated) with extra information about the sam-
ples, containing at least the columns Sample.ID, chip (Sentrix ID), and row
(Sentrix position)

beadFile Text-file (e.g. tab-separated) containing at least the columns Name,
SNP, Address, Address2, Norm.ID, and ILMN.Strand

Output files from scanner Access to directory containing the output files of
interest. Only the bead summary files are used, these have names such as
‘<chip>/ <chip> <row> <col> beadTypeFile.txt’ (col may be missing or
have value 1)

3 Pre-processing

• Load package
> library(beadarrayMSV)

• Load sample- and bead-info into data-frames
> sampleInfo <- read.table(sampleFile,...)

> beadInfo <- read.table(beadFile,...)

∗CIGENE, N-1432 Ås; lars.gidskehaug@umb.no

• Load bead-summary data into a BeadSetIllumina object. This class has the
required assay-data members R, se.R, G, se.G, and no.beads. The number
of samples is often limited 100-200 samples at the time, depending on the
assay and on computer specs
> BSDataRaw <- readBeadSummaryOutput(fullPaths=...

fullPaths[1:step], ...)

> BSDataRaw

> dim(BSDataRaw)

> assayData(BSDataRaw)$G[1:10,1:4]

> pData(BSDataRaw)[1:10,]

> sampleNames(BSDataRaw)[1:10]

> varMetadata(BSDataRaw)

> fData(BSDataRaw)[1:10,]

> featureNames(BSDataRaw)[1:10]

> fvarMetadata(BSDataRaw)

> ...

• You may plot the signal for specific arrays
> scatterArrays(BSDataRaw,...)

• Make indexes to sub-bead pools
> normInd <- getNormInd(...)

• Set pre-processing options and constants. Defaults will be suggested
> normOpts <- setNormOptions()

> normOpts <- setNormOptions(transf=‘None’,method=‘quantNorm’)

$shearInf1 c([TRUE], FALSE) Controls whether all beads are used to find
rotation/shearing-parameters or only Infinium I beads. The latter are
supposed to have zero intensity in one of the channels and may therefore
be well suited to find the baseline/origin

$minSize The signal along each channel is divided into bins, and a regres-
sion line is drawn through a (low) quantile of each bin in order to find
the best rotation. Bins with fewer than minSize members are not in-
cluded

$prob The quantile used to find regressor points for the homozygote asymp-
totes in the rotation/shearing

$nBins The number of bins used to find regressor points

$transf c(‘None’, [‘Root’], ‘Log’) The best transformation depends on the
data. In general, non-transformed data are highly heteroscedastic, but
they form clusters with little spread in theta (polar coordinates angle).
A log-transformation tends to efficiently separate noise from signal, but
it may lead to very imprecise values of theta. Some root-transformation
is often a good, intermediate alternative

$nthRoot Which root, default: 4

$dist c([‘euclidean’], ‘manhattan’, ‘minkowski’) The distance measure used
when transforming from cartesian to polar coordinates. The best mea-
sure highly depends on the transformation used.

$pNorm The norm of the minkowski distance

2

$method c(‘none’, ‘quantNorm’, [‘medianAF’], ‘linPeak’) Controls which
channel normalization to use in order to get comparable red and green
signal

quantNorm Quantile normalization—forces the channels into similar
distributions

medianAF Scales the red channel such that median(R
R+G

) ≈ 0.5

linPeak Scales each channel by its scale-th quantile

$scale Used with linPeak above

$nSD The number of standard deviations from the origin below which ev-
erything is regarded as noise

• See how the chosen pre-processing performs. Try different normOpts before
you decide on which is best for your data
> plotPreProcessing(BSDataRaw,...)

• Pre-process all the loaded samples
> BSData <- preprocessBeadSet(BSDataRaw,...)

• Create an AlleleSetIllumina object. This class holds the marker-information,
and has the required assay-data members intensity, theta, and SE. You may
also wish to include additional, available sample information
> BSRed <- createAlleleSet(BSData,beadInfo,normOpts)

> pData(BSRed) <- combine(pData(BSRed),sampleInfo[1:step,])

> BSRed

> ...

• Unless the full data-set is small enough to be loaded into a single R-session,
the pre-processed data must be written to files, and the rest of the data must
be loaded and pre-processed in turn. Filenames may be generated automat-
ically
> tag <- ‘1stRun’

> dataFiles <- makeFilenames(tag,normOpts,writePath)

> writeAlleleSet(dataFiles[1:4],BSRed,append=FALSE)

For subsequent genotype-calling, you may wish to try different clustering-
options without needing to pre-process the data again. Then you may up-
date the names of the result-files only
> dataFiles <- modifyExistingFilenames(dataFiles,tag,‘2ndRun’)

Write a for-loop in order to process the remaining samples and append the
results to the data-files. You may at this point remove samples with mostly
missing data if this is a problem.

4 Genotype calling

• Set genotype calling options and constants. Different defaults are suggested
depending on whether you specify largeSample=TRUE (e.g 3000 samples)
or FALSE (e.g. 100 samples)
> gO <- setGenoOptions(largeSample=FALSE)

> gO <- setGenoOptions(hwAlpha=1e-10,rotationLim=2)

3

$snpPerArrayLim Minimum ratio of non-NA markers per array

$arrayPerSnpLim Minimum ratio of non-NA arrays per marker

$ploidy c(‘di’, ‘tetra’, ‘tetra.red’) Only tetra has been extensively tested

di Classifies markers into MONO-a/-b, or SNP

tetra Classifies markers into MONO-a/-b, PSV, SNP, or MSV-a/-b/-5

tetra.red Classifies markers into MONO-a/-b, PSV, SNP, or MSV-a/-b

$filterLim Markers with range(theta) below this value are filtered away
(classified as MONO-filt). This is a quick way to discard homozygotes

$detectLim Markers with a ratio of called samples below this value is failed
(classified as FAIL). Note there will always be a a few samples that are
not called due to the way the cluster borders are estimated

$wSpreadLim The maximum allowed MAD along theta within a cluster

$devCentLim The maximum allowed deviation in theta between an ‘ideal’
and estimated cluster-center

$hwAlpha Significance level used in Hardy-Weinberg testing. Used to de-
tect if clustering has failed, and a low value (e.g. 1e-10) shold be used to
allow markers which deviates naturally from HW. This criterion should
be used with caution, or set to zero, if e.g. the sample contains animals
from different populations

$probsIndSE Optionally remove markers with standard errors above given
quantile from clustering. May be set to ‘NULL’

$afList At duplicated loci, the observed B allele-frequency (BAF) is in fact
the mean BAF across both paralogues. Several values of BAF at par-
alogue 1, as given in afList ∈ [0, 0.5], is tested, and the BAFs resulting
in the best HW-significance are chosen

$clAlpha Significance level controlling the extent of an ellipse superimposed
on each cluster, as estimated with a Hotelling’s T 2-test. Animals falling
outside the ellipse are not called, neither are animals within overlapping
ellipses

$rPenalty Scaling-factor for the intensity axis. A value of 1 means the in-
tensity is scaled with twice its median value, which gives approximately
equal weight to intensity and theta. A higher value means the inten-
sity is given less influence in the clustering (theta is relatively more
important)

$rotationLim Controls the allowed angle of clusters, as defined by Hotel-
ling’s ellipses. A high value means horizontal clusters, a value of one
means circular or angled 45 degrees, and a value close to zero means
upright, well separated clusters. It is the weighted mean over clusters
which is tested. Markers wrongly assigned as monomorphic often fail
this test

$minClLim Clusters below this minimum size are disregarded in the Hotel-
ling’s test (all animals in cluster are included)

$nSdOverlap Number of standard deviations used in a cluster overlap cri-
terion along theta. Two clusters overlap, resulting in a failed test, if
the cluster-centers ±nSdOverlap · wSpread overlap

4

$minBin The initial center-points are found from the peaks of a histogram
of theta. The peaks with less than minBin samples are discarded as
noise

$binWidth Histogram bin-width (controls smoothing/resolution)

• If the full data-set is too large for an R-session, load a specified number of
markers from the files constructed in section 3
> BSRed <- createAlleleSetFromFiles(dataFiles[1:4],...)

• Perform automatic clustering and genotype calling
> BSRed <- callGenotypes(BSRed,gO=gO)

• If pedigree-information is available, it can be represented in a separate pData-
column PedigreeID. This is in the format <p><mmm><fff><oo>, where
‘p’, ‘mmm’, ‘fff’ and ‘oo’ are unique identifiers for population, mother, fa-
ther, and individual within full-sib group, respectively. ‘000’ means founding
parent, ‘999’ means unknown. Pedigree-validation is a very powerful tool for
assessing the quality of the genotyping and the clustering
> BSRed <- validateCallsPedigree(BSRed)

• Plot some markers to assess the calls. If pedigree-validation has been per-
formed, violations will be given in yellow circles (parents) and crosses (off-
spring). Each cluster is given a unique colour depending on the B allele ratio,
from red (theta = 0) to green (theta = 1)
> plotGenotypes(BSRed,1:72)

Erroneous or strange calls should be scrutinized thoroughly at this point.
There is a function which moves through all the tests during genotype calling,
not failing any tests but returning the test outputs. This is a very important
tool which can be used to tune the parameters optimally for your data. A
scatter-plot for each attempted clustering displaying cluster centres (green)
and overlapping (orange) or outlying (red) samples is displayed
> dev.new()

> verboseRes <- callGenotypes.verboseTest(BSRed,...)

> print(verboseRes$fData)

> print(verboseRes$test)

• You may discard samples which fail repeatedly at this point. NB! You should
use a low value for the fail-ratio, as some samples fall just outside the cluster
borders for many markers. Discarding many of these samples will introduce
bias in the Hotelling’s T 2-test during subsequent genotype calling
> BSRed <- countFailedSNP(BSRed,inclPedErrors=TRUE)

> indGoodArrays <- pData(BSRed)$passRatio > 0.2

> plotGenotypes(BSRed,1:72,which(!indGoodArrays))

• Loop through the full set of markers and save the results
> for (i in seq(1,nrow(beadInfo),mStep)){
> ...

> writeAlleleSet(dataFiles[5:6],BSRed,append=i>1)

> ...

> }

5

• We recommend that you plot the genotypes for several markers within each
classification in order to get a good overview of the performance of the calls.
You may find that modification of gO is in order, as described above

• The calls are reported as the B allele ratios of the markers, nB
nA+nB

. These
may be translated into genotypes, either directly or from files
> BSRed <- translateThetaCombined(BSRed)

> translateThetaFromFiles(dataFiles,...)

5 Interactive clustering

• For erroneously called markers, or markers with bad cluster borders, there
is some support for interactive clustering
> BSManual <- callGenotypes.interactive(BSRed[indErr,],gO=gO)

• An AlleleSetIllumina object containing only the requested markers is pro-
duced. We recommend calling a limited number of markers at the time, as
the procedure can be time-consuming and the results are not returned un-
til all requested markers have been called. The manually updated calls are
subsequently incorporated into the main AlleleSetIllumina object
> BSRed <- assignToAlleleSet(BSRed,BSManual)

6 MSV-5 analysis

• When pedigree-information is available, and for samples with informative
meioses, MSV-5’s may be split into two individual paralogs and named ac-
cordingly. In the first step, this is performed for father and mother half-sib
families independently
> paraCalls <- unmixParalogues(BSRed[indMSV5,])

• For the following procedures, a linkage map is required. This is added to
the feature-data of a MultiSet instance containing confidently called SNPs
w.o. pedigree errors. (The MultiSet class of Bioconductor is similar to
BeadSetIllumina and AlleleSetIllumina, however with no required assay-data
members)
> featureData(BSSnp) <- combine(featureData(BSSnp), lMap)

The inherited allele from each parent is resolved where possible
> inheritP <- resolveInheritanceSNP(BSSnp)

• The next step is to map each paralogue to a chromosome by counting matches
to the SNPs in the map. A set of options is used to decide which comparisons
count as a match. Default options are suggested
> mergeOpts <- setMergeOptions()

$minC The number of matches on a chromosome is divided by the num-
ber of SNPs mapped to the chromosome. Only the two largest peaks
(chromosomes) are used, and only if they exceed minC

$noiseQuantile If the above value is NULL, this quantile of the 3rd largest
peaks across markers is used to estimate minC

6

$offspringLim The minimum number of offspring with equal inheritance
between a paralogue and a mapped SNP

$ratioLim The minimum ratio of offspring with equal inheritance between
a paralogue and a mapped SNP

$rngRF When searching for matches, also SNPs within ±rngRF map dis-
tance units of the mapped SNP is taken into account

• Count and plot the number of matches. The histograms often clearly reveal
which chromosome(s) the paralog(s) belong to
> chromHits <- locateParalogues(BSSnp,paraCalls,inheritP,...)

> plotCountsChrom(chromHits$cPerMarker,1:72)

• The paralogs are named according to which chromosome they map to, and
their (diploid) calls are returned. These may be translated into genotypes.
A summary of the resolved paralogs may be arranged in a data-frame
> mergedCalls <- assignParalogues(BSSnp,BSRed,...)

> alleleCalls <- translateTheta(mergedCalls$x,...)

> cCounts <- countChromosomes(...)

• A standalone mapping-software may be used to integrate the resolved par-
alogs into the linkage-map.

7

