
The crmn Package

Henning Redestig
henning@psc.riken.jp

RIKEN Plant Science Center
Yokohama, Japan

http://www.metabolome.jp/

January 14, 2010

Overview

CRMN (Cross-contribution Robust Multiple standard Normalization) is a nor-
malization method that can be used to normalize data that has been generated
using internal standards (ISs). It is mainly intended (but not restricted) to nor-
malize GC-MS metabolomics data. An IS is a chemical compound that is added
to the sample in a known concentration and can be used to remove bias that
arise from technical variation. Unfortunately, sometimes analytes may directly
cause variation in these standards thereby rendering them difficult to use for
normalization purposes.

CRMN attempts to solve this issue by correcting the ISs for covariance with
the experimental design before using them for normalization. In short, this
achieved by the following algorithm:

1. Pre-process data by log-transforming and z-transformation.

2. Divide data into analytes, YA, and standards, YS .

3. Remove the correlation between experimental design matrix, G and the
YS using linear regression.

4. Perform PCA on the residual of the regression model between YS and G
to extract the systematic error, TZ .

5. Remove correlation between YA and TZ using linear regression.

6. Undo pre-processing steps.

Please see Redestig et al. [1] further description.

1 Normalization methods

The package comes with access to several different normalization methods to
use as reference or alternative to the CRMN method. These are:

1

http://www.metabolome.jp/

NOMIS The method proposed by Sysi-Aho et al. [2]. Note that this imple-
mentation was not done by the authors of the NOMIS method and any
errors should be blamed on author of this package.

One Divide each analyte by the abundance estimate of a single user-defined IS.
Also known as Single.

RI Divide each analyte by the abundance estimate of the IS that is closest in
terms of its retention index.

totL2 Does not use internal standards, normalization is done by ensuring that
the square sum of each sample is the same.

Median/Avg Does not use internal standards, normalization is done by en-
suring that the median/average of each sample equals one.

2 Getting started

Installing the package: For Windows, start R and select the Packages menu,
then Install package from local zip file. Find and highlight the location
of the zip file and click on open.

For Linux/Unix, use the usual command R CMD INSTALL or use the com-
mand install.packages from within an R session.

Loading the package: To load the crmn package in your R session, type
library(crmn):

> library(crmn)

> help(package = "crmn")

Help files: Detailed information on crmn package functions can be obtained
from the help files. For example, to get a description of the normalization
function normalize type help("normalize").

Sample data: A sample data set is included under the name mix. This data
has 46 analytes of which 11 are internal standards. There are 42 samples con-
taining known compositions of the measured analytes (see Redestig et al. (Un-
published)). The samples were measured in three different batches as indicated
in the phenotypical data.

3 Examples

3.1 Input data

There are two slightly different flavors for how the data can be provided to
the normalization functions. One way is to use the ExpressionSet object type
as defined by the Biobase package. This is convenient because object type
holds both information about the samples (columns) and the analytes (rows) of
the data matrix and gives programmatically useful ways to access the different
types of data. To use this way you must first format your data to such an

2

object, please read the documentation from Biobase on how to do this. The
ExpressionSet-object must contain information about which features are the
internal standards coded by a tag (or another column name but then you have
to specify the “where” argument to analytes and standards) component which
should be equal "IS" (or something else which you have to specify via the what
argument) for the standards. To use the RI method the feature data must also
contain the retention index of each analyte. See the dataset mix for an example.

Alternatively you can provide the data as a simple matrix (as for example
read by the read.table function). In that case you must make sure to always
pass the extra argument standards which is a logical vector indicating which
rows are the internal standards. You must also specify the design matrix to the
experiment yourself. This is of course an option when using an ExpressionSet
as well.

3.2 Normalization of a ExpressionSet

> data(mix)

> head(fData(mix))[, 1:4]

mark tag synonym RI
15 Marked I Glycolic acid (2TMS) 1066.5
18 Marked I Alanine, DL- (2TMS) 1097.3
47 Marked I Nicotinic acid (1TMS) 1298.5
51 Marked I Fumaric acid (2TMS) 1340.6
52 Marked I Serine, DL- (3TMS) 1348.3
56 Marked I Threonine, DL- (3TMS) 1373.1

> head(pData(mix))

type experiment runorder
STDs_1_2_1 STDs_1 uv 3
STDs_1_2_2 STDs_1 uv 3
STDs_1_2_3 STDs_1 uv 3
STDs_1_3_1 STDs_1 uv 3
STDs_1_3_2 STDs_1 uv 3
STDs_1_3_3 STDs_1 uv 3

Division of the dataset should now be possible as following.

> Ys <- standards(mix)

> Ya <- analytes(mix)

> dim(Ys)

Features Samples
11 42

> dim(Ya)

Features Samples
35 42

3

These two functions must work as they should for your data too (if you want
to the the ExpressionSet interface, otherwise see Section ??) so make sure that
they do.

To proceed with normalization we first fit a normalization model. The com-
plexity, number of principal components, is decided by the cross-validation func-
tionality of the pcaMethods package. To use CRMN we also need access to the
experimental design. This can be done automatically by specifying the relevant
factors in the pData object of the data or by directly providing a design matrix.
I.e:

> nfit <- normFit(mix, "crmn", factor = "type", ncomp = 2)

Is the same as doing:

> G <- model.matrix(~-1 + mix$type)

> nfit <- normFit(mix, "crmn", factor = G, ncomp = 2)

We proceed by not specifying the complexity but letting the cross-validation
take care of this step.

> nfit <- normFit(mix, "crmn", factor = "type")

> sFit(nfit)$ncomp

PC 2
2

The variance that CRMN identified as systematic error can be visualized
using slplot, see Figure 1.

> slplot(sFit(nfit)fitpc, scol = as.integer(mix$runorder))

−2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

Scores

93.40% of the variance explained
PC 1

P
C

 2

STDs_1_2_1

STDs_1_2_2

STDs_1_2_3

STDs_1_3_1

STDs_1_3_2

STDs_1_3_3

STDs_2_1_1STDs_2_1_2STDs_2_1_3
STDs_2_2_1

STDs_2_2_2
STDs_2_2_3
STDs_2_3_1STDs_2_3_2STDs_2_3_3

STDs_3_1_1

STDs_3_1_2
STDs_3_1_3

STDs_3_2_1

STDs_3_2_2
STDs_3_2_3

STDs_3_3_1

STDs_3_3_2
STDs_3_3_3

STDs1_1_1
STDs1_2_1
STDs1_3_1

STDs2_1_1
STDs2_2_1
STDs2_3_1
STDs3_1_1
STDs3_2_1STDs3_3_1

STDs1_1_11

STDs1_2_11

STDs1_3_11
STDs2_1_11

STDs2_2_11

STDs2_3_11

STDs3_1_11

STDs3_2_11

STDs3_3_11

−0.3 −0.1 0.1 0.2 0.3

−
0.

6
−

0.
2

0.
2

0.
6

Loadings

PC 1

P
C

 2

238
239
240241

242

243

244245246

247

248

Figure 1: PCA of the systematic error TZ . Colors correspond to the known
batches.

The output from normFit is an object of class nFit and has a simple plot
and print/show function which can give basic statistics about the normalization
model, see Figure 2

To normalize the data we predict the training data. Note that we could also
have held some samples out from the training to obtain sample-independent
normalization (potentially useful for quality control purposes).

4

> nfit

crmn normalization model
========================
Effect of experiment design on standards:

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
I(X) 3 1.1339 1.7123 33 93 0.02344 *
Residuals 39

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Captured Tz:

Length Class Mode

1 pcaRes S4

R2 from Tz to analytes:

[1] 0.7112739

> plot(nfit)

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

Tz optimization

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 R2

Q2

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

−2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

Tz1

T
z2

●

●

●
●

●

●

●●
●

●

●

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Pz1

P
z2

Figure 2: Basic plot function.

> normed.crmn <- normPred(nfit, mix, factor = "type")

We can compare the result with other methods. Now we do this using the
wrapper function normalize that combines normFit and normPred. See side-
by-side PCA score plots of CRMN normalized data versus One and NOMIS
normalized data in Figure 3.

> normed.one <- normalize(mix, "one", one = "Hexadecanoate_13C4")

> normed.nomis <- normalize(mix, "nomis")

5

> pca.crmn <- pca(scale(log(t(exprs(normed.crmn)))))

> pca.one <- pca(scale(log(t(exprs(normed.one)))))

> pca.nomis <- pca(scale(log(t(exprs(normed.nomis)))))

> par(mfrow = c(1, 3))

> plot(scores(pca.one), col = as.integer(mix$type), pch = as.integer(mix$runorder),

+ main = "Single IS")

> plot(scores(pca.nomis), col = as.integer(mix$type), pch = as.integer(mix$runorder),

+ main = "NOMIS")

> plot(scores(pca.crmn), col = as.integer(mix$type), pch = as.integer(mix$runorder),

+ main = "CRMN")

●

●

●

●

●

●

●
●

●

0 5 10

−
2

−
1

0
1

2
3

Single IS

PC1

P
C

2

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6 8

−
6

−
4

−
2

0
2

4

NOMIS

PC1

P
C

2

●

●

● ●

●

●

●

●

●

−2 0 2 4 6

−
6

−
4

−
2

0
2

4

CRMN

PC1

P
C

2

Figure 3: PCA of the mix using three different normalizations. Colors indicate
the true concentration groups and plot character indicate the different batches
(unwanted effect).

6

3.3 Normalization of a matrix

First we construct the required input parameters. This would of course normally
be done by using read.table to read data as obtained by programs such as
TargetSearch, HDA, metAlign etc.

> Y <- exprs(mix)

> replicates <- factor(mix$type)

> G <- model.matrix(~-1 + replicates)

> isIS <- fData(mix)$tag == "IS"

Division of the dataset should now be possible as following (results hidden).

> standards(Y, isIS)

> analytes(Y, isIS)

The main business is the same as when normalizing an ExpressionSet ex-
cept that we now have to remember to pass the vector speciying the standards.

> nfit <- normFit(Y, "crmn", factors = G, ncomp = 2, standards = isIS)

To normalize the data predict the training data.

> normed.crmn <- normPred(nfit, Y, factors = G, standards = isIS,

+ ncomp = 2)

and this could also have been done directly by:

> normed.crmn <- normalize(Y, "crmn", factors = G, standards = isIS,

+ ncomp = 2)

7

References

[1] Redestig, H., Fukushima, A., H., Stenlud, Moritz, T., Arita,
M., Saito, K. and Kusano, M. Compensation for systematic
cross-contribution improves normalization of mass spectrome-
try based metabolomics data Anal Chem, 2009, 81, 7974-7980

[2] Sysi-Aho, M., Katajamaa, M., Yetukuri, L. and Oresic, M
Normalization method for metabolomics data using optimal
selection of multiple internal standards BMC Bioinformatics,
2007, 8, 93

8

	Normalization methods
	Getting started
	Examples
	Input data
	Normalization of a ExpressionSet
	Normalization of a matrix

