
A CLUE for CLUster Ensembles

Kurt Hornik

2007-06-28

Abstract

Cluster ensembles are collections of individual solutions to a given
clustering problem which are useful or necessary to consider in a wide
range of applications. The R package clue provides an extensible compu-
tational environment for creating and analyzing cluster ensembles, with
basic data structures for representing partitions and hierarchies, and facil-
ities for computing on these, including methods for measuring proximity
and obtaining consensus and “secondary” clusterings.

1 Introduction

Cluster ensembles are collections of clusterings, which are all of the same “kind”
(e.g., collections of partitions, or collections of hierarchies), of a set of objects.
Such ensembles can be obtained, for example, by varying the (hyper)parameters
of a “base” clustering algorithm, by resampling or reweighting the set of objects,
or by employing several different base clusterers.

Questions of “agreement” in cluster ensembles, and obtaining “consensus”
clusterings from it, have been studied in several scientific communities for quite
some time now. A special issue of the Journal of Classification was devoted to
“Comparison and Consensus of Classifications” (Day, 1986) almost two decades
ago. The recent popularization of ensemble methods such as Bayesian model
averaging (Hoeting, Madigan, Raftery, and Volinsky, 1999), bagging (Breiman,
1996) and boosting (Friedman, Hastie, and Tibshirani, 2000), typically in a
supervised leaning context, has also furthered the research interest in using
ensemble methods to improve the quality and robustness of cluster solutions.
Cluster ensembles can also be utilized to aggregate base results over conditioning
or grouping variables in multi-way data, to reuse existing knowledge, and to
accommodate the needs of distributed computing, see e.g. Hornik (2005a) and
Strehl and Ghosh (2003a) for more information.

Package clue is an extension package for R (R Development Core Team,
2005) providing a computational environment for creating and analyzing clus-
ter ensembles. In Section 2, we describe the underlying data structures, and
the functionality for measuring proximity, obtaining consensus clusterings, and
“secondary” clusterings. Four examples are discussed in Section 3. Section 4
concludes the paper.

1

A previous version of this manuscript was published in the Journal of Sta-
tistical Software (Hornik, 2005b).

2 Data structures and algorithms

2.1 Partitions and hierarchies

Representations of clusterings of objects greatly vary across the multitude of
methods available in R packages. For example, the class ids (“cluster labels”)
for the results of kmeans() in base package stats, pam() in recommended pack-
age cluster (Rousseeuw, Struyf, Hubert, and Maechler, 2005; Struyf, Hubert,
and Rousseeuw, 1996), and Mclust() in package mclust (Fraley, Raftery, and
Wehrens, 2005; Fraley and Raftery, 2003), are available as components named
cluster, clustering, and classification, respectively, of the R objects re-
turned by these functions. In many cases, the representations inherit from
suitable classes. (We note that for versions of R prior to 2.1.0, kmeans() only
returned a “raw” (unclassed) result, which was changed alongside the develop-
ment of clue.)

We deal with this heterogeneity of representations by providing getters for
the key underlying data, such as the number of objects from which a clustering
was obtained, and predicates, e.g. for determining whether an R object repre-
sents a partition of objects or not. These getters, such as n_of_objects(), and
predicates are implemented as S3 generics, so that there is a conceptual, but no
formal class system underlying the predicates. Support for classed representa-
tions can easily be added by providing S3 methods.

2.1.1 Partitions

The partitions considered in clue are possibly soft (“fuzzy”) partitions, where
for each object i and class j there is a non-negative number µij quantifying the
“belongingness” or membership of object i to class j, with

∑
j µij = 1. For hard

(“crisp”) partitions, all µij are in {0, 1}. We can gather the µij into the member-
ship matrix M = [µij], where rows correspond to objects and columns to classes.
The number of classes of a partition, computed by function n_of_classes(),
is the number of j for which µij > 0 for at least one object i. This may be less
than the number of “available” classes, corresponding to the number of columns
in a membership matrix representing the partition.

The predicate functions is.cl_partition(), is.cl_hard_partition(),
and is.cl_soft_partition() are used to indicate whether R objects rep-
resent partitions of objects of the respective kind, with hard partitions as
characterized above (all memberships in {0, 1}). (Hence, “fuzzy clustering”
algorithms can in principle also give a hard partition.) is.cl_partition()

and is.cl_hard_partition() are generic functions; is.cl_soft_partition()
gives true iff is.cl_partition() is true and is.cl_hard_partition() is false.

For R objects representing partitions, function cl_membership() computes
an R object with the membership values, currently always as a dense mem-

2

bership matrix with additional attributes. This is obviously rather inefficient
for computations on hard partitions; we are planning to add “canned” sparse
representations (using the vector of class ids) in future versions. Function
as.cl_membership() can be used for coercing “raw” class ids (given as atomic
vectors) or membership values (given as numeric matrices) to membership ob-
jects.

Function cl_class_ids() determines the class ids of a partition. For soft
partitions, the class ids returned are those of the “nearest” hard partition ob-
tained by taking the class ids of the (first) maximal membership values. Note
that the cardinality of the set of the class ids may be less than the number of
classes in the (soft) partition.

Many partitioning methods are based on prototypes (“centers”). In typi-
cal cases, these are points pj in the same feature space the measurements xi
on the objects i to be partitioned are in, so that one can measure distance
between objects and prototypes, and e.g. classify objects to their closest proto-
type. Such partitioning methods can also induce partitions of the entire feature
space (rather than “just” the set of objects to be partitioned). Currently, pack-
age clue has only minimal support for this “additional” structure, providing a
cl_prototypes() generic for extracting the prototypes, and is mostly focused
on computations on partitions which are based on their memberships.

Many algorithms resulting in partitions of a given set of objects can be taken
to induce a partition of the underlying feature space for the measurements on
the objects, so that class memberships for “new” objects can be obtained from
the induced partition. Examples include partitions based on assigning objects
to their “closest” prototypes, or providing mixture models for the distribution
of objects in feature space. Package clue provides a cl_predict() generic for
predicting the class memberships of new objects (if possible).

Function cl_fuzziness() computes softness (fuzziness) measures for (en-
sembles) of partitions. Built-in measures are the partition coefficient and par-
tition entropy (e.g., Bezdek, 1981), with an option to normalize in a way that
hard partitions and the “fuzziest” possible partition (where all memberships are
the same) get fuzziness values of zero and one, respectively. Note that this
normalization differs from “standard” ones in the literature.

In the sequel, we shall also use the concept of the co-membership matrix
C(M) = MM ′, where ′ denotes matrix transposition, of a partition. For hard
partitions, an entry cij of C(M) is 1 iff the corresponding objects i and j are in
the same class, and 0 otherwise.

2.1.2 Hierarchies

The hierarchies considered in clue are total indexed hierarchies, also known as
n-valued trees, and hence correspond in a one-to-one manner to ultrametrics
(distances uij between pairs of objects i and j which satisfy the ultrametric
constraint uij = max(uik, ujk) for all triples i, j, and k). See e.g. Gordon (1999,
Page 69–71).

Function cl_ultrametric(x) computes the associated ultrametric from an

3

R object x representing a hierarchy of objects. If x is not an ultrametric, function
cophenetic() in base package stats is used to obtain the ultrametric (also
known as cophenetic) distances from the hierarchy, which in turn by default
calls the S3 generic as.hclust() (also in stats) on the hierarchy. Support for
classes which represent hierarchies can thus be added by providing as.hclust()

methods for this class. In R 2.1.0 or better (again as part of the work on clue),
cophenetic is an S3 generic as well, and one can also more directly provide
methods for this if necessary.

In addition, there is a generic function as.cl_ultrametric() which can be
used for coercing raw (non-classed) ultrametrics, represented as numeric vectors
(of the lower-half entries) or numeric matrices, to ultrametric objects. Finally,
the generic predicate function is.cl_hierarchy() is used to determine whether
an R object represents a hierarchy or not.

Ultrametric objects can also be coerced to classes "dendrogram" and
"hclust" (from base package stats), and hence in particular use the plot()

methods for these classes. By default, plotting an ultrametric object uses the
plot method for dendrograms.

Obtaining a hierarchy on a given set of objects can be thought of as trans-
forming the pairwise dissimilarities between the objects (which typically do not
yet satisfy the ultrametric constraints) into an ultrametric. Ideally, this ultra-
metric should be as close as possible to the dissimilarities. In some important
cases, explicit solutions are possible (e.g., “standard”hierarchical clustering with
single or complete linkage gives the optimal ultrametric dominated by or dom-
inating the dissimilarities, respectively). On the other hand, the problem of
finding the closest ultrametric in the least squares sense is known to be NP-
hard (Krivanek and Moravek, 1986; Krivanek, 1986). One important class of
heuristics for finding least squares fits is based on iterative projection on convex
sets of constraints (Hubert and Arabie, 1995).

Function ls_fit_ultrametric() follows de Soete (1986) to use an SUMT
(Sequential Unconstrained Minimization Technique; Fiacco and McCormick,
1968) approach in turn simplifying the suggestions in Carroll and Pruzansky
(1980). Let L(u) be the function to be minimized over all u in some constrained
set U—in our case, L(u) =

∑
(dij − uij)

2 is the least squares criterion, and
U is the set of all ultrametrics u. One iteratively minimizes L(u) + ρkP (u),
where P (u) is a non-negative function penalizing violations of the constraints
such that P (u) is zero iff u ∈ U . The ρ values are increased according to the
rule ρk+1 = qρk for some constant q > 1, until convergence is obtained in the
sense that e.g. the Euclidean distance between successive solutions uk and uk+1

is small enough. Optionally, the final uk is then suitably projected onto U .
For ls_fit_ultrametric(), we obtain the starting value u0 by “random

shaking” of the given dissimilarity object, and use the penalty function P (u) =∑
Ω(uij − ujk)2, were Ω contains all triples i, j, k for which uij ≤ min(uik, ujk)

and uik 6= ujk, i.e., for which u violates the ultrametric constraints. The uncon-
strained minimizations are carried out using either optim() or nlm() in base
package stats, with analytic gradients given in Carroll and Pruzansky (1980).
This “works”, even though we note however that P is not even a continuous

4

function, which seems to have gone unnoticed in the literature! (Consider an
ultrametric u for which uij = uik < ujk for some i, j, k and define u(δ) by
changing the uij to uij + δ. For u, both (i, j, k) and (j, i, k) are in the violation
set Ω, whereas for all δ sufficiently small, only (j, i, k) is the violation set for
u(δ). Hence, limδ→0 P (u(δ)) = P (u) + (uij − uik)2. This shows that P is dis-
continuous at all non-constant u with duplicated entries. On the other hand, it
is continuously differentiable at all u with unique entries.) Hence, we need to
turn off checking analytical gradients when using nlm() for minimization.

The default optimization using conjugate gradients should work reasonably
well for medium to large size problems. For “small” ones, using nlm() is usu-
ally faster. Note that the number of ultrametric constraints is of the order n3,
suggesting to use the SUMT approach in favor of constrOptim() in stats. It
should be noted that the SUMT approach is a heuristic which can not be guar-
anteed to find the global minimum. Standard practice would recommend to use
the best solution found in “sufficiently many” replications of the base algorithm.

2.1.3 Extensibility

The methods provided in package clue handle the partitions and hierarchies
obtained from clustering functions in the base R distribution, as well as packages
RWeka (Hornik, Hothorn, and Karatzoglou, 2006), cba (Buchta and Hahsler,
2005), cclust (Dimitriadou, 2005), cluster, e1071 (Dimitriadou, Hornik, Leisch,
Meyer, and Weingessel, 2005), flexclust (Leisch, 2006), flexmix (Leisch, 2004),
kernlab (Karatzoglou, Smola, Hornik, and Zeileis, 2004), and mclust (and of
course, clue itself).

Extending support to other packages is straightforward, provided that clus-
terings are instances of classes. Suppose e.g. that a package has a function
glvq() for “generalized” (i.e., non-Euclidean) Learning Vector Quantization
which returns an object of class "glvq", in turn being a list with component
class_ids containing the class ids. To integrate this into the clue framework,
all that is necessary is to provide the following methods.

> cl_class_ids.glvq <- function(x) as.cl_class_ids(x$class_ids)

> is.cl_partition.glvq <- function(x) TRUE

> is.cl_hard_partition.glvq <- function(x) TRUE

2.2 Cluster ensembles

Cluster ensembles are realized as lists of clusterings with additional class in-
formation. All clusterings in an ensemble must be of the same “kind” (i.e.,
either all partitions as known to is.cl_partition(), or all hierarchies as
known to is.cl_hierarchy(), respectively), and have the same number of
objects. If all clusterings are partitions, the list realizing the ensemble has
class "cl_partition_ensemble" and inherits from "cl_ensemble"; if all clus-
terings are hierarchies, it has class "cl_hierarchy_ensemble" and inherits from
"cl_ensemble". Empty ensembles cannot be categorized according to the kind
of clusterings they contain, and hence only have class "cl_ensemble".

5

Function cl_ensemble() creates a cluster ensemble object from clusterings
given either one-by-one, or as a list passed to the list argument. As unclassed
lists could be used to represent single clusterings (in particular for results from
kmeans() in versions of R prior to 2.1.0), we prefer not to assume that an
unnamed given list is a list of clusterings. cl_ensemble() verifies that all given
clusterings are of the same kind, and all have the same number of objects. (By
the notion of cluster ensembles, we should in principle verify that the clusterings
come from the same objects, which of course is not always possible.)

The list representation makes it possible to use lapply() for computations
on the individual clusterings in (i.e., the components of) a cluster ensemble.

Available methods for cluster ensembles include those for subscripting, c(),
rep(), print(), and unique(), where the last is based on a unique() method
for lists added in R 2.1.1, and makes it possible to find unique and duplicated
elements in cluster ensembles. The elements of the ensemble can be tabulated
using cl_tabulate().

Function cl_boot() generates cluster ensembles with bootstrap replicates
of the results of applying a “base” clustering algorithm to a given data set.
Currently, this is a rather simple-minded function with limited applicability,
and mostly useful for studying the effect of (uncontrolled) random initializa-
tions of fixed-point partitioning algorithms such as kmeans() or cmeans() in
package e1071. To study the effect of varying control parameters or explicitly
providing random starting values, the respective cluster ensemble has to be gen-
erated explicitly (most conveniently by using replicate() to create a list lst

of suitable instances of clusterings obtained by the base algorithm, and using
cl_ensemble(list = lst) to create the ensemble). Resampling the training
data is possible for base algorithms which can predict the class memberships
of new data using cl_predict (e.g., by classifying the out-of-bag data to their
closest prototype). In fact, we believe that for unsupervised learning meth-
ods such as clustering, reweighting is conceptually superior to resampling, and
have therefore recently enhanced package e1071 to provide an implementation
of weighted fuzzy c-means, and package flexclust contains an implementation of
weighted k-means. We are currently experimenting with interfaces for providing
“direct” support for reweighting via cl_boot().

2.3 Cluster proximities

2.3.1 Principles

Computing dissimilarities and similarities (“agreements”) between clusterings
of the same objects is a key ingredient in the analysis of cluster ensembles.
The “standard” data structures available for such proximity data (measures of
similarity or dissimilarity) are classes "dist" and "dissimilarity" in pack-
age cluster (which basically, but not strictly, extends "dist"), and are both not
entirely suited to our needs. First, they are confined to symmetric dissimilarity
data. Second, they do not provide enough reflectance. We also note that the
Bioconductor package graph (Gentleman and Whalen, 2005) contains an effi-

6

cient subscript method for objects of class "dist", but returns a “raw” matrix
for row/column subscripting.

For package clue, we use the following approach. There are classes for
symmetric and (possibly) non-symmetric proximity data ("cl_proximity" and
"cl_cross_proximity"), which, in addition to holding the numeric data, also
contain a description “slot” (attribute), currently a character string, as a first
approximation to providing more reflectance. Internally, symmetric proximity
data are store the lower diagonal proximity values in a numeric vector (in row-
major order), i.e., the same way as objects of class "dist"; a self attribute
can be used for diagonal values (in case some of these are non-zero). Sym-
metric proximity objects can be coerced to dense matrices using as.matrix().
It is possible to use 2-index matrix-style subscripting for symmetric proxim-
ity objects; unless this uses identical row and column indices, it results in a
non-symmetric proximity object.

This approach “propagates” to classes for symmetric and (possibly) non-
symmetric cluster dissimilarity and agreement data (e.g., "cl_dissimilarity"
and "cl_cross_dissimilarity" for dissimilarity data), which extend the re-
spective proximity classes.

Ultrametric objects are implemented as symmetric proximity objects with
a dissimilarity interpretation so that self-proximities are zero, and inherit from
classes "cl_dissimilarity" and "cl_proximity".

Providing reflectance is far from optimal. For example, if s is a similarity ob-
ject (with cluster agreements), 1 - s is a dissimilarity one, but the description
is preserved unchanged. This issue could be addressed by providing high-level
functions for transforming proximities.

Cluster dissimilarities are computed via cl_dissimilarity() with synop-
sis cl_dissimilarity(x, y = NULL, method = "euclidean"), where x and
y are cluster ensemble objects or coercible to such, or NULL (y only). If y is
NULL, the return value is an object of class "cl_dissimilarity" which con-
tains the dissimilarities between all pairs of clusterings in x. Otherwise, it is
an object of class "cl_cross_dissimilarity" with the dissimilarities between
the clusterings in x and the clusterings in y. Formal argument method is either
a character string specifying one of the built-in methods for computing dissimi-
larity, or a function to be taken as a user-defined method, making it reasonably
straightforward to add methods.

Function cl_agreement() has the same interface as cl_dissimilarity(),
returning cluster similarity objects with respective classes "cl_agreement" and
"cl_cross_agreement". Built-in methods for computing dissimilarities may
coincide (in which case they are transforms of each other), but do not necessar-
ily do so, as there typically are no canonical transformations. E.g., according to
needs and scientific community, agreements might be transformed to dissimilar-
ities via d = − log(s) or the square root thereof (e.g., Strehl and Ghosh, 2003b),
or via d = 1− s.

7

2.3.2 Partition proximities

When assessing agreement or dissimilarity of partitions, one needs to consider
that the class ids may be permuted arbitrarily without changing the under-
lying partitions. For membership matrices M , permuting class ids amounts
to replacing M by MΠ, where Π is a suitable permutation matrix. We note
that the co-membership matrix C(M) = MM ′ is unchanged by these trans-
formations; hence, proximity measures based on co-occurrences, such as the
Katz-Powell (Katz and Powell, 1953) or Rand (Rand, 1971) indices, do not
explicitly need to adjust for possible re-labeling. The same is true for mea-
sures based on the “confusion matrix” M ′M̃ of two membership matrices M
and M̃ which are invariant under permutations of rows and columns, such as
the Normalized Mutual Information (NMI) measure introduced in Strehl and
Ghosh (2003a). Other proximity measures need to find permutations so that
the classes are optimally matched, which of course in general requires exhaustive
search through all k! possible permutations, where k is the (common) number of
classes in the partitions, and thus will typically be prohibitively expensive. For-
tunately, in some important cases, optimal matchings can be determined very
efficiently. We explain this in detail for “Euclidean” partition dissimilarity and
agreement (which in fact is the default measure used by cl_dissimilarity()

and cl_agreement()).
Euclidean partition dissimilarity (Dimitriadou, Weingessel, and Hornik,

2002) is defined as

d(M, M̃) = minΠ ‖M − M̃Π‖

where the minimum is taken over all permutation matrices Π, ‖ · ‖ is the Frobe-
nius norm (so that ‖Y ‖2 = tr(Y ′Y)), and n is the (common) number of objects
in the partitions. As ‖M − M̃Π‖2 = tr(M ′M)− 2 tr(M ′M̃Π) + tr(Π′M̃ ′M̃Π) =
tr(M ′M) − 2 tr(M ′M̃Π) + tr(M̃ ′M̃), we see that minimizing ‖M − M̃Π‖2 is
equivalent to maximizing tr(M ′M̃Π) =

∑
i,k µikµ̃i,π(k), which for hard parti-

tions is the number of objects with the same label in the partitions given by
M and M̃Π. Finding the optimal Π is thus recognized as an instance of the
linear sum assignment problem (LSAP, also known as the weighted bipartite
graph matching problem). The LSAP can be solved by linear programming,
e.g., using Simplex-style primal algorithms as done by function lp.assign()

in package lpSolve (Buttrey, 2005), but primal-dual algorithms such as the so-
called Hungarian method can be shown to find the optimum in time O(k3)
(e.g., Papadimitriou and Steiglitz, 1982). Available published implementations
include TOMS 548 (Carpaneto and Toth, 1980), which however is restricted to
integer weights and k < 131. One can also transform the LSAP into a network
flow problem, and use e.g. RELAX-IV (Bertsekas and Tseng, 1994) for solving
this, as is done in package optmatch (Hansen, 2005). In package clue, we use an
efficient C implementation of the Hungarian algorithm kindly provided to us by
Walter Böhm, which has been found to perform very well across a wide range
of problem sizes.

Gordon and Vichi (2001) use a variant of Euclidean dissimilarity (“GV1

8

dissimilarity”) which is based on the sum of the squared difference of the mem-
berships of matched (non-empty) classes only, discarding the unmatched ones
(see their Example 2). This results in a measure which is discontinuous over the
space of soft partitions with arbitrary numbers of classes.

The partition agreement measures “angle” and “diag” (maximal cosine of
angle between the memberships, and maximal co-classification rate, where both
maxima are taken over all column permutations of the membership matrices)
are based on solving the same LSAP as for Euclidean dissimilarity.

Finally, Manhattan partition dissimilarity is defined as the minimal sum of
the absolute differences of M and all column permutations of M̃ , and can again
be computed efficiently by solving an LSAP.

For hard partitions, both Manhattan and squared Euclidean dissimilarity
give twice the transfer distance (Charon, Denoeud, Guénoche, and Hudry,
2005), which is the minimum number of objects that must be removed so that
the implied partitions (restrictions to the remaining objects) are identical. This
is also known as the R-metric in Day (1981), i.e., the number of augmentations
and removals of single objects needed to transform one partition into the other,
and the partition-distance in Gusfield (2002).

Note when assessing proximity that agreements for soft partitions are always
(and quite often considerably) lower than the agreements for the corresponding
nearest hard partitions, unless the agreement measures are based on the latter
anyways (as currently done for Rand, Katz-Powell, and NMI).

Package clue provides additional agreement measures, such as the Jaccard
and Fowles-Mallows (Fowlkes and Mallows, 1983, quite often incorrectly at-
tributed to Wallace (1983)) indices, and dissimilarity measures such as the
“symdiff” and Rand distances (the latter is proportional to the metric of Mirkin
(1996)) and the metrics discussed in Boorman and Arabie (1972). One could eas-
ily add more proximity measures, such as the “Variation of Information” (Meila,
2003). However, all these measures are rigorously defined for hard partitions
only. To see why extensions to soft partitions are far from straightforward,
consider e.g. measures based on the confusion matrix. Its entries count the car-
dinality of certain intersections of sets. In a fuzzy context for soft partitions,
a natural generalization would be using fuzzy cardinalities (i.e., sums of mem-
berships values) of fuzzy intersections instead. There are many possible choices
for the latter, with the product of the membership values (corresponding to
employing the confusion matrix also in the fuzzy case) one of them, but the
minimum instead of the product being the “usual” choice. A similar point can
be made for co-occurrences of soft memberships. We are not aware of systematic
investigations of these extension issues.

2.3.3 Hierachy proximities

Available built-in dissimilarity measures for hierarchies include Euclidean
(again, the default measure used by cl_dissimilarity()) and Manhattan dis-
similarity, which are simply the Euclidean (square root of the sum of squared
differences) and Manhattan (sum of the absolute differences) dissimilarities be-

9

tween the associated ultrametrics. Cophenetic dissimilarity is defined as 1− c2,
where c is the cophenetic correlation coefficient (Sokal and Rohlf, 1962), i.e., the
Pearson product-moment correlation between the ultrametrics. Gamma dissim-
ilarity is the rate of inversions between the associated ultrametrics u and v (i.e.,
the rate of pairs (i, j) and (k, l) for which uij < ukl and vij > vkl). This mea-
sure is a linear transformation of Kruskal’s γ. Finally, symdiff dissimilarity is
the cardinality of the symmetric set difference of the sets of classes (hierarchies
in the strict sense) induced by the dendrograms.

Associated agreement measures are obtained by suitable transformations of
the dissimilarities d; for Euclidean proximities, we prefer to use 1/(1 +d) rather
than e.g. exp(−d).

One should note that whereas cophenetic and gamma dissimilarities are
invariant to linear transformations, Euclidean and Manhattan ones are not.
Hence, if only the relative “structure” of the dendrograms is of interest, these
dissimilarities should only be used after transforming the ultrametrics to a com-
mon range of values (e.g., to [0, 1]).

2.4 Consensus clusterings

Consensus clusterings “synthesize” the information in the elements of a cluster
ensemble into a single clustering. There are three main approaches to obtaining
consensus clusterings (Hornik, 2005a; Gordon and Vichi, 2001): in the construc-
tive approach, one specifies a way to construct a consensus clustering. In the
axiomatic approach, emphasis is on the investigation of existence and uniqueness
of consensus clusterings characterized axiomatically. The optimization approach
formalizes the natural idea of describing consensus clusterings as the ones which
“optimally represent the ensemble” by providing a criterion to be optimized over
a suitable set C of possible consensus clusterings. If d is a dissimilarity measure
and C1, . . . , CB are the elements of the ensemble, one can e.g. look for solutions
of the problem∑B

b=1
wbd(C,Cb)

p ⇒ minC∈C ,

for some p ≥ 0, i.e., as clusterings C∗ minimizing weighted average dissimilarity
powers of order p. Analogously, if a similarity measure is given, one can look for
clusterings maximizing weighted average similarity powers. Following Gordon
and Vichi (1998), an above C∗ is referred to as (weighted) median or medoid
clustering if p = 1 and the optimum is sought over the set of all possible base
clusterings, or the set {C1, . . . , CB} of the base clusterings, respectively. For
p = 2, we have least squares consensus clusterings (generalized means).

For computing consensus clusterings, package clue provides function
cl_consensus() with synopsis cl_consensus(x, method = NULL, weights =

1, control = list()). This allows (similar to the functions for computing
cluster proximities, see Section 2.3.1 on Page 7) argument method to be a char-
acter string specifying one of the built-in methods discussed below, or a function
to be taken as a user-defined method (taking an ensemble, the case weights,

10

and a list of control parameters as its arguments), again making it reasonably
straightforward to add methods. In addition, function cl_medoid() can be
used for obtaining medoid partitions (using, in principle, arbitrary dissimilari-
ties). Modulo possible differences in the case of ties, this gives the same results
as (the medoid obtained by) pam() in package cluster.

If all elements of the ensemble are partitions, package clue provides algo-
rithms for computing soft least squares consensus partitions for weighted Eu-
clidean, GV1 and co-membership dissimilarities. Let M1, . . . ,MB and M denote
the membership matrices of the elements of the ensemble and their sought least
squares consensus partition, respectively. For Euclidean dissimilarity, we need
to find∑

b

wb minΠb ‖M −MbΠb‖2 ⇒ minM

over all membership matrices (i.e., stochastic matrices) M , or equivalently,∑
b

wb‖M −MbΠb‖2 ⇒ minM,Π1,...,ΠB

over all M and permutation matrices Π1, . . . ,ΠB . Now fix the Πb and let M̄ =
s−1

∑
b wbMbΠb be the weighted average of the MbΠb, where s =

∑
b wb. Then∑

b

wb‖M −MbΠb‖2

=
∑
b

wb(‖M‖2 − 2 tr(M ′MbΠb) + ‖MbΠb‖2)

= s‖M‖2 − 2s tr(M ′M̄) +
∑
b

wb‖Mb‖2

= s(‖M − M̄‖2) +
∑
b

wb‖Mb‖2 − s‖M̄‖2

Thus, as already observed in Dimitriadou et al. (2002) and Gordon and Vichi
(2001), for fixed permutations Πb the optimal soft M is given by M̄ . The
optimal permutations can be found by minimizing −s‖M̄‖2, or equivalently, by
maximizing

s2‖M̄‖2 =
∑
β,b

wβwb tr(Π′βM
′
βMbΠb).

With Uβ,b = wβwbM
′
βMb we can rewrite the above as

∑
β,b

wβwb tr(Π′βM
′
βMbΠb) =

∑
β,b

k∑
j=1

[Uβ,b]πβ(j),πb(j) =:

k∑
j=1

cπ1(j),...,πB(j)

This is an instance of the multi-dimensional assignment problem (MAP),
which, contrary to the LSAP, is known to be NP-hard (e.g., via reduction
to 3-DIMENSIONAL MATCHING, Garey and Johnson, 1979), and can e.g.

11

be approached using randomized parallel algorithms (Oliveira and Pardalos,
2004). Branch-and-bound approaches suggested in the literature (e.g., Grun-
del, Oliveira, Pardalos, and Pasiliao, 2005) are unfortunately computationally
infeasible for “typical” sizes of cluster ensembles (B ≥ 20, maybe even in the
hundreds).

Package clue provides two heuristics for (approximately) finding the soft
least squares consensus partition for Euclidean dissimilarity. Method "DWH" of
function cl_consensus() is an extension of the greedy algorithm in Dimitriadou
et al. (2002) which is based on a single forward pass through the ensemble
which in each step chooses the “locally” optimal Π. Starting with M̃1 = M1,
M̃b is obtained from M̃b−1 by optimally matching MbΠb to this, and taking a
weighted average of M̃b−1 and MbΠb in a way that M̃b is the weighted average
of the first b MβΠβ . This simple approach could be further enhanced via back-
fitting or several passes, in essence resulting in an “on-line” version of method
"SE". This, in turn, is a fixed-point algorithm, which iterates between updating
M as the weighted average of the current MbΠb, and determining the Πb by
optimally matching the current M to the individual Mb. Finally, method "GV1"

implements the fixed-point algorithm for the “first model” in Gordon and Vichi
(2001), which gives least squares consensus partitions for GV1 dissimilarity.

In the above, we implicitly assumed that all partitions in the ensemble as
well as the sought consensus partition have the same number of classes. The
more general case can be dealt with through suitable “projection” devices.

When using co-membership dissimilarity, the least squares consensus parti-
tion is determined by minimizing∑

b

wb‖MM ′ −MbM
′
b‖2

= s‖MM ′ − C̄‖2 +
∑
b

wb‖MbM
′
b‖2 − s‖C̄‖2

over all membership matrices M , where now C̄ = s−1
∑
b C(Mb) =

s−1
∑
bMbM

′
b is the weighted average co-membership matrix of the ensemble.

This corresponds to the “third model” in Gordon and Vichi (2001). Method
"GV3" of function cl_consensus() provides a SUMT approach (see Section 2.1.2
on Page 4) for finding the minimum. We note that this strategy could more gen-
erally be applied to consensus problems of the form∑

b

wb‖Φ(M)− Φ(Mb)‖2 ⇒ minM ,

which are equivalent to minimizing ‖Φ(B)− Φ̄‖2, with Φ̄ the weighted average
of the Φ(Mb). This includes e.g. the case where generalized co-memberships are
defined by taking the“standard” fuzzy intersection of co-incidences, as discussed
in Section 2.3.2 on Page 9.

Package clue currently does not provide algorithms for obtaining hard con-
sensus partitions, as e.g. done in Krieger and Green (1999) using Rand proximity.
It seems“natural” to extend the methods discussed above to include a constraint

12

on softness, e.g., on the partition coefficient PC (see Section 2.1.1 on Page 3).
For Euclidean dissimilarity, straightforward Lagrangian computations show that
the constrained minima are of the form M̄(α) = αM̄ + (1 − α)E, where E is
the “maximally soft” membership with all entries equal to 1/k, M̄ is again the
weighted average of the MbΠb with the Πb solving the underlying MAP, and α
is chosen such that PC(M̄(α)) equals a prescribed value. As α increases (even
beyond one), softness of the M̄(α) decreases. However, for α∗ > 1/(1 − kµ∗),
where µ∗ is the minimum of the entries of M̄ , the M̄(α) have negative entries,
and are no longer feasible membership matrices. Obviously, the non-negativity
constraints for the M̄(α) eventually put restrictions on the admissible Πb in the
underlying MAP. Thus, such a simple relaxation approach to obtaining optimal
hard partitions is not feasible.

For ensembles of hierarchies, cl_consensus() provides a built-in method
("cophenetic") for approximately minimizing average weighted squared Eu-
clidean dissimilarity∑

b

wb‖U − Ub‖2 ⇒ minU

over all ultrametrics U , where U1, . . . , UB are the ultrametrics corresponding
to the elements of the ensemble. This is of course equivalent to minimizing
‖U − Ū‖2, where Ū = s−1

∑
b wbUb is the weighted average of the Ub. The

SUMT approach provided by function ls_fit_ultrametric() (see Section 2.1.2
on Page 4) is employed for finding the sought weighted least squares consensus
hierarchy.

In addition, method "majority" obtains a consensus hierarchy from an ex-
tension of the majority consensus tree of Margush and McMorris (1981), which
minimizes L(U) =

∑
b wbd(Ub, U) over all ultrametrics U , where d is the sym-

metric difference dissimilarity.
Clearly, the available methods use heuristics for solving hard optimization

problems, and cannot be guaranteed to find a global optimum. Standard prac-
tice would recommend to use the best solution found in “sufficiently many”
replications of the methods.

Alternative recent approaches to obtaining consensus partitions include
“Bagged Clustering” (Leisch, 1999, provided by bclust() in package e1071),
the “evidence accumulation” framework of Fred and Jain (2002), the NMI opti-
mization and graph-partitioning methods in Strehl and Ghosh (2003a), “Bagged
Clustering” as in Dudoit and Fridlyand (2003), and the hybrid bipartite graph
formulation of Fern and Brodley (2004). Typically, these approaches are con-
structive, and can easily be implemented based on the infrastructure provided
by package clue. Evidence accumulation amounts to standard hierarchical clus-
tering of the average co-membership matrix. Procedure BagClust1 of Dudoit
and Fridlyand (2003) amounts to computing B−1

∑
bMbΠb, where each Πb is

determined by optimal Euclidean matching of Mb to a fixed reference member-
ship M0. In the corresponding “Bagged Clustering” framework, M0 and the Mb

are obtained by applying the base clusterer to the original data set and boot-
strap samples from it, respectively. This is implemented as method "DFBC1" of

13

cl_bag() in package clue. Finally, the approach of Fern and Brodley (2004)
solves an LSAP for an asymmetric cost matrix based on object-by-all-classes
incidences.

2.5 Cluster partitions

To investigate the “structure” in a cluster ensemble, an obvious idea is to start
clustering the clusterings in the ensemble, resulting in “secondary” clusterings
(Gordon and Vichi, 1998; Gordon, 1999). This can e.g. be performed by using
cl_dissimilarity() (or cl_agreement()) to compute a dissimilarity matrix
for the ensemble, and feed this into a dissimilarity-based clustering algorithm
(such as pam() in package cluster or hclust() in package stats). (One can
even use cutree() to obtain hard partitions from hierarchies thus obtained.) If
prototypes (“typical clusterings”) are desired for partitions of clusterings, they
can be determined post-hoc by finding suitable consensus clusterings in the
classes of the partition, e.g., using cl_consensus() or cl_medoid().

Package clue additionally provides cl_pclust() for direct prototype-
based partitioning based on minimizing criterion functions of the form∑
wbu

m
bjd(xb, pj)

e, the sum of the case-weighted membership-weighted e-th pow-
ers of the dissimilarities between the elements xb of the ensemble and the proto-
types pj , for suitable dissimilarities d and exponents e. (The underlying feature
spaces are that of membership matrices and ultrametrics, respectively, for par-
titions and hierarchies.)

Parameter m must not be less than one and controls the softness of the
obtained partitions, corresponding to the “fuzzification parameter” of the fuzzy
c-means algorithm. For m = 1, a generalization of the Lloyd-Forgy variant
(Lloyd, 1957; Forgy, 1965; Lloyd, 1982) of the k-means algorithm is used, which
iterates between reclassifying objects to their closest prototypes, and computing
new prototypes as consensus clusterings for the classes. Gaul and Schader (1988)
introduced this procedure for “Clusterwise Aggregation of Relations” (with the
same domains), containing equivalence relations, i.e., hard partitions, as a spe-
cial case. For m > 1, a generalization of the fuzzy c-means recipe (e.g., Bezdek,
1981) is used, which alternates between computing optimal memberships for
fixed prototypes, and computing new prototypes as the suitably weighted con-
sensus clusterings for the classes.

This procedure is repeated until convergence occurs, or the maximal num-
ber of iterations is reached. Consensus clusterings are computed using (one of
the methods provided by) cl_consensus, with dissimilarities d and exponent e
implied by method employed, and obtained via a registration mechanism. The
default methods compute Least Squares Euclidean consensus clusterings, i.e.,
use Euclidean dissimilarity d and e = 2.

14

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●
●
● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●
●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

● ●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Figure 1: The Cassini data set.

3 Examples

3.1 Cassini data

Dimitriadou et al. (2002) and Leisch (1999) use Cassini data sets to illustrate
how e.g. suitable aggregation of base k-means results can reveal underlying non-
convex structure which cannot be found by the base algorithm. Such data sets
contain points in 2-dimensional space drawn from the uniform distribution on
3 structures, with the two “outer” ones banana-shaped and the “middle” one
a circle, and can be obtained by function mlbench.cassini() in package ml-
bench (Leisch and Dimitriadou, 2005). Package clue contains the data sets
Cassini and CKME, which are an instance of a 1000-point Cassini data set, and
a cluster ensemble of 50 k-means partitions of the data set into three classes,
respectively.

The data set is shown in Figure 1.

> data("Cassini")

> plot(Cassini$x, col = as.integer(Cassini$classes),

+ xlab = "", ylab = "")

Figure 2 gives a dendrogram of the Euclidean dissimilarities of the elements of
the k-means ensemble.

> data("CKME")

> plot(hclust(cl_dissimilarity(CKME)), labels = FALSE)

We can see that there are large groups of essentially identical k-means solutions.

15

0
5

10
15

20
25

30

Cluster Dendrogram

hclust (*, "complete")
cl_dissimilarity(CKME)

H
ei

gh
t

Figure 2: A dendrogram of the Euclidean dissimilarities of 50 k-means partitions
of the Cassini data into 3 classes.

We can gain more insight by inspecting representatives of these three groups,
or by computing the medoid of the ensemble

> m1 <- cl_medoid(CKME)

> table(Medoid = cl_class_ids(m1), `True Classes` = Cassini$classes)

True Classes

Medoid 1 2 3

1 196 0 89

2 204 0 30

3 0 400 81

and inspecting it (Figure 3):

> plot(Cassini$x, col = cl_class_ids(m1), xlab = "",

+ ylab = "")

Flipping this solution top-down gives a second “typical” partition. We see that
the k-means base clusterers cannot resolve the underlying non-convex structure.
For the least squares consensus of the ensemble, we obtain

> set.seed(1234)

> m2 <- cl_consensus(CKME)

where here and below we set the random seed for reproducibility, noting that one
should really use several replicates of the consensus heuristic. This consensus
partition has confusion matrix

16

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●
●
● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●
●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

● ●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Figure 3: Medoid of the Cassini k-means ensemble.

> table(Consensus = cl_class_ids(m2), `True Classes` = Cassini$classes)

True Classes

Consensus 1 2 3

1 0 400 74

2 0 0 28

3 400 0 98

and class details as displayed in Figure 4:

> plot(Cassini$x, col = cl_class_ids(m2), xlab = "",

+ ylab = "")

This has drastically improved performance, and almost perfect recovery of the
two outer shapes. In fact, Dimitriadou et al. (2002) show that almost perfect
classification can be obtained by suitable combinations of different base cluster-
ers (k-means, fuzzy c-means, and unsupervised fuzzy competitive learning).

3.2 Gordon-Vichi macroeconomic data

Gordon and Vichi (2001, Table 1) provide soft partitions of 21 countries based
on macroeconomic data for the years 1975, 1980, 1985, 1990, and 1995. These
partitions were obtained using fuzzy c-means on measurements of the follow-
ing variables: the annual per capita gross domestic product (GDP) in USD
(converted to 1987 prices); the percentage of GDP provided by agriculture; the
percentage of employees who worked in agriculture; and gross domestic invest-
ment, expressed as a percentage of the GDP.

17

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●●

●
●
● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●
●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

● ●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Figure 4: Least Squares Consensus of the Cassini k-means ensemble.

Table 5 in Gordon and Vichi (2001) gives 3-class consensus partitions ob-
tained by applying their models 1, 2, and 3 and the approach in Sato and Sato
(1994).

The partitions and consensus partitions are available in data sets GVME

and GVME_Consensus, respectively. We compare the results of Gordon and
Vichi (2001) using GV1 dissimilarities (model 1) to ours as obtained by
cl_consensus() with method "GV1".

> data("GVME")

> GVME

An ensemble of 5 partitions of 21 objects.

> set.seed(1)

> m1 <- cl_consensus(GVME, method = "GV1", control = list(k = 3,

+ verbose = TRUE))

This results in a soft partition with average squared GV1 dissimilarity (the
criterion function to be optimized by the consensus partition) of

> mean(cl_dissimilarity(GVME, m1, "GV1")^2)

[1] 1.575884

We compare this to the consensus solution given in Gordon and Vichi (2001):

18

> data("GVME_Consensus")

> m2 <- GVME_Consensus[["MF1/3"]]

> mean(cl_dissimilarity(GVME, m2, "GV1")^2)

[1] 1.667204

> table(CLUE = cl_class_ids(m1), GV2001 = cl_class_ids(m2))

GV2001

CLUE 1 2 3

1 0 7 0

2 0 0 5

3 9 0 0

Interestingly, we are able to obtain a “better” solution, which however agrees
with the one reported on the literature with respect to their nearest hard par-
titions.

For the 2-class consensus partition, we obtain

> set.seed(1)

> m1 <- cl_consensus(GVME, method = "GV1", control = list(k = 2,

+ verbose = TRUE))

which is slightly better than the solution reported in Gordon and Vichi (2001)

> mean(cl_dissimilarity(GVME, m1, "GV1")^2)

[1] 1.553614

> m2 <- GVME_Consensus[["MF1/2"]]

> mean(cl_dissimilarity(GVME, m2, "GV1")^2)

[1] 1.55363

but in fact agrees with it apart from rounding errors:

> max(abs(cl_membership(m1) - cl_membership(m2)))

[1] 0.001

It is interesting to compare these solutions to the Euclidean 2-class consensus
partition for the GVME ensemble:

> m3 <- cl_consensus(GVME, method = "GV1", control = list(k = 2,

+ verbose = TRUE))

This is markedly different from the GV1 consensus partition

> table(GV1 = cl_class_ids(m1), Euclidean = cl_class_ids(m3))

19

Euclidean

GV1 1 2

1 9 5

2 0 7

with countries

> rownames(m1)[cl_class_ids(m1) != cl_class_ids(m3)]

NULL

classified differently, being with the “richer” class for the GV1 and the “poorer”
for the Euclidean consensus partition. (In fact, all these countries end up in the
“middle” class for the 3-class GV1 consensus partition.)

3.3 Rosenberg-Kim kinship terms data

Rosenberg and Kim (1975) describe an experiment where perceived similarities
of the kinship terms were obtained from six different “sorting” experiments. In
one of these, 85 female undergraduates at Rutgers University were asked to sort
15 English terms into classes “on the basis of some aspect of meaning”. These
partitions were printed in Rosenberg (1982, Table 7.1). Comparison with the
original data indicates that the partition data have the “nephew” and “niece”
columns interchanged, which is corrected in data set Kinship82.

Gordon and Vichi (2001, Table 6) provide consensus partitions for these data
based on their models 1–3 (available in data set Kinship82_Consensus). We
compare their results using co-membership dissimilarities (model 3) to ours as
obtained by cl_consensus() with method "GV3".

> data("Kinship82")

> Kinship82

An ensemble of 85 partitions of 15 objects.

> set.seed(1)

> m1 <- cl_consensus(Kinship82, method = "GV3",

+ control = list(k = 3, verbose = TRUE))

This results in a soft partition with average co-membership dissimilarity (the
criterion function to be optimized by the consensus partition) of

> mean(cl_dissimilarity(Kinship82, m1, "comem")^2)

[1] 28.36927

Again, we compare this to the corresponding consensus solution given in Gordon
and Vichi (2001):

20

> data("Kinship82_Consensus")

> m2 <- Kinship82_Consensus[["JMF"]]

> mean(cl_dissimilarity(Kinship82, m2, "comem")^2)

[1] 28.49879

Interestingly, again we obtain a (this time only “slightly”) better solution, with

> cl_dissimilarity(m1, m2, "comem")

Cross-dissimilarities using Euclidean comembership distance:

[,1]

[1,] 0.3708911

> table(CLUE = cl_class_ids(m1), GV2001 = cl_class_ids(m2))

GV2001

CLUE 1 2 3

1 0 6 0

2 4 0 0

3 0 0 5

indicating that the two solutions are reasonably close, even though

> cl_fuzziness(cl_ensemble(m1, m2))

Fuzziness using normalized partition coefficient:

[1] 0.4360393 0.3894000

shows that the solution found by clue is “softer”.

3.4 Miller-Nicely consonant phoneme confusion data

Miller and Nicely (1955) obtained the data on the auditory confusions of 16
English consonant phonemes by exposing female subjects to a series of syllables
consisting of one of the consonants followed by the vowel ‘a’ under 17 different
experimental conditions. Data set Phonemes provides consonant misclassifica-
tion probabilities (i.e., similarities) obtained from aggregating the six so-called
flat-noise conditions in which only the speech-to-noise ratio was varied into a
single matrix of misclassification frequencies.

These data are used in de Soete (1986) as an illustration of the SUMT
approach for finding least squares optimal fits to dissimilarities by ultrametrics.
We can reproduce this analysis as follows.

> data("Phonemes")

> d <- as.dist(1 - Phonemes)

(Note that the data set has the consonant misclassification probabilities, i.e.,
the similarities between the phonemes.)

21

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
H

A TA PA K
A

S
A FA

T
H

E
TA M
A

N
A

B
A

V
A

T
H

AT D
A

G
A

Z
A

Z
H

A

Figure 5: Dendrogram for least squares fit to the Miller-Nicely consonant
phoneme confusion data.

> u <- ls_fit_ultrametric(d, control = list(verbose = TRUE))

This gives an ultrametric u for which Figure 5 plots the corresponding dendro-
gram, “basically” reproducing Figure 1 in de Soete (1986).

> plot(u)

We can also compare the least squares fit obtained to that of other hierar-
chical clusterings of d, e.g. those obtained by hclust(). The “optimal” u has
Euclidean dissimilarity

> round(cl_dissimilarity(d, u), 4)

Cross-dissimilarities using Euclidean ultrametric distance:

[,1]

[1,] 0.1988

to d. For the hclust() results, we get

> hclust_methods <- c("ward", "single", "complete",

+ "average", "mcquitty")

> hens <- cl_ensemble(list = lapply(hclust_methods,

+ function(m) hclust(d, m)))

> names(hens) <- hclust_methods

> round(sapply(hens, cl_dissimilarity, d), 4)

22

ward single complete average mcquitty

4.4122 0.4279 0.3134 0.2000 0.2020

which all exhibit greater Euclidean dissimilarity to d than u. (We exclude
methods "median" and "centroid" as these do not yield valid hierarchies.)
We can also compare the “structure” of the different hierarchies, e.g. by looking
at the rate of inversions between them:

> ahens <- c(L2opt = cl_ensemble(u), hens)

> round(cl_dissimilarity(ahens, method = "gamma"),

+ 2)

Dissimilarities using rate of inversions:

L2opt ward single complete average

ward 0.29

single 0.24 0.45

complete 0.03 0.29 0.27

average 0.03 0.26 0.24 0.03

mcquitty 0.03 0.26 0.24 0.03 0.00

4 Outlook

Package clue was designed as an extensible environment for computing on cluster
ensembles. It currently provides basic data structures for representing partitions
and hierarchies, and facilities for computing on these, including methods for
measuring proximity and obtaining consensus and “secondary” clusterings.

Many extensions to the available functionality are possible and in fact
planned (some of these enhancements were already discussed in more detail
in the course of this paper).

• Provide mechanisms to generate cluster ensembles based on reweighting
(assuming base clusterers allowing for case weights) the data set.

• Explore recent advances (e.g., parallelized random search) in heuristics for
solving the multi-dimensional assignment problem.

• Add support for additive trees (e.g., Barthélémy and Guénoche, 1991).

• Add heuristics for finding least squares fits based on iterative projec-
tion on convex sets of constraints, see e.g. Hubert, Arabie, and Meul-
man (2006) and the accompanying MATLAB code available at http:

//cda.psych.uiuc.edu/srpm_mfiles for using these methods (instead
of SUMT approaches) to fit ultrametrics and additive trees to proximity
data.

• Add an“L1 View”. Emphasis in clue, in particular for obtaining consensus
clusterings, is on using Euclidean dissimilarities (based on suitable least

23

squares distances); arguably, more “robust” consensus solutions should re-
sult from using Manhattan dissimilarities (based on absolute distances).
Adding such functionality necessitates developing the corresponding struc-
ture theory for soft Manhattan median partitions. Minimizing average
Manhattan dissimilarity between co-memberships and ultrametrics results
in constrained L1 approximation problems for the weighted medians of the
co-memberships and ultrametrics, respectively, and could be approached
by employing SUMTs analogous to the ones used for the L2 approxima-
tions.

• Provide heuristics for obtaining hard consensus partitions.

• Add facilities for tuning hyper-parameters (most prominently, the number
of classes employed) and “cluster validation” of partitioning algorithms, as
recently proposed by Roth, Lange, Braun, and Buhmann (2002), Lange,
Roth, Braun, and Buhmann (2004), Dudoit and Fridlyand (2002), and
Tibshirani and Walther (2005).

We are hoping to be able to provide many of these extensions in the near future.

Acknowledgments

We are grateful to Walter Böhm for providing efficient C code for solving as-
signment problems.

References

J.-P. Barthélémy and A. Guénoche. Trees and Proximity Representations. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons,
Chichester, 1991. ISBN 0-471-92263-3.

D. P. Bertsekas and P. Tseng. RELAX-IV: A faster version of the RELAX code
for solving minimum cost flow problems. Technical Report P-2276, Massachusetts
Institute of Technology, 1994. URL http://www.mit.edu/dimitrib/www/noc.htm.

J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum,
New York, 1981.

S. A. Boorman and P. Arabie. Structural measures and the method of sorting. In
R. N. Shepard, A. K. Romney, and S. B. Nerlove, editors, Multidimensional Scaling:
Theory and Applications in the Behavioral Sciences, 1: Theory, pages 225–249.
Seminar Press, New York, 1972.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

C. Buchta and M. Hahsler. cba: Clustering for Business Analytics, 2005. R package
version 0.1-6.

S. E. Buttrey. Calling the lp_solve linear program software from R, S-PLUS and
Excel. Journal of Statistical Software, 14(4), 2005. URL http://www.jstatsoft.

org/v14/i04/.

24

G. Carpaneto and P. Toth. Algorithm 548: Solution of the assignment problem. ACM
Transactions on Mathematical Software, 6(1):104–111, 1980. ISSN 0098-3500. doi:
http://doi.acm.org/10.1145/355873.355883.

J. D. Carroll and S. Pruzansky. Discrete and hybrid scaling models. In E. D. Lanter-
mann and H. Feger, editors, Similarity and Choice. Huber, Bern, Switzerland, 1980.

I. Charon, L. Denoeud, A. Guénoche, and O. Hudry. Maximum transfer distance
between partitions. Technical Report 2005D003, Ecole Nationale Supérieure des
Télécommunications — Paris, May 2005. URL http://www.enst.fr/_data/files/

docs/id_515_1128675112_271.pdf. ISSN 0751-1345 ENST D.

W. H. E. Day. The complexity of computing metric distances between partitions.
Mathematical Social Sciences, 1:269–287, 1981.

W. H. E. Day. Foreword: Comparison and consensus of classifications. Journal of
Classification, 3:183–185, 1986.

G. de Soete. A least squares algorithm for fitting an ultrametric tree to a dissimilarity
matrix. Pattern Recognition Letters, 2:133–137, 1986.

E. Dimitriadou. cclust: Convex Clustering Methods and Clustering Indexes, 2005. URL
http://CRAN.R-project.org/. R package version 0.6-12.

E. Dimitriadou, A. Weingessel, and K. Hornik. A combination scheme for fuzzy clus-
tering. International Journal of Pattern Recognition and Artificial Intelligence, 16
(7):901–912, 2002.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. e1071: Misc
Functions of the Department of Statistics (e1071), TU Wien, 2005. URL http:

//CRAN.R-project.org/. R package version 1.5-7.

S. Dudoit and J. Fridlyand. A prediction-based resampling method for estimating the
number of clusters in a dataset. Genome Biology, 3(7):1–21, 2002. URL http:

//genomebiology.com/2002/3/7/resarch0036.1.

S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure.
Bioinformatics, 19(9):1090–1099, 2003.

X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph
partitioning. In ICML ’04: Twenty-first International Conference on Machine
Learning. ACM Press, 2004. ISBN 1-58113-828-5. doi: http://doi.acm.org/10.1145/
1015330.1015414.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Willey & Sons, New York, 1968.

E. W. Forgy. Cluster analysis of multivariate data: Efficiency vs interpretability of
classifications. Biometrics, 21:768–769, 1965.

E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association, 78:553–569, 1983.

25

C. Fraley and A. E. Raftery. Enhanced model-based clustering, density estimation, and
discriminant analysis software: MCLUST. Journal of Classification, 20(2):263–286,
2003.

C. Fraley, A. E. Raftery, and R. Wehrens. mclust: Model-based Cluster Analysis, 2005.
URL http://www.stat.washington.edu/mclust. R package version 2.1-11.

A. L. N. Fred and A. K. Jain. Data clustering using evidence accumulation. In Pro-
ceedings of the 16th International Conference on Pattern Recognition (ICPR 2002),
pages 276–280, 2002. URL http://citeseer.ist.psu.edu/fred02data.html.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical
view of boosting. The Annals of Statistics, 28(2):337–407, 2000.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, 1979.

W. Gaul and M. Schader. Clusterwise aggregation of relations. Applied Stochastic
Models and Data Analysis, 4:273–282, 1988.

R. Gentleman and E. Whalen. graph: A Package to Handle Graph Data Structures,
2005. URL http://www.bioconductor.org/. R package version 1.5.9.

A. D. Gordon. Classification. Chapman & Hall/CRC, Boca Raton, Florida, 2nd
edition, 1999.

A. D. Gordon and M. Vichi. Partitions of partitions. Journal of Classification, 15:
265–285, 1998.

A. D. Gordon and M. Vichi. Fuzzy partition models for fitting a set of partitions.
Psychometrika, 66(2):229–248, 2001.

D. Grundel, C. A. Oliveira, P. M. Pardalos, and E. Pasiliao. Asymptotic results for
random multidimensional assignment problems. Computational Optimization and
Applications, 31, 2005. In press.

D. Gusfield. Partition-distance: A problem and class of perfect graphs arising in
clustering. Information Processing Letters, 82:159–164, 2002.

B. B. Hansen. optmatch: Functions for Optimal Matching, 2005. URL http://www.

stat.lsa.umich.edu/~bbh/optmatch.html. R package version 0.1-3.

J. Hoeting, D. Madigan, A. Raftery, and C. Volinsky. Bayesian model averaging: A
tutorial. Statistical Science, 14:382–401, 1999.

K. Hornik. Cluster ensembles. In C. Weihs and W. Gaul, editors, Classification –
The Ubiquitous Challenge, pages 65–72. Springer-Verlag, 2005a. Proceedings of the
28th Annual Conference of the Gesellschaft für Klassifikation e.V., University of
Dortmund, March 9–11, 2004.

K. Hornik. A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12),
September 2005b. URL http://www.jstatsoft.org/v14/i12/.

K. Hornik, T. Hothorn, and A. Karatzoglou. RWeka: R/Weka Interface, 2006. R
package version 0.2-0.

26

L. Hubert and P. Arabie. Iterative projection strategies for the least squares fitting of
tree structures to proximity data. British Journal of Mathematical and Statistical
Psychology, 48:281–317, 1995.

L. Hubert, P. Arabie, and J. Meulman. The Structural Representation of Proximity
Matrices With MATLAB. SIAM, Philadelphia, 2006.

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab – an S4 package for
kernel methods in R. Journal of Statistical Software, 11(9):1–20, 2004. URL http:

//www.jstatsoft.org/v11/i09/.

L. Katz and J. H. Powell. A proposed index of the conformity of one sociometric
measurement to another. Psychometrika, 18:249–256, 1953.

A. M. Krieger and P. E. Green. A generalized Rand-index method for consensus
clustering of separate partitions of the same data base. Journal of Classification,
16:63–89, 1999.

M. Krivanek. On the computational complexity of clustering. In E. Diday, Y. Escoufier,
L. Lebart, J. Pages, Y. Schektman, and R. Tomassone, editors, Data Analysis and
Informatics 4, pages 89–96. Elsevier/North-Holland, 1986.

M. Krivanek and J. Moravek. NP-hard problems in hierarchical tree clustering. Acta
Informatica, 23:311–323, 1986.

T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann. Stability-based validation of
clustering solutions. Neural Computation, 16(6):1299–1323, 2004.

F. Leisch. Bagged clustering. Working Paper 51, SFB “Adaptive Information Systems
and Modeling in Economics and Management Science”, August 1999. URL http:

//www.ci.tuwien.ac.at/~leisch/papers/wp51.ps.

F. Leisch. FlexMix: A general framework for finite mixture models and latent class
regression in R. Journal of Statistical Software, 11(8), 2004. URL http://www.

jstatsoft.org/v11/i08/.

F. Leisch. A toolbox for k-centroids cluster analysis. Computational Statistics and
Data Analysis, 2006. Accepted for publication.

F. Leisch and E. Dimitriadou. mlbench: Machine Learning Benchmark Problems, 2005.
URL http://CRAN.R-project.org/. R package version 1.0-1.

S. P. Lloyd. Least squares quantization in PCM. Technical Note, Bell Laboratories,
1957.

S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28:128–137, 1982.

T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of Mathematical Biology,
43(2):239–244, 1981.

M. Meila. Comparing clusterings by the variation of information. In B. Schölkopf and
M. K. Warmuth, editors, Learning Theory and Kernel Machines, volume 2777 of
Lecture Notes in Computer Science, pages 173–187. Springer-Verlag, 2003.

27

G. A. Miller and P. E. Nicely. An analysis of perceptual confusions among some English
consonants. Journal of the Acoustical Society of America, 27:338–352, 1955.

B. G. Mirkin. Mathematical Classification and Clustering. Kluwer Academic Publishers
Group, 1996.

C. A. S. Oliveira and P. M. Pardalos. Randomized parallel algorithms for the multi-
dimensional assignment problem. Applied Numerical Mathematics, 49(1):117–133,
April 2004.

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice Hall, Englewood Cliffs, 1982.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2005. URL
http://www.R-project.org. ISBN 3-900051-07-0.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association, 66(336):846–850, 1971.

S. Rosenberg. The method of sorting in multivariate research with applications se-
lected from cognitive psychology and person perception. In N. Hirschberg and L. G.
Humphreys, editors, Multivariate Applications in the Social Sciences, pages 117–
142. Erlbaum, Hillsdale, New Jersey, 1982.

S. Rosenberg and M. P. Kim. The method of sorting as a data-gathering procedure in
multivariate research. Multivariate Behavioral Research, 10:489–502, 1975.

V. Roth, T. Lange, M. Braun, and J. M. Buhmann. A resampling approach to cluster
validation. In W. Härdle and B. Rönz, editors, COMPSTAT 2002 – Proceedings in
Computational Statistics, pages 123–128. Physika Verlag, 2002. ISBN 3-7908-1517-9.

P. Rousseeuw, A. Struyf, M. Hubert, and M. Maechler. cluster: Functions for Clus-
tering (by Rousseeuw et al.), 2005. URL http://CRAN.R-project.org/. R package
version 1.9.8.

M. Sato and Y. Sato. On a multicriteria fuzzy clustering method for 3-way data.
International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2:
127–142, 1994.

R. R. Sokal and F. J. Rohlf. The comparisons of dendrograms by objective methods.
Taxon, 11:33–40, 1962.

A. Strehl and J. Ghosh. Cluster ensembles – A knowledge reuse framework for combin-
ing multiple partitions. Journal of Machine Learning Research, 3:583–617, 2003a.
ISSN 1533-7928.

A. Strehl and J. Ghosh. Relationship-based clustering and visualization for high-
dimensional data mining. INFORMS Journal on Computing, 15:208–230, 2003b.
ISSN 1526-5528.

A. Struyf, M. Hubert, and P. Rousseeuw. Clustering in an object-oriented environment.
Journal of Statistical Software, 1(4), 1996. URL http://www.jstatsoft.org/v01/

i04/.

28

R. Tibshirani and G. Walther. Cluster validation by prediction strength. Journal of
Computational and Graphical Statistics, 14(3):511–528, 2005.

D. L. Wallace. Comments on “A method for comparing two hierarchical clusterings”.
Journal of the American Statistical Association, 78:569–576, 1983.

29

