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1 Introduction

Remarkable developments in technology for elec-
tronic data collection and archival have increased
researchers’ ability to study the behaviour of aquatic
animals while reducing the effort involved and im-
pact on study animals. For example, interest in
the study of diving behaviour led to the develop-
ment of minute time-depth recorders (TDRs) that
can collect more than 15 MB of data on depth, ve-
locity, light levels, and other parameters as animals

∗An earlier version of this introduction to diveMove has been
published in R News (Luque 2007)

†Contact: spluque@gmail.com. Comments for improvement
are very welcome!

move through their habitat. Consequently, extract-
ing useful information from TDRs has become a time-
consuming and tedious task. Therefore, there is an
increasing need for efficient software to automate
these tasks, without compromising the freedom to
control critical aspects of the procedure.

There are currently several programs available for
analyzing TDR data to study diving behaviour. The
large volume of peer-reviewed literature based on
results from these programs attests to their useful-
ness. However, none of them are in the free software
domain, to the best of my knowledge, with all the
disadvantages it entails. Therefore, the main mo-
tivation for writing diveMove was to provide an R
package for diving behaviour analysis allowing for
more flexibility and access to intermediate calcula-
tions. The advantage of this approach is that re-
searchers have all the elements they need at their
disposal to take the analyses beyond the standard
information returned by the program.

The purpose of this article is to outline the func-
tionality of diveMove, demonstrating its most useful
features through an example of a typical diving be-
haviour analysis session. Further information can be
obtained by reading the vignette that is included in
the package (vignette("diveMove")) which is cur-
rently under development, but already shows basic
usage of its main functions. diveMove is available
from CRAN, so it can easily be installed using in-

stall.packages().

2 Features

diveMove offers functions to perform the following
tasks:
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� Identification of wet vs. dry periods, defined
by consecutive readings with or without depth
measurements, respectively, lasting more than
a user-defined threshold. Depending on the
sampling protocol programmed in the instru-
ment, these correspond to wet vs. dry periods,
respectively. Each period is individually iden-
tified for later retrieval.

� Calibration of depth readings, which is needed
to correct for shifts in the pressure transducer.
This can be done using a tcltk graphical
user interface (GUI) for chosen periods in the
record, or by providing a value determined a
priori for shifting all depth readings.

� Identification of individual dives, with their dif-
ferent phases (descent, bottom, and ascent),
using various criteria provided by the user.
Again, each individual dive and dive phase is
uniquely identified for future retrieval.

� Calibration of speed readings using the method
described by Blackwell et al. (1999), providing a
unique calibration for each animal and deploy-
ment. Arguments are provided to control the
calibration based on given criteria. Diagnostic
plots can be produced to assess the quality of
the calibration.

� Summary of time budgets for wet vs. dry peri-
ods.

� Dive statistics for each dive, including maxi-
mum depth, dive duration, bottom time, post-
dive duration, and summaries for each dive
phases, among other standard dive statistics.

� tcltk plots to conveniently visualize the entire
dive record, allowing for zooming and panning
across the record. Methods are provided to in-
clude the information obtained in the points
above, allowing the user to quickly identify
what part of the record is being displayed (pe-
riod, dive, dive phase).

Additional features are included to aid in analysis
of movement and location data, which are often col-
lected concurrently with TDR data. They include
calculation of distance and speed between successive
locations, and filtering of erroneous locations using
various methods. However, diveMove is primarily a
diving behaviour analysis package, and other pack-
ages are available which provide more extensive an-

imal movement analysis features (e.g. trip).

The tasks described above are possible thanks to the
implementation of three formal S4 classes to repre-
sent TDR data. Classes TDR and TDRspeed are
used to represent data from TDRs with and with-
out speed sensor readings, respectively. The latter
class inherits from the former, and other concurrent
data can be included with either of these objects. A
third formal class (TDRcalibrate) is used to repre-
sent data obtained during the various intermediate
steps described above. This structure greatly fa-
cilitates the retrieval of useful information during
analyses.

3 Preliminary Procedures

As with other packages in R, to use the package we
load it with the funtion library:

> library(diveMove)

This makes the objects in the package available in
the current R session. A short overview of the most
important functions can be seen by running the ex-
amples in the package’s help page:

> example(diveMove)

Data Preparation

TDR data are essentially a time-series of depth read-
ings, possibly with other concurrent parameters,
typically taken regularly at a user-defined inter-
val. Depending on the instrument and manufac-
turer, however, the files obtained may contain vari-
ous errors, such as repeated lines, missing sampling
intervals, and invalid data. These errors are better
dealt with using tools other than R, such as awk and
its variants, because such stream editors use much
less memory than R for this type of problems, es-
pecially with the typically large files obtained from
TDRs. Therefore, diveMove currently makes no at-
tempt to fix these errors. Validity checks for the
TDR classes, however, do test for time series being
in increasing order.

Most TDR manufacturers provide tools for download-
ing the data from their TDRs, but often in a propri-
etary format. Fortunately, some of these manufac-
turers also offer software to convert the files from
their proprietary format into a portable format,
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such as comma-separated-values (csv). At least one
of these formats can easily be understood by R, us-
ing standard functions, such as read.table() or
read.csv(). diveMove provides constructors for its
two main formal classes to read data from files in one
of these formats, or from simple data frames.

4 How to Represent TDR Data?

TDR is the simplest class of objects used to repre-
sent TDR data in diveMove. This class, and its TDR-
speed subclass, stores information on the source file
for the data, the sampling interval, the time and
depth readings, and an optional data frame contain-
ing additional parameters measured concurrently.
The only difference between TDR and TDRspeed
objects is that the latter ensures the presence of a
speed vector in the data frame with concurrent mea-
surements. These classes have the following slots:

file: character,

dtime: numeric,

time: POSIXct,

depth: numeric,

concurrentData: data.frame

Once the TDR data files are free of errors and in a
portable format, they can be read into a data frame,
using e.g.:

> ff <- gzfile(system.file(file.path("data",

+ "dives.csv.gz"), package = "diveMove"),

+ open = "r")

> srcfn <- basename(summary(ff)$description)

> tdrXcsv <- read.csv(ff, sep = ";")

and then put into one of the TDR classes using the
function createTDR(). Note, however, that this ap-
proach requires knowledge of the sampling interval
and making sure that the data for each slot are valid:

> ddtt.str <- paste(tdrXcsv$date,

+ tdrXcsv$time)

> ddtt <- strptime(ddtt.str,

+ format = "%d/%m/%Y %H:%M:%S")

> time.posixct <- as.POSIXct(ddtt,

+ tz = "GMT")

> tdrX <- createTDR(time = time.posixct,

+ depth = tdrXcsv$depth,

+ concurrentData = tdrXcsv[,

+ -c(1:3)], dtime = 5,

+ file = srcfn)

Figure 1. The plotTDR() method for TDR objects pro-
duces an interactive plot of the data, allowing
for zooming and panning.

> tdrX <- createTDR(time = time.posixct,

+ depth = tdrXcsv$depth,

+ concurrentData = tdrXcsv[,

+ -c(1:3)], dtime = 5,

+ file = srcfn, speed = TRUE)

If the files are in *.csv format, these steps can be
automated using the readTDR() function to create
an object of one of the formal classes representing
TDR data (TDRspeed in this case), and immediately
begin using the methods provided:

> ff <- gzfile(system.file(file.path("data",

+ "dives.csv.gz"), package = "diveMove"),

+ open = "r")

> tdrX <- readTDR(ff, speed = TRUE,

+ sep = ";", na.strings = "",

+ as.is = TRUE)

> plotTDR(tdrX)

Several arguments for readTDR() allow mapping of
data from the source file to the different slots in
diveMove’s classes, the time format in the input and
the time zone attribute to use for the time readings.

Various methods are available for displaying TDR
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objects, including show(), which provides an in-
formative summary of the data in the object, ex-
tractors and replacement methods for all the slots.
There is a plotTDR() method (Figure 1) for both
TDR and TDRspeed objects. The interact argu-
ment allows for suppression of the tcltk inter-
face. Information on these methods is available from
methods?TDR.

TDR objects can easily be coerced to data frame
(as.data.frame() method), without losing infor-
mation from any of the slots. TDR objects can addi-
tionally be coerced to TDRspeed , whenever it makes
sense to do so, using an as.TDRspeed() method.

5 Identification of Activities at
Various Scales

One of the first steps of dive analysis is to identify
dry and wet periods in the record. This is done with
function calibrateDepth(). Wet periods are those
with depth readings, dry periods are those without
them. However, records may have aberrant missing
depth that should not define dry periods, as they
are usually of very short duration1. Likewise, there
may be periods of wet activity that are too short to
be compared with other wet periods, and need to be
excluded from further analyses. These aspects can
be controlled by setting the arguments dry.thr and
wet.thr to appropriate values.

The next step involves correcting depth for shifts
in the pressure transducer, so that surface readings
correspond to zero. Such shifts are usually constant
for an entire deployment period, but there are cases
where the shifts vary within a particular deploy-
ment, so shifts remain difficult to detect and dives
are often missed. Therefore, a visual examination of
the data is often the only way to detect the location
and magnitude of the shifts. Visual adjustment for
shifts in depth readings is tedious, but has many ad-
vantages which may save time during later stages of
analysis. These advantages include increased under-
standing of the data, and early detection of obvious
problems in the records, such as instrument mal-
function during certain intervals, which should be
excluded from analysis.

1They may result from animals resting at the surface of the
water long enough to dry the sensors.

Function calibrateDepth() takes a TDR object to
perform three basic tasks: 1. identify wet and dry
periods, 2. zero-offset correct (ZOC) the data, and
3. identify all dives in the record and their phases.
ZOC can be done using one of three methods: “vi-
sual”, “offset”, and “filter”. The first one (“visual”) is
the default method, which let’s the user perform the
correction interactively, using the tcltk package:

> dcalib <- calibrateDepth(tdrX)

This command brings up a plot with tcltk con-
trols allowing to zoom in and out, as well as pan
across the data, and adjust the depth scale. Thus,
an appropriate time window with a unique surface
depth value can be displayed. This allows the user
to select a depth scale that is small enough to re-
solve the surface value using the mouse. Clicking
on the ZOC button waits for two clicks: i) the co-
ordinates of the first click define the starting time
for the window to be ZOC’ed, and the depth corre-
sponding to the surface, ii) the second click defines
the end time for the window (i.e. only the x co-
ordinate has any meaning). This procedure can be
repeated as many times as needed. If there is any
overlap between time windows, then the last one
prevails. However, if the offset is known a priori,
method “offset” lets the user specify this value as
the argument offset to calibrateDepth(). For ex-
ample, preliminary inspection of object tdrX would
have revealed a 3 m offset, and we could have simply
called (without plotting):

> dcalib <- calibrateDepth(tdrX,

+ zoc.method = "offset",

+ offset = 3)

A third method (“filter”) implements a smooth-
ing/filtering mechanism where running quantiles
can be applied to depth measurements sequentially,
using .depth.filter. It relies on the caTools

package. This method is still under development,
but reasonable results can already be achieved by
applying two filters, the first one using a running
median with a narrow window to denoise the time
series, followed by a running low quantile using a
wide time window. The integer vector given as argu-
ment k specifies the width of the moving window(s),
where ki is the width for the ith filter in units of
the sampling interval of the TDR object. Similarly,
the integer vector given as argument probs speci-
fies the quantile for each filter, where probsi is the
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quantile for the ith filter. Smoothing/filtering can
be performed within specified minimum and maxi-
mum depth bounds using argument depth.bounds2,
in cases where surface durations are relatively brief
separated by long periods of deep diving. These
cases usually require large windows, and using depth
bounds helps to stabilize the surface signal. Further
details on this method are provided by Luque and
Fried (2011).

> dcalib <- calibrateDepth(tdrX,

+ zoc.method = "filter",

+ k = c(3, 5760), probs = c(0.5,

+ 0.02), na.rm = TRUE)

Once the whole record has been zero-offset cor-
rected, remaining depths below zero, are set to zero,
as these are assumed to indicate values at the sur-
face.

Finally, calibrateDepth() identifies all dives in
the record, according to a minimum depth criterion
given as its dive.thr argument. The value for this
criterion is typically determined by the resolution of
the instrument and the level of noise close to the sur-
face. Thus, dives are defined as departures from the
surface to maximal depths below dive.thr and the
subsequent return to the surface. Each dive may
subsequently be referred to by an integer number
indicating its position in the time series.

Dive phases are also identified at this last stage, and
is done using a smoothing spline model of the dive
and its first derivative. Detection of dive phases
is controlled by four arguments: a critical quan-
tile for rates of vertical descent (descent.crit.q), a
critical quantile for rates of ascent (ascent.crit.q),
a smoothing parameter (smooth.par), and a factor
(knot.factor) that multiplies the duration of the dive
to obtain the number of knots at which to evaluate
the derivative of the smoothing spline. The first
two arguments are used to define the rate of de-
scent below which the descent phase is deemed to
have ended, and the rate of ascent above which the
ascent phase is deemed to have started, respectively.
The rates are obtained by evaluating the derivative
of the smoothing at a number of knots placed reg-
ularly throughout the dive. Descent is deemed to
have ended at the first minimum derivative, and the
nearest input time observation is considered to indi-
cate the end of descent. The sign of the comparisons

2Defaults to the depth range

is reversed for detecting the ascent.

A more refined call to calibrateDepth() for object
tdrX may be:

> dcalib <- calibrateDepth(tdrX,

+ dive.thr = 3, zoc.method = "offset",

+ offset = 3, descent.crit.q = 0.01,

+ ascent.crit.q = 0, knot.factor = 20)

The result (value) of this function is an object of
class TDRcalibrate, where all the information ob-
tained during the tasks described above are stored.

6 How to Represent Calibrated TDR

Data?

Objects of class TDRcalibrate contain the follow-
ing slots, which store information during the major
procedures performed by calibrateDepth():

call: TDR. The call used to generate the object.

tdr: TDR. The object which was calibrated.

gross.activity: list . This list contains four com-
ponents with details on wet/dry activities de-
tected, such as start and end times, durations,
and identifiers and labels for each activity pe-
riod. Five activity categories are used for la-
belling each reading, indicating dry (L), wet
(W), underwater (U), diving (D), and brief wet
(Z) periods. However, underwater and diving
periods are collapsed into wet activity at this
stage (see below).

dive.activity: data.frame. This data frame contains
three components with details on the diving ac-
tivities detected, such as numeric vectors iden-
tifiying to which dive and post-dive interval
each reading belongs to, and a factor labelling
the activity each reading represents. Compared
to the gross.activity slot, the underwater
and diving periods are discerned here.

dive.phases: factor . This identifies each reading
with a particular dive phase. Thus, each read-
ing belongs to one of descent, descent/bottom,
bottom, bottom/ascent, and ascent phases.
The descent/bottom and bottom/ascent levels
are useful for readings which could not unam-
biguously be assigned to one of the other levels.

dive.models: list . This list contains all the details
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of the modelling process used to identifies dive
phases. Each member of this list consists of
objects of class diveModel , for which important
methods are available.

dry.thr: numeric.

wet.thr: numeric.

dive.thr: numeric. These last three slots store in-
formation given as arguments to calibrat-

eDepth(), documenting criteria used during
calibration.

speed.calib.coefs: numeric. If the object cali-
brated was of class TDRspeed , then this is a
vector of length 2, with the intercept and the
slope of the speed calibration line (see below).

All the information contained in each of these slots
is easily accessible through extractor methods for
objects of this class (see class?TDRcalibrate). An
appropriate show() method is available to display a
short summary of such objects, including the num-
ber of dry and wet periods identified, and the num-
ber of dives detected.

The TDRcalibrate plotTDR() method for these ob-
jects allows visualizing the major wet/dry activities
throughout the record (Figure 2):

> plotTDR(dcalib, concurVars = c("speed",

+ "light"), surface = TRUE)

The dcalib object contains a TDRspeed object in
its tdr slot, and speed is plotted by default in this
case. Additional measurements obtained concur-
rently can also be plotted using the concurVars ar-
gument. Titles for the depth axis and the concur-
rent parameters use separate arguments; the for-
mer uses ylab.depth, while the latter uses concur-
VarTitles. Convenient default values for these are
provided. The surface argument controls whether
post-dive readings should be plotted; it is FALSE

by default, causing only dive readings to be plotted
which saves time plotting and re-plotting the data.
All plot methods use the underlying plotTD() func-
tion, which has other useful arguments that can be
passed from these methods.

A more detailed view of the record can be obtained
by using a combination of the diveNo and the labels
arguments to this plotTDR() method. This is useful
if, for instance, closer inspection of certain dives is
needed. The following call displays a plot of dives 2

Figure 2. The plotTDR() method for TDRcalibrate
objects displays information on the major
activities identified throughout the record
(wet/dry periods here).

through 8 (Figure 3):

> plotTDR(dcalib, diveNo = 2:8,

+ what = "phases")

The labels argument allows the visualization of the
identified dive phases for all dives selected. The
same information can also be obtained with the ex-
tractDive() method for TDRcalibrate objects:

> extractDive(dcalib, diveNo = 2:8)

Other useful extractors include: getGAct() and
getDAct(). These methods extract the whole
gross.activity and dive.activity, respectively,
if given only the TDRcalibrate object, or a partic-
ular component of these slots, if supplied a string
with the name of the component. For exam-
ple: getGAct(dcalib, "trip.act") would retrieve
the factor identifying each reading with a wet/dry
activity and getDAct(dcalib, "dive.activity")

would retrieve a more detailed factor with informa-
tion on whether the reading belongs to a dive or a
brief aquatic period. Below is a demonstration of
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Figure 3. The plotTDR() method for TDRcalibrate ob-
jects can also display information on the dif-
ferent activities during each dive record (de-
scent=D, descent/bottom=DB, bottom=B,
bottom/ascent=BA, ascent=A, X=surface).

these methods.

getTDR(): This method simply takes the TDRcali-
brate object as its single argument and extracts the
TDR object3:

> getTDR(dcalib)

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv.gz

Sampling Interval (s): 5

Number of Samples : 34199

Sampling Begins : 2002-01-05 11:32:00

Sampling Ends : 2002-01-07 11:01:50

Total Duration (d) : 1.979

Measured depth range : [0, 88]

Other variables : light temperature speed

getGAct(): There are two methods for this generic,
allowing access to a list with details about all
wet/dry periods found. One of these extracts the
entire list (output omitted for brevity):

> getGAct(dcalib)

The other provides access to particular elements of
the list , by their name. For example, if we are in-
terested in extracting only the vector that tells us
to which period number every row in the record be-
longs to, we would issue the command:

> getGAct(dcalib, "phase.id")

3In fact, a TDRspeed object in this example

Other elements that can be extracted are named“ac-
tivity”, “begin”, and “end”, and can be extracted in
a similar fashion. These elements correspond to the
activity performed for each reading (see ?detPhase

for a description of the labels for each activity), the
beginning and ending time for each period, respec-
tively.

getDAct(): This generic also has two methods; one
to extract an entire data frame with details about all
dive and postdive periods found (output omitted):

> getDAct(dcalib)

The other method provides access to the columns
of this data frame, which are named “dive.id”,
“dive.activity”, and “postdive.id”. Thus, providing
any one of these strings to getDAct, as a second
argument will extract the corresponding column.

getDPhaseLab(): This generic function extracts a
factor identifying each row of the record to a partic-
ular dive phase (see ?detDive for a description of
the labels of the factor identifying each dive phase).
Two methods are available; one to extract the entire
factor, and the other to select particular dive(s), by
its (their) index number, respectively (output omit-
ted):

> getDPhaseLab(dcalib)

> getDPhaseLab(dcalib, 20)

> dphases <- getDPhaseLab(dcalib,

+ c(100:300))

The latter method is useful for visually inspecting
the assignment of points to particular dive phases.
More information about the dive phase identifica-
tion procedure can be gleaned by using the plotDi-
veModel (Figure 4):

> plotDiveModel(dcalib, diveNo = 260)

Another generic function that allows the subsetting
of the original TDR object to a single a dive or group
of dives’ data:

> sealX <- extractDive(dcalib,

+ diveNo = c(100:300))

> sealX

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv.gz

Sampling Interval (s): 5

Number of Samples : 1758

Sampling Begins : 2002-01-05 23:40:20

Sampling Ends : 2002-01-06 23:04:45

Total Duration (d) : 0.9753
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Figure 4. Details of the process of identification of dive
phases shown by plotDiveModel , which has
methods for objects of class TDRcalibrate
and diveModel .

Measured depth range : [0, 88]

Other variables : light temperature speed

As can be seen, the function extractDive takes a
TDRcalibrate object and a vector indicating the dive
numbers to extract, and returns a TDR object con-
taining the subsetted data. Once a subset of data
has been selected, it is possible to plot them and
pass the factor labelling dive phases as the argu-
ment phaseCol to the plot method4:

> plotTDR(sealX, phaseCol = dphases)

With the information obtained during this calibra-
tion procedure, it is possible to calculate dive statis-
tics for each dive in the record.

7 Dive Summaries

A table providing summary statistics for each dive
can be obtained with the function diveStats()

(Figure 5).

4The function that the method uses is actually plotTD, so
all the possible arguments can be studied by reading the
help page for plotTD

diveStats() returns a data frame with the final
summaries for each dive (Figure 5), providing the
following information:

� The time of start of the dive, the end of descent,
and the time when ascent began.

� The total duration of the dive, and that of the
descent, bottom, and ascent phases.

� The vertical distance covered during the de-
scent, the bottom (a measure of the level of
“wiggling”, i.e. up and down movement per-
formed during the bottom phase), and the ver-
tical distance covered during the ascent.

� The maximum depth attained.

� The duration of the post-dive interval.

A summary of time budgets of wet vs. dry pe-
riods can be obtained with timeBudget(), which
returns a data frame with the beginning and end-
ing times for each consecutive period (Figure 5).
It takes a TDRcalibrate object and another argu-
ment (ignoreZ ) controlling whether aquatic periods
that were briefer than the user-specified threshold5

should be collapsed within the enclosing period of
dry activity.

These summaries are the primary goal of diveMove,
but they form the basis from which more elaborate
and customized analyses are possible, depending
on the particular research problem. These include
investigation of descent/ascent rates based on the
depth profiles, and bout structure analysis. Some
of these will be implemented in the future.

In the particular case of TDRspeed objects, however,
it may be necessary to calibrate the speed readings
before calculating these statistics.

8 Calibrating Speed Sensor Readings

Calibration of speed sensor readings is performed
using the procedure described by Blackwell et al.
(1999). Briefly the method rests on the principle
that for any given rate of depth change, the lowest
measured speeds correspond to the steepest descent
angles, i.e. vertical descent/ascent. In this case,
measured speed and rate of depth change are ex-

5This corresponds to the value given as the wet.thr argument
to calibrateDepth().

8



> tdrXSumm1 <- diveStats(dcalib)

> names(tdrXSumm1)

[1] "begdesc" "enddesc" "begasc" "desctim"

[5] "botttim" "asctim" "divetim" "descdist"

[9] "bottdist" "ascdist" "bottdep.mean" "bottdep.median"

[13] "bottdep.sd" "maxdep" "desc.tdist" "desc.mean.speed"

[17] "desc.angle" "bott.tdist" "bott.mean.speed" "asc.tdist"

[21] "asc.mean.speed" "asc.angle" "postdive.dur" "postdive.tdist"

[25] "postdive.mean.speed" "descD.min" "descD.1stqu" "descD.median"

[29] "descD.mean" "descD.3rdqu" "descD.max" "descD.sd"

[33] "bottD.min" "bottD.1stqu" "bottD.median" "bottD.mean"

[37] "bottD.3rdqu" "bottD.max" "bottD.sd" "ascD.min"

[41] "ascD.1stqu" "ascD.median" "ascD.mean" "ascD.3rdqu"

[45] "ascD.max" "ascD.sd"

> tbudget <- timeBudget(dcalib, ignoreZ = TRUE)

> head(tbudget, 4)

phaseno activity beg end

1 1 L 2002-01-05 11:32:00 2002-01-05 11:39:40

2 2 W 2002-01-05 11:39:45 2002-01-06 06:30:00

3 3 L 2002-01-06 06:30:05 2002-01-06 17:01:10

4 4 W 2002-01-06 17:01:15 2002-01-07 05:00:30

> trip.labs <- stampDive(dcalib, ignoreZ = TRUE)

> tdrXSumm2 <- data.frame(trip.labs, tdrXSumm1)

> names(tdrXSumm2)

[1] "trip.no" "trip.type" "beg" "end"

[5] "begdesc" "enddesc" "begasc" "desctim"

[9] "botttim" "asctim" "divetim" "descdist"

[13] "bottdist" "ascdist" "bottdep.mean" "bottdep.median"

[17] "bottdep.sd" "maxdep" "desc.tdist" "desc.mean.speed"

[21] "desc.angle" "bott.tdist" "bott.mean.speed" "asc.tdist"

[25] "asc.mean.speed" "asc.angle" "postdive.dur" "postdive.tdist"

[29] "postdive.mean.speed" "descD.min" "descD.1stqu" "descD.median"

[33] "descD.mean" "descD.3rdqu" "descD.max" "descD.sd"

[37] "bottD.min" "bottD.1stqu" "bottD.median" "bottD.mean"

[41] "bottD.3rdqu" "bottD.max" "bottD.sd" "ascD.min"

[45] "ascD.1stqu" "ascD.median" "ascD.mean" "ascD.3rdqu"

[49] "ascD.max" "ascD.sd"

Figure 5. Per-dive summaries can be obtained with functions diveStats(), and a summary of time budgets with
timeBudget(). diveStats() takes a TDRcalibrate object as a single argument (object dcalib above,
see text for how it was created).
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pected to be equal. Therefore, a line drawn through
the bottom edge of the distribution of observations
in a plot of measured speed vs. rate of depth change
would provide a calibration line. The calibrated
speeds, therefore, can be calculated by reverse esti-
mation of rate of depth change from the regression
line.

diveMove implements this procedure with function
calibrateSpeed(). This function performs the fol-
lowing tasks:

1. Subset the necessary data from the record.
By default only data corresponding to depth
changes > 0 are included in the analysis, but
higher constraints can be imposed using the
z argument. A further argument limiting the
data to be used for calibration is bad , which is a
vector with the minimum rate of depth change
and minimum speed readings to include in the
calibration. By default, values > 0 for both
parameters are used.

2. Calculate the binned bivariate kernel density
and extract the desired contour. Once the
proper data were obtained, a bivariate normal
kernel density grid is calculated from the rela-
tionship between measured speed and rate of
depth change (using the KernSmooth package).
The choice of bandwidths for the binned kernel
density is made using bw.nrd . The contour.level
argument to calibrateSpeed() controls which
particular contour should be extracted from the
density grid. Since the interest is in defining a
regression line passing through the lower densi-
ties of the grid, this value should be relatively
low (it is set to 0.1 by default).

3. Define the regression line passing through the
lower edge of the chosen contour. A quantile
regression through a chosen quantile is used for
this purpose. The quantile can be specified us-
ing the tau argument, which is passed to the
rq() function in package quantreg. tau is set
to 0.1 by default.

4. Finally, the speed readings in the TDR object
are calibrated.

As recognized by Blackwell et al. (1999), the ad-
vantage of this method is that it calibrates the in-
strument based on the particular deployment con-
ditions (i.e. controls for effects of position of the
instrument on the animal, and size and shape of the
instrument, relative to the animal’s morphometry,

Figure 6. The relationship between measured speed
and rate of depth change can be used to cali-
brate speed readings. The line defining the
calibration for speed measurements passes
through the bottom edge of a chosen contour,
extracted from a bivariate kernel density grid.

among others). However, it is possible to supply
the coefficients of this regression if they were esti-
mated separately; for instance, from an experiment.
The argument coefs can be used for this purpose,
which is then assumed to contain the intercept and
the slope of the line. calibrateSpeed() returns a
TDRcalibrate object, with calibrated speed readings
included in its tdr slot, and the coefficients used for
calibration.

For instance, to calibrate speed readings using the
0.1 quantile regression of measured speed vs. rate
of depth change, based on the 0.1 contour of the bi-
variate kernel densities, and including only changes
in depth > 1, measured speeds and rates of depth
change > 0:

> vcalib <- calibrateSpeed(dcalib,

+ tau = 0.1, contour.level = 0.1,

+ z = 1, bad = c(0, 0),

+ cex.pts = 0.2)

This call produces the plot shown in Figure 6, which
can be suppressed by the use of the logical argu-
ment plot . Calibrating speed readings allows for
the meaningful interpretation of further parameters

10



calculated by diveStats(), whenever a TDRspeed
object was found in the TDRcalibrate object:

� The total distance travelled, mean speed, and
diving angle during the descent and ascent
phases of the dive.

� The total distance travelled and mean speed
during the bottom phase of the dive, and the
post-dive interval.

9 Bout Detection

Diving behaviour often occurs in bouts for sev-
eral species, so diveMove implements procedures for
defining bout ending criteria (Langton et al. 1995;
Luque and Guinet 2007). Please see ?bouts2.mle

and ?bouts2.nls for examples of 2-process models.

10 Summary

The diveMove package provides tools for analyz-
ing diving behaviour, including convenient methods
for the visualization of the typically large amounts
of data collected by TDRs. The package’s main
strengths are its ability to:

1. identify wet vs. dry periods,

2. calibrate depth readings,

3. identify individual dives and their phases,

4. summarize time budgets,

5. calibrate speed sensor readings,

6. provide basic summaries for each dive identified
in TDR records, and

7. provide tools for identification of dive bout end
criteria.

Formal S4 classes are supplied to efficiently store
TDR data and results from intermediate analysis,
making the retrieval of intermediate results readily
available for customized analysis. Development of
the package is ongoing, and feedback, bug reports,
or other comments from users are very welcome.

Acknowledgements

Many of the ideas implemented in this package de-
veloped over fruitful discussions with my mentors
John P.Y. Arnould, Christophe Guinet, and Edward
H. Miller. I would like to thank Laurent Dubroca
who wrote draft code for some of diveMove’s func-
tions. I am also greatly endebted to the regular
contributors to the R-help newsgroup who helped
me solve many problems during development.

References

S. Blackwell, C. A. Haverl, B. J. Le Boeuf, and
D. P. Costa. A method for calibrating swim-speed
recorders. Mar Mamm Sci, 15(3):894–905, 1999.

S. D. Langton, D. Collett, and R. M. Sibly. Split-
ting behaviour into bouts; a maximum likelihood
approach. Behaviour, 132:781–799, 1995.

S. P. Luque. Diving behaviour analysis in R. R
News, 7:8–14, 2007.

S. P. Luque and R. Fried. Recursive filtering for zero
offset correction of diving depth time series with
gnu r package divemove. PLoS ONE, 6(1):e15850,
2011. doi: doi:10.1371/journal.pone.0015850.

S. P. Luque and C. Guinet. A maximum likelihood
approach for identifying dive bouts improves ac-
curacy, precision, and objectivity. Behaviour, 144:
1315–1332, 2007.

11



diveMove
October 5, 2011

R topics documented:

diveMove-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
austFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bout-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
bout-misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
bouts2MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
bouts2NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
bouts3NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
calibrateDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
calibrateSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
distSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
diveModel-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
dives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
diveStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
extractDive-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
plotDiveModel-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
plotTDR-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
plotZOC-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
readLocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
readTDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
rqPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
sealLocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TDR-accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TDR-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
TDRcalibrate-accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TDRcalibrate-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
timeBudget-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Index 47

1



2 diveMove-package

diveMove-package Dive Analysis and Calibration

Description

This package is a collection of functions for visualizing, and analyzing depth and speed data from
time-depth recorders TDRs. These can be used to zero-offset correct depth, calibrate speed, and
divide the record into different phases, or time budget. Functions are provided for calculating
summary dive statistics for the whole record, or at smaller scales within dives.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

A vignette with a guide to this package is available by doing vignette("diveMove"). TDR-
class, calibrateDepth, calibrateSpeed, timeBudget, stampDive.

Examples

## read in data and create a TDR object
zz <- gzfile(system.file(file.path("data", "dives.csv.gz"),

package="diveMove"), open="r")
(sealX <- readTDR(zz, speed=TRUE, sep=";", na.strings="", as.is=TRUE))

if (dev.interactive(orNone=TRUE)) plotTDR(sealX) # interactively pan and zoom

## detect periods of activity, and calibrate depth, creating
## a "TDRcalibrate" object
if (dev.interactive(orNone=TRUE)) dcalib <- calibrateDepth(sealX)
## Use the "offset" ZOC method to zero-offset correct depth at 3 m
(dcalib <- calibrateDepth(sealX, zoc.method="offset", offset=3))

if (dev.interactive(orNone=TRUE)) {
## plot all readings and label them with the phase of the record
## they belong to, excluding surface readings
plotTDR(dcalib, surface=FALSE)
## plot the first 300 dives, showing dive phases and surface readings
plotTDR(dcalib, diveNo=seq(300), surface=TRUE)

}

## calibrate speed (using changes in depth > 1 m and default remaining arguments)
(vcalib <- calibrateSpeed(dcalib, z=1))

## Obtain dive statistics for all dives detected
dives <- diveStats(vcalib)
head(dives)

## Attendance table



austFilter 3

att <- timeBudget(vcalib, FALSE) # taking trivial aquatic activities into account
att <- timeBudget(vcalib, TRUE) # ignoring them
## Add trip stamps to each dive
stamps <- stampDive(vcalib)
sumtab <- data.frame(stamps, dives)
head(sumtab)

austFilter Filter satellite locations

Description

Apply a three stage algorithm to eliminate erroneous locations, based on the procedure outlined in
Austin et al. (2003).

Usage

austFilter(time, lon, lat, id=gl(1, 1, length(time)),
speed.thr, dist.thr, window=5)

grpSpeedFilter(x, speed.thr, window=5)
rmsDistFilter(x, speed.thr, window=5, dist.thr)

Arguments

time POSIXct object with dates and times for each point.

lon numeric vectors of longitudes, in decimal degrees.

lat numeric vector of latitudes, in decimal degrees.

id A factor grouping points in different categories (e.g. individuals).

speed.thr numeric scalar: speed threshold (m/s) above which filter tests should fail any
given point.

dist.thr numeric scalar: distance threshold (km) above which the last filter test should
fail any given point.

window integer: the size of the moving window over which tests should be carried out.

x 3-column matrix with column 1: POSIXct vector; column 2: numeric longi-
tude vector; column 3: numeric latitude vector.

Details

These functions implement the location filtering procedure outlined in Austin et al. (2003). grpSpeedFilter
and rmsDistFilter can be used to perform only the first stage or the second and third stages of
the algorithm on their own, respectively. Alternatively, the three filters can be run in a single call
using austFilter.

The first stage of the filter is an iterative process which tests every point, except the first and last
(w/2) - 1 (where w is the window size) points, for travel velocity relative to the preceeding/following
(w/2) - 1 points. If all w - 1 speeds are greater than the specified threshold, the point is marked as
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failing the first stage. In this case, the next point is tested, removing the failing point from the set of
test points.

The second stage runs McConnell et al. (1992) algorithm, which tests all the points that passed the
first stage, in the same manner as above. The root mean square of all w - 1 speeds is calculated,
and if it is greater than the specified threshold, the point is marked as failing the second stage (see
Warning section below).

The third stage is run simultaneously with the second stage, but if the mean distance of all w - 1
pairs of points is greater than the specified threshold, then the point is marked as failing the third
stage.

The speed and distance threshold should be obtained separately (see distSpeed).

Value

grpSpeedFilter returns a logical vector indicating those lines that passed the test.

rmsDistFilter and austFilter return a matrix with 2 or 3 columns, respectively, of logical
vectors with values TRUE for points that passed each stage. For the latter, positions that fail the
first stage fail the other stages too. The second and third columns returned by austFilter, as
well as those returned by rmsDistFilter are independent of one another; i.e. positions that fail
stage 2 do not necessarily fail stage 3.

Warning

This function applies McConnell et al.’s filter as described in Freitas et al. (2008). According to
the original description of the algorithm in McConnell et al. (1992), the filter makes a single pass
through all locations. Austin et al. (2003) and other authors may have used the filter this way.
However, as Freitas et al. (2008) noted, this causes locations adjacent to those flagged as failing to
fail also, thereby rejecting too many locations. In diveMove, the algorithm was modified to reject
only the “peaks” in each series of consecutive locations having root mean square speed higher than
threshold.

Author(s)

Sebastian P. Luque <spluque@gmail.com> and Andy Liaw.

References

McConnell BJ, Chambers C, Fedak MA. 1992. Foraging ecology of southern elephant seals in
relation to bathymetry and productivity of the Southern Ocean. Antarctic Science 4:393-398.

Austin D, McMillan JI, Bowen D. 2003. A three-stage algorithm for filtering erroneous Argos
satellite locations. Marine Mammal Science 19: 371-383.

Freitas C, Lydersen, C, Fedak MA, Kovacs KM. 2008. A simple new algorithm to filter marine
mammal ARGOS locations. Marine Mammal Science DOI: 10.1111/j.1748-7692.2007.00180.x

See Also

distSpeed
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Examples

## Using the Example from '?readLocs':
utils::example("readLocs", package="diveMove",

ask=FALSE, echo=FALSE)
ringy <- subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

## Austin et al.'s group filter alone
grp <- grpSpeedFilter(ringy[, 3:5], speed.thr=1.1)

## McConnell et al.'s filter (root mean square test), and distance test alone
rms <- rmsDistFilter(ringy[, 3:5], speed.thr=1.1, dist.thr=300)

## Show resulting tracks
n <- nrow(ringy)
plot.nofilter <- function(main) {

plot(lat ~ lon, ringy, type="n", main=main)
with(ringy, segments(lon[-n], lat[-n], lon[-1], lat[-1]))

}
layout(matrix(1:4, ncol=2, byrow=TRUE))
plot.nofilter(main="Unfiltered Track")
plot.nofilter(main="Group Filter")
n1 <- length(which(grp))
with(ringy[grp, ], segments(lon[-n1], lat[-n1], lon[-1], lat[-1],

col="blue"))
plot.nofilter(main="Root Mean Square Filter")
n2 <- length(which(rms[, 1]))
with(ringy[rms[, 1], ], segments(lon[-n2], lat[-n2], lon[-1], lat[-1],

col="red"))
plot.nofilter(main="Distance Filter")
n3 <- length(which(rms[, 2]))
with(ringy[rms[, 2], ], segments(lon[-n3], lat[-n3], lon[-1], lat[-1],

col="green"))

## All three tests (Austin et al. procedure)
austin <- with(ringy, austFilter(time, lon, lat, speed.thr=1.1,

dist.thr=300))
layout(matrix(1:4, ncol=2, byrow=TRUE))
plot.nofilter(main="Unfiltered Track")
plot.nofilter(main="Stage 1")
n1 <- length(which(austin[, 1]))
with(ringy[austin[, 1], ], segments(lon[-n1], lat[-n1], lon[-1], lat[-1],

col="blue"))
plot.nofilter(main="Stage 2")
n2 <- length(which(austin[, 2]))
with(ringy[austin[, 2], ], segments(lon[-n2], lat[-n2], lon[-1], lat[-1],

col="red"))
plot.nofilter(main="Stage 3")
n3 <- length(which(austin[, 3]))
with(ringy[austin[, 3], ], segments(lon[-n3], lat[-n3], lon[-1], lat[-1],

col="green"))
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bout-methods Methods for Plotting and Extracting the Bout Ending Criterion

Description

Plot results from fitted mixture of 2-process Poisson models, and calculate the bout ending criterion.

Usage

## S4 method for signature 'nls'
plotBouts(fit, ...)
## S4 method for signature 'mle'
plotBouts(fit, x, ...)
## S4 method for signature 'nls'
bec2(fit)
## S4 method for signature 'mle'
bec2(fit)
## S4 method for signature 'nls'
bec3(fit)

Arguments

fit nls or mle object.

x numeric object with variable modelled.

... Arguments passed to the underlying plotBouts2.nls and plotBouts2.mle.

General Methods

plotBouts signature(fit="nls"): Plot fitted 2- or 3-process model of log frequency vs the
interval mid points, including observed data.

plotBouts signature(x="mle"): As the nls method, but models fitted through maximum
likelihood method. This plots the fitted model and a density plot of observed data.

bec2 signature(fit="nls"): Extract the estimated bout ending criterion from a fitted 2-
process model.

bec2 signature(fit="mle"): As the nls method, but extracts the value from a maximum
likelihood model.

bec3 signature(fit="nls"): Extract the estimated bout ending criterion from a fitted 3-
process model.

Author(s)

Sebastian P. Luque <spluque@gmail.com>
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References

Berdoy, M. (1993) Defining bouts of behaviour: a three-process model. Animal Behaviour 46,
387-396.

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S. P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts
improves accuracy, precision, and objectivity. Behaviour 144, 1315-1332.

Mori, Y.; Yoda, K. and Sato, K. (2001) Defining dive bouts using a sequential differences analysis.
Behaviour 138, 1451-1466.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

See Also

bouts.mle, bouts2.nls, bouts3.nls for examples.

bout-misc Fit a Broken Stick Model on Log Frequency Data for identification of
bouts of behaviour

Description

Application of methods described by Sibly et al. (1990) and Mori et al. (2001) for the identification
of bouts of behaviour.

Usage

boutfreqs(x, bw, method=c("standard", "seq.diff"), plot=TRUE, ...)
boutinit(lnfreq, x.break, plot=TRUE, ...)
labelBouts(x, bec, bec.method=c("standard", "seq.diff"))
logit(p)
unLogit(logit)

Arguments

x numeric vector on which bouts will be identified based on “method”. For labelBouts
it can also be a matrix with different variables for which bouts should be identi-
fied.

bw numeric scalar: bin width for the histogram.
method, bec.method

character: method used for calculating the frequencies: “standard” simply uses
x, while “seq.diff” uses the sequential differences method.

plot logical, whether to plot results or not.

... For boutfreqs, arguments passed to hist (must exclude breaks and include.lowest);
for boutinit, arguments passed to plot (must exclude type).
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lnfreq data.frame with components lnfreq (log frequencies) and corresponding x (mid
points of histogram bins).

x.break vector of length 1 or 2 with x value(s) defining the break(s) point(s) for broken
stick model, such that x < x.break[1] is 1st process, and x >= x.break[1]
& x < x.break[2] is 2nd one, and x >= x.break[2] is 3rd one.

bec numeric vector or matrix with values for the bout ending criterion which should
be compared against the values in x for identifying the bouts.

p numeric vector of proportions (0-1) to transform to the logit scale.

logit numeric scalar: logit value to transform back to original scale.

Details

This follows the procedure described in Mori et al. (2001), which is based on Sibly et al. 1990.
Currently, only a two process model is supported.

boutfreqs creates a histogram with the log transformed frequencies of x with a chosen bin
width and upper limit. Bins following empty ones have their frequencies averaged over the number
of previous empty bins plus one.

boutinit fits a "broken stick" model to the log frequencies modelled as a function of x (well, the
midpoints of the binned data), using chosen value(s) to separate the two or three processes.

labelBouts labels each element (or row, if a matrix) of x with a sequential number, identifying
which bout the reading belongs to. The bec argument needs to have the same dimensions as x to
allow for situations where bec within x.

logit and unLogit are useful for reparameterizing the negative maximum likelihood function,
if using Langton et al. (1995).

Value

boutfreqs returns a data frame with components lnfreq containing the log frequencies and x,
containing the corresponding mid points of the histogram. Empty bins are excluded. A plot (his-
togram of input data) is produced as a side effect if argument plot is TRUE. See the Details section.

boutinit returns a list with as many elements as the number of processes implied by x.break
(i.e. length(x.break) + 1). Each element is a vector of length two, corresponding to a and
lambda, which are starting values derived from broken stick model. A plot is produced as a side
effect if argument plot is TRUE.

labelBouts returns a numeric vector sequentially labelling each row or element of x , which
associates it with a particular bout.

unLogit and logit return a numeric vector with the (un)transformed arguments.

Author(s)

Sebastian P. Luque <spluque@gmail.com>
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References

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts im-
proves accuracy, precision, and objectivity. Behaviour, 144, 1315-1332.

Mori, Y.; Yoda, K. and Sato, K. (2001) Defining dive bouts using a sequential differences analysis.
Behaviour, 2001 138, 1451-1466.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

See Also

bouts2.nls, bouts.mle. These include an example for labelBouts.

Examples

## Using the Example from '?diveStats':
utils::example("diveStats", package="diveMove",

ask=FALSE, echo=FALSE)
postdives <- tdrX.tab$postdive.dur[tdrX.tab$trip.no == 2]
## Remove isolated dives
postdives <- postdives[postdives < 2000]
lnfreq <- boutfreqs(postdives, bw=0.1, method="seq.diff", plot=FALSE)
boutinit(lnfreq, 50)

## See ?bouts.mle for labelBouts() example

bouts2MLE Maximum Likelihood Model of mixture of 2 Poisson Processes

Description

Functions to model a mixture of 2 random Poisson processes to identify bouts of behaviour. This
follows Langton et al. (1995).

Usage

bouts2.mleFUN(x, p, lambda1, lambda2)
bouts2.ll(x)
bouts2.LL(x)
bouts.mle(ll.fun, start, x, ...)
bouts2.mleBEC(fit)
plotBouts2.mle(fit, x, xlab="x", ylab="Log Frequency", bec.lty=2, ...)
plotBouts2.cdf(fit, x, draw.bec=FALSE, bec.lty=2, ...)
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Arguments

x numeric vector with values to model.
p, lambda1, lambda2

numeric: parameters of the mixture of Poisson processes.

ll.fun function returning the negative of the maximum likelihood function that should
be maximized. This should be a valid minuslogl argument to mle.

start, ... Arguments passed to mle. For plotBouts2.cdf, arguments passed to plot.ecdf.
For plotBouts2.mle, arguments passed to curve (must exclude xaxs,
yaxs). For plotBouts2.nls, arguments passed to plot (must exclude
type).

fit mle object.

xlab, ylab character: titles for the x and y axes.

bec.lty Line type specification for drawing the BEC reference line.

draw.bec logical; do we draw the BEC?

Details

For now only a mixture of 2 Poisson processes is supported. Even in this relatively simple case, it
is very important to provide good starting values for the parameters.

One useful strategy to get good starting parameter values is to proceed in 4 steps. First, fit a broken
stick model to the log frequencies of binned data (see boutinit), to obtain estimates of 4 param-
eters corresponding to a 2-process model (Sibly et al. 1990). Second, calculate parameter p from
the 2 alpha parameters obtained from the broken stick model, to get 3 tentative initial values for the
2-process model from Langton et al. (1995). Third, obtain MLE estimates for these 3 parameters,
but using a reparameterized version of the -log L2 function. Lastly, obtain the final MLE estimates
for the 3 parameters by using the estimates from step 3, un-transformed back to their original scales,
maximizing the original parameterization of the -log L2 function.

boutinit can be used to perform step 1. Calculation of the mixing parameter p in step 2 is
trivial from these estimates. Function bouts2.LL is a reparameterized version of the -log L2
function given by Langton et al. (1995), so can be used for step 3. This uses a logit (see logit)
transformation of the mixing parameter p , and log transformations for both density parameters
lambda1 and lambda2 . Function bouts2.ll is the -log L2 function corresponding to the un-
transformed model, hence can be used for step 4.

bouts.mle is the function performing the main job of maximizing the -log L2 functions, and is
essentially a wrapper around mle. It only takes the -log L2 function, a list of starting values, and
the variable to be modelled, all of which are passed to mle for optimization. Additionally, any
other arguments are also passed to mle, hence great control is provided for fitting any of the -log
L2 functions.

In practice, step 3 does not pose major problems using the reparameterized -log L2 function, but it
might be useful to use method “L-BFGS-B” with appropriate lower and upper bounds. Step 4 can
be a bit more problematic, because the parameters are usually on very different scales. Therefore, it
is almost always the rule to use method “L-BFGS-B”, again bounding the parameter search, as well
as passing a control list with proper parscale for controlling the optimization. See Note
below for useful constraints which can be tried.



bouts2MLE 11

Value

bouts.mle returns an object of class mle.

bouts2.mleBEC and bouts2.mleFUN return a numeric vector.

bouts2.LL and bouts2.ll return a function.

plotBouts2.mle and plotBouts2.cdf return nothing, but produce a plot as side effect.

Note

In the case of a mixture of 2 Poisson processes, useful values for lower bounds for the bouts.LL
reparameterization are c(-2, -5, -10). For bouts2.ll, useful lower bounds are rep(1e-
08, 3). A useful parscale argument for the latter is c(1, 0.1, 0.01). However, I have only
tested this for cases of diving behaviour in pinnipeds, so these suggested values may not be useful
in other cases.

The lambdas can be very small for some data, particularly lambda2, so the default ndeps in
optim can be so large as to push the search outside the bounds given. To avoid this problem,
provide a smaller ndeps value.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts im-
proves accuracy, precision, and objectivity. Behaviour, 144, 1315-1332.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

See Also

mle, optim, logit, unLogit for transforming and fitting a reparameterized model.

Examples

## Using the Example from '?diveStats':
utils::example("diveStats", package="diveMove",

ask=FALSE, echo=FALSE)
postdives <- tdrX.tab$postdive.dur[tdrX.tab$trip.no == 2]
postdives.diff <- abs(diff(postdives))

## Remove isolated dives
postdives.diff <- postdives.diff[postdives.diff < 2000]
lnfreq <- boutfreqs(postdives.diff, bw=0.1, plot=FALSE)
startval <- boutinit(lnfreq, 50)
p <- startval[[1]]["a"] / (startval[[1]]["a"] + startval[[2]]["a"])
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## Fit the reparameterized (transformed parameters) model
## Drop names by wrapping around as.vector()
init.parms <- list(p=as.vector(logit(p)),

lambda1=as.vector(log(startval[[1]]["lambda"])),
lambda2=as.vector(log(startval[[2]]["lambda"])))

bout.fit1 <- bouts.mle(bouts2.LL, start=init.parms, x=postdives.diff,
method="L-BFGS-B", lower=c(-2, -5, -10))

coefs <- as.vector(coef(bout.fit1))

## Un-transform and fit the original parameterization
init.parms <- list(p=unLogit(coefs[1]), lambda1=exp(coefs[2]),

lambda2=exp(coefs[3]))
bout.fit2 <- bouts.mle(bouts2.ll, x=postdives.diff, start=init.parms,

method="L-BFGS-B", lower=rep(1e-08, 3),
control=list(parscale=c(1, 0.1, 0.01)))

plotBouts(bout.fit2, postdives.diff)

## Plot cumulative frequency distribution
plotBouts2.cdf(bout.fit2, postdives.diff)

## Estimated BEC
bec <- bec2(bout.fit2)

## Label bouts
labelBouts(postdives, rep(bec, length(postdives)),

bec.method="seq.diff")

bouts2NLS Fit mixture of 2 Poisson Processes to Log Frequency data

Description

Functions to model a mixture of 2 random Poisson processes to histogram-like data of log frequency
vs interval mid points. This follows Sibly et al. (1990) method.

Usage

bouts2.nlsFUN(x, a1, lambda1, a2, lambda2)
bouts2.nls(lnfreq, start, maxiter)
bouts2.nlsBEC(fit)
plotBouts2.nls(fit, lnfreq, bec.lty, ...)

Arguments

x numeric vector with values to model.
a1, lambda1, a2, lambda2

numeric: parameters from the mixture of Poisson processes.
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lnfreq data.frame with named components lnfreq (log frequencies) and corresponding
x (mid points of histogram bins).

start, maxiter
Arguments passed to nls.

fit nls object.

bec.lty Line type specification for drawing the BEC reference line.

... Arguments passed to plot.default.

Details

bouts2.nlsFUN is the function object defining the nonlinear least-squares relationship in the
model. It is not meant to be used directly, but is used internally by bouts2.nls.

bouts2.nls fits the nonlinear least-squares model itself.

bouts2.nlsBEC calculates the BEC from a list object, as the one that is returned by nls, repre-
senting a fit of the model. plotBouts2.nls plots such an object.

Value

bouts2.nlsFUN returns a numeric vector evaluating the mixture of 2 Poisson process.

bouts2.nls returns an nls object resulting from fitting this model to data.

bouts2.nlsBEC returns a number corresponding to the bout ending criterion derived from the
model.

plotBouts2.nls plots the fitted model with the corresponding data.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts Animal Behaviour 39,
63-69.

See Also

bouts.mle for a better approach; boutfreqs; boutinit

Examples

## Using the Example from '?diveStats':
utils::example("diveStats", package="diveMove",

ask=FALSE, echo=FALSE)
## Postdive durations
postdives <- tdrX.tab$postdive.dur[tdrX.tab$trip.no == 2]
postdives.diff <- abs(diff(postdives))
## Remove isolated dives
postdives.diff <- postdives.diff[postdives.diff < 2000]



14 bouts3NLS

## Construct histogram
lnfreq <- boutfreqs(postdives.diff, bw=0.1, plot=FALSE)

startval <- boutinit(lnfreq, 50)
## Drop names by wrapping around as.vector()
startval.l <- list(a1=as.vector(startval[[1]]["a"]),

lambda1=as.vector(startval[[1]]["lambda"]),
a2=as.vector(startval[[2]]["a"]),
lambda2=as.vector(startval[[2]]["lambda"]))

## Fit the 2 process model
bout.fit <- bouts2.nls(lnfreq, start=startval.l, maxiter=500)
summary(bout.fit)
plotBouts(bout.fit)

## Estimated BEC
bec2(bout.fit)

bouts3NLS Fit mixture of 3 Poisson Processes to Log Frequency data

Description

Functions to model a mixture of 3 random Poisson processes to histogram-like data of log frequency
vs interval mid points. This follows Sibly et al. (1990) method, adapted for a three-process model
by Berdoy (1993).

Usage

bouts3.nlsFUN(x, a1, lambda1, a2, lambda2, a3, lambda3)
bouts3.nls(lnfreq, start, maxiter)
bouts3.nlsBEC(fit)
plotBouts3.nls(fit, lnfreq, bec.lty, ...)

Arguments

x numeric vector with values to model.
a1, lambda1, a2, lambda2, a3, lambda3

numeric: parameters from the mixture of Poisson processes.

lnfreq data.frame with named components lnfreq (log frequencies) and corresponding
x (mid points of histogram bins).

start, maxiter
Arguments passed to nls.

fit nls object.

bec.lty Line type specification for drawing the BEC reference line.

... Arguments passed to plot.default.
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Details

bouts3.nlsFUN is the function object defining the nonlinear least-squares relationship in the
model. It is not meant to be used directly, but is used internally by bouts3.nls.

bouts3.nls fits the nonlinear least-squares model itself.

bouts3.nlsBEC calculates the BEC from a list object, as the one that is returned by nls, repre-
senting a fit of the model. plotBouts3.nls plots such an object.

Value

bouts3.nlsFUN returns a numeric vector evaluating the mixture of 3 Poisson process.

bouts3.nls returns an nls object resulting from fitting this model to data.

bouts3.nlsBEC returns a number corresponding to the bout ending criterion derived from the
model.

plotBouts3.nls plots the fitted model with the corresponding data.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

Berdoy, M. (1993) Defining bouts of behaviour: a three-process model. Animal Behaviour 46,
387-396.

See Also

bouts.mle for a better approach; boutfreqs; boutinit

Examples

## Using the Example from '?diveStats':
utils::example("diveStats", package="diveMove",

ask=FALSE, echo=FALSE)
## Postdive durations
postdives <- tdrX.tab$postdive.dur
postdives.diff <- abs(diff(postdives))
## Remove isolated dives
postdives.diff <- postdives.diff[postdives.diff < 4000]

## Construct histogram
lnfreq <- boutfreqs(postdives.diff, bw=0.1, plot=FALSE)

startval <- boutinit(lnfreq, c(50, 400))
## Drop names by wrapping around as.vector()
startval.l <- list(a1=as.vector(startval[[1]]["a"]),



16 calibrateDepth

lambda1=as.vector(startval[[1]]["lambda"]),
a2=as.vector(startval[[2]]["a"]),
lambda2=as.vector(startval[[2]]["lambda"]),
a3=as.vector(startval[[3]]["a"]),
lambda3=as.vector(startval[[3]]["lambda"]))

## Fit the 3 process model
bout.fit <- bouts3.nls(lnfreq, start=startval.l, maxiter=500)
summary(bout.fit)
plotBouts(bout.fit)

## Estimated BEC
bec3(bout.fit)

calibrateDepth Calibrate Depth and Generate a "TDRcalibrate" object

Description

Detect periods of major activities in a TDR record, calibrate depth readings, and generate a TDRcalibrate
object essential for subsequent summaries of diving behaviour.

Usage

calibrateDepth(x, dry.thr=70, wet.thr=3610, dive.thr=4,
zoc.method=c("visual", "offset", "filter"), ...,
interp.wet=FALSE, smooth.par=0.1, knot.factor=3,
descent.crit.q=0, ascent.crit.q=0)

Arguments

x An object of class TDR for calibrateDepth or an object of class TDRcalibrate
for calibrateSpeed.

dry.thr numeric: dry error threshold in seconds. Dry phases shorter than this threshold
will be considered as wet.

wet.thr numeric: wet threshold in seconds. At-sea phases shorter than this threshold
will be considered as trivial wet.

dive.thr numeric: threshold depth below which an underwater phase should be consid-
ered a dive.

zoc.method character string to indicate the method to use for zero offset correction. One of
“visual”, “offset”, or “filter” (see ‘Details’).

... Arguments required for ZOC methods filter (k, probs, depth.bounds
(defaults to range), na.rm (defaults to TRUE)) and offset (offset).
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interp.wet logical: if TRUE (default is FALSE), then an interpolating spline function is
used to impute NA depths in wet periods (after ZOC). Use with caution: it may
only be useful in cases where the missing data pattern in wet periods is restricted
to shallow depths near the beginning and end of dives. This pattern is common
in some satellite-linked TDRs.

smooth.par numeric scalar representing amount of smoothing (argument spar in smooth.spline.
If it is NULL, then the smoothing parameter is determined by Generalized
Cross-validation (GCV).

knot.factor numeric scalar that multiplies the duration of the dive (used to construct the time
predictor for the derivative).

descent.crit.q
numeric: critical quantile of rates of descent below which descent is deemed to
have ended.

ascent.crit.q
numeric: critical quantile of rates of ascent above which ascent is deemed to
have started.

Details

This function is really a wrapper around .detPhase, .detDive, and .zoc which perform the
work on simplified objects. It performs wet/dry phase detection, zero-offset correction of depth,
and detection of dives, as well as proper labelling of the latter.

The procedure starts by first creating a factor with value “L” (dry) for rows with NAs for depth
and value “W” (wet) otherwise. It subsequently calculates the duration of each of these phases of
activity. If the duration of a dry phase (“L”) is less than dry.thr, then the values in the factor
for that phase are changed to “W” (wet). The duration of phases is then recalculated, and if the
duration of a phase of wet activity is less than wet.thr, then the corresponding value for the
factor is changed to “Z” (trivial wet). The durations of all phases are recalculated a third time to
provide final phase durations.

Zero-offset correction of depth is performed at this stage (see ‘ZOC’ below).

Some instruments produce a peculiar pattern of missing data near the surface, at the beginning
and/or end of dives. The argument interp.wet may help to rectify this problem by using an
interpolating spline function to impute the missing data, constraining the result to a minimum depth
of zero. Please note that this optional step is performed after ZOC and before identifying dives, so
that interpolation is performed through dry phases coded as wet because their duration was briefer
than dry.thr. Therefore, dry.thr must be chosen carefully to avoid interpolation through
legitimate dry periods.

The next step is to detect dives whenever the zero-offset corrected depth in an underwater phase
is below the specified dive threshold. A new factor with finer levels of activity is thus generated,
including “U” (underwater), and “D” (diving) in addition to the ones described above.

Once dives have been detected and assigned to a period of wet activity, phases within dives are
identified using the descent, ascent and wiggle criteria (see ‘Detection of dive phases’ below). This
procedure generates a factor with levels “D”, “DB”, “B”, “BA”, “A”, “DA”, and “X”, breaking the
input into descent, descent/bottom, bottom, bottom/ascent, ascent, and non-dive, respectively.
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Value

An object of class TDRcalibrate.

ZOC

This procedure is required to correct drifts in the pressure transducer of TDR records and noise in
depth measurements. Three methods are available to perform this correction.

Method “visual” calls plotTDR, which plots depth and, optionally, speed vs. time with the ability
of zooming in and out on time, changing maximum depths displayed, and panning through time.
The button to zero-offset correct sections of the record allows for the collection of ‘x’ and ‘y’
coordinates for two points, obtained by clicking on the plot region. The first point clicked represents
the offset and beginning time of section to correct, and the second one represents the ending time of
the section to correct. Multiple sections of the record can be corrected in this manner, by panning
through the time and repeating the procedure. In case there’s overlap between zero offset corrected
windows, the last one prevails.

Method “offset” can be used when the offset is known in advance, and this value is used to correct
the entire time series. Therefore, offset=0 specifies no correction.

Method “filter” implements a smoothing/filtering mechanism where running quantiles can be ap-
plied to depth measurements in a recursive manner (Luque and Fried 2011), using .depth.filter.
It relies on function runquantile from the caTools package. The method calculates the first
running quantile defined by probs[1] on a moving window of size k[1]. The next running
quantile, defined by probs[2] and k[2], is applied to the smoothed/filtered depth measurements
from the previous step, and so on. The corrected depth measurements (d) are calculated as:

d = d0 − dn

where d0 is original depth and dn is the last smoothed/filtered depth. This method is under develop-
ment, but reasonable results can be achieved by applying two filters (see ‘Examples’). The default
na.rm=TRUE works well when there are no level shifts between non-NA phases in the data, but
na.rm=FALSE is better in the presence of such shifts. In other words, there is no reason to pollute
the moving window with NAs when non-NA phases can be regarded as a continuum, so splicing
non-NA phases makes sense. Conversely, if there are level shifts between non-NA phases, then it
is better to retain NA phases to help the algorithm recognize the shifts while sliding the window(s).
The search for the surface can be limited to specified bounds during smoothing/filtering, so that
observations outside these bounds are interpolated using the bounded smoothed/filtered series.

Once the whole record has been zero-offset corrected, remaining depths below zero, are set to zero,
as these are assumed to indicate values at the surface.

Detection of dive phases

The process for each dive begins by taking all observations below the dive detection threshold, and
setting the beginning and end depths to zero, at time steps prior to the first and after the last, re-
spectively. The latter ensures that descent and ascent derivatives are non-negative and non-positive,
respectively, so that the end and beginning of these phases are not truncated. A smoothing spline
is used to model the dive and its derivative to investigate its changes in vertical rate. This method
requires at least 4 observations (see smooth.spline), so the time series is linearly interpolated
at equally spaced time steps if this limit is not achieved in the current dive. Wiggles at the beginning
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and end of the dive are assumed to be zero offset correction errors, so depth observations at these
extremes are interpolated between zero and the next observations when this occurs.

A set of knots is established to fit the smoothing spline by using an regular time sequence with
beginning and end equal to the extremes of the input sequence, and with length equal to N ×
knot.factor. The first derivate of the spline is evaluated at the same set of knots to calculate
the vertical rate throughout the dive and determine the end of descent and beginning of ascent.
Equivalent procedures are used for detecting descent and ascent phases.

The quantile corresponding to (descent.crit.q) of all the positive derivatives (rate of descent)
at the beginning of the dive is used as threshold for determining the end of descent. Descent is
deemed to have ended at the first minimum derivative, and the nearest input time observation is
considered to indicate the end of descent. The sign of the comparisons is reversed for detecting the
ascent. If observed depth to the left and right of the derivative defining the ascent are the same, the
right takes precedence.

The particular dive phase categories are subsequently defined using simple set operations.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Luque, S.P. and Fried, R. (2011) Recursive filtering for zero offset correction of diving depth time
series. PLoS ONE 6:e15850

See Also

TDRcalibrate, .zoc, .depthFilter, .detPhase, .detDive, plotTDR, and plotZOC
to visually assess ZOC procedure.

Examples

data(divesTDR)
divesTDR

## Consider a 3 m offset, a dive threshold of 3 m, the 1% quantile for
## critical vertical rates, and a set of knots 20 times as long as the
## observed time steps.
(dcalib <- calibrateDepth(divesTDR, dive.thr=3, zoc.method="offset",

offset=3, descent.crit.q=0.01, ascent.crit.q=0,
knot.factor=20))

## Or ZOC algorithmically with method="filter":
## Not run: ## This can take a while due to large window needed for 2nd
## filter in this dataset
(dcalib <- calibrateDepth(divesTDR, dive.thr=3, zoc.method="filter",

k=c(3, 5760), probs=c(0.5, 0.02), na.rm=TRUE,
descent.crit.q=0.01, ascent.crit.q=0,
knot.factor=20))

## End(Not run)
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calibrateSpeed Calibrate and build a "TDRcalibrate" object

Description

These functions create a TDRcalibrate object which is necessary to obtain dive summary statis-
tics.

Usage

calibrateSpeed(x, tau=0.1, contour.level=0.1, z=0, bad=c(0, 0),
main=slot(getTDR(x), "file"), coefs, plot=TRUE,
postscript=FALSE, ...)

Arguments

x An object of class TDR for calibrateDepth or an object of class TDRcalibrate
for calibrateSpeed.

tau numeric scalar: quantile on which to regress speed on rate of depth change;
passed to rq.

contour.level
numeric scalar: the mesh obtained from the bivariate kernel density estimation
corresponding to this contour will be used for the quantile regression to define
the calibration line.

z numeric scalar: only changes in depth larger than this value will be used for
calibration.

bad numeric vector of length 2 indicating that only rates of depth change and speed
greater than the given value should be used for calibration, respectively.

coefs numeric: known speed calibration coefficients from quantile regression as a vec-
tor of length 2 (intercept, slope). If provided, these coefficients are used for
calibrating speed, ignoring all other arguments, except x.

main, ... Arguments passed to rqPlot.

plot logical: whether to plot the results.

postscript logical: whether to produce postscript file output.

Details

This calibrates speed readings following the procedure outlined in Blackwell et al. (1999).

Value

An object of class TDRcalibrate.
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Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Blackwell S, Haverl C, Le Boeuf B, Costa D (1999). A method for calibrating swim-speed recorders.
Marine Mammal Science 15(3):894-905.

See Also

TDRcalibrate

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)
dcalib # the 'TDRcalibrate' that was created

## Calibrate speed using only changes in depth > 2 m
vcalib <- calibrateSpeed(dcalib, z=2)
vcalib

distSpeed Calculate distance and speed between locations

Description

Calculate distance, time difference, and speed between pairs of points defined by latitude and lon-
gitude, given the time at which all points were measured.

Usage

distSpeed(pt1, pt2)

Arguments

pt1 A matrix or data frame with three columns; the first a POSIXct object with
dates and times for all points, the second and third numeric vectors of longitude
and latitude for all points, respectively, in decimal degrees.

pt2 A matrix with the same size and structure as pt1.

Value

A matrix with three columns: distance (km), time difference (s), and speed (m/s).
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Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

## Using the Example from '?readLocs':
utils::example("readLocs", package="diveMove",

ask=FALSE, echo=FALSE)

## Travel summary between successive standard locations
locs.std <- subset(locs, subset=class == "0" | class == "1" |

class == "2" | class == "3" &
!is.na(lon) & !is.na(lat))

locs.std.tr <- by(locs.std, locs.std$id, function(x) {
distSpeed(x[-nrow(x), 3:5], x[-1, 3:5])

})
lapply(locs.std.tr, head)

## Particular quantiles from travel summaries
lapply(locs.std.tr, function(x) {

quantile(x[, 3], seq(0.90, 0.99, 0.01), na.rm=TRUE) # speed
})
lapply(locs.std.tr, function(x) {

quantile(x[, 1], seq(0.90, 0.99, 0.01), na.rm=TRUE) # distance
})

## Travel summary between two arbitrary sets of points
distSpeed(locs[c(1, 5, 10), 3:5], locs[c(25, 30, 35), 3:5])

diveModel-class Class "diveModel" for representing a model for identifying dive phases

Description

Details of model used to identify the different phases of a dive.

Objects from the Class

Objects can be created by calls of the form new("diveModel", ...).

‘diveModel’ objects contain all relevant details of the process to identify phases of a dive. Objects
of this class are typically generated during depth calibration, using calibrateDepth, more
specifically .cutDive.
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Slots

label.matrix: Object of class "matrix". A 2-column character matrix with row numbers
matching each observation to the full TDR object, and a vector labelling the phases of each
dive.

dive.spline: Object of class "smooth.spline". Details of cubic smoothing spline fit (see
smooth.spline).

spline.deriv: Object of class "list". A list with the first derivative of the smoothing spline
(see predict.smooth.spline).

descent.crit: Object of class "numeric". The index of the observation at which the descent
was deemed to have ended (from initial surface observation).

ascent.crit: Object of class "numeric". the index of the observation at which the ascent
was deemed to have ended (from initial surface observation).

descent.crit.rate: Object of class "numeric". The rate of descent corresponding to the
critical quantile used.

ascent.crit.rate: Object of class "numeric". The rate of ascent corresponding to the
critical quantile used.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

getDiveDeriv, plotDiveModel

Examples

showClass("diveModel")

dives Sample of TDR data from a fur seal

Description

This data set is meant to show a typical organization of a TDR *.csv file, suitable as input for
readTDR, or to construct a TDR object. divesTDR is an example TDR object.
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Format

A comma separated value (csv) file with 69560 TDR readings with the following columns:

date Date

time Time

depth Depth in m

light Light level

temperature Temperature in degrees Celsius

speed Speed in m/s

The data are also provided as a TDR object (*.RData format) for convenience.

Details

The data are a subset of an entire TDR record, so they are not meant to make valid inferences from
this particular individual/deployment.

divesTDR is a TDR object representation of the data in dives.

Source

Sebastian P. Luque, Christophe Guinet, John P.Y. Arnould

See Also

readTDR, diveStats.

Examples

zz <- gzfile(system.file(file.path("data", "dives.csv.gz"),
package="diveMove"), open="r")

dives <- read.csv(zz, sep=";", na.strings="")
str(dives)

diveStats Per-dive statistics

Description

Calculate dive statistics in TDR records.

Usage

diveStats(x, depth.deriv=TRUE)
oneDiveStats(x, interval, speed=FALSE)
stampDive(x, ignoreZ=TRUE)
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Arguments

x A TDRcalibrate-class object for diveStats and stampDive, and a
data frame containing a single dive’s data (a factor identifying the dive phases,
a POSIXct object with the time for each reading, a numeric depth vector, and a
numeric speed vector) for oneDiveStats.

depth.deriv logical: should depth derivative statistics be calculated?

interval numeric scalar: sampling interval for interpreting x.

speed logical: should speed statistics be calculated?

ignoreZ logical: whether trips should be numbered considering all aquatic activities
(“W” and “Z”) or ignoring “Z” activities.

Details

diveStats calculates various dive statistics based on time and depth for an entire TDR record.
oneDiveStats obtains these statistics from a single dive, and stampDive stamps each dive
with associated trip information.

Value

A data.frame with one row per dive detected (durations are in s, and linear variables in m):

begdesc A POSIXct object, specifying the start time of each dive.

enddesc A POSIXct object, as begdesc indicating descent’s end time.

begasc A POSIXct object, as begdesc indicating the time ascent began.

desctim Descent duration of each dive.

botttim Bottom duration of each dive.

asctim Ascent duration of each dive.

divetim Dive duration.

descdist Numeric vector with last descent depth.

bottdist Numeric vector with the sum of absolute depth differences while at the bottom
of each dive; measure of amount of “wiggling” while at bottom.

ascdist Numeric vector with first ascent depth.

bottdep.mean Mean bottom depth.
bottdep.median

Median bottom depth.

bottdep.sd Standard deviation of bottom depths.

maxdep Numeric vector with maximum depth.

desc.tdist Numeric vector with descent total distance, estimated from speed.
desc.mean.speed

Numeric vector with descent mean speed.

desc.angle Numeric vector with descent angle, from the surface plane.

bott.tdist Numeric vector with bottom total distance, estimated from speed.
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bott.mean.speed
Numeric vector with bottom mean speed.

asc.tdist Numeric vector with ascent total distance, estimated from speed.
asc.mean.speed

Numeric vector with ascent mean speed.

asc.angle Numeric vector with ascent angle, from the bottom plane.

postdive.dur Postdive duration.
postdive.tdist

Numeric vector with postdive total distance, estimated from speed.
postdive.mean.speed

Numeric vector with postdive mean speed.

If depth.deriv=TRUE, 21 additional columns with the minimum, first quartile, median, mean,
third quartile, maximum, and standard deviation of the depth derivative for each phase of the dive.
The number of columns also depends on the value of speed.

stampDive returns a data.frame with trip number, trip type, and start and end times for each dive.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

calibrateDepth, .detPhase, TDRcalibrate-class

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)
dcalib # the 'TDRcalibrate' that was created

tdrX <- diveStats(dcalib)
stamps <- stampDive(dcalib, ignoreZ=TRUE)
tdrX.tab <- data.frame(stamps, tdrX)
summary(tdrX.tab)

extractDive-methods
Extract Dives from "TDR" or "TDRcalibrate" Objects

Description

Extract data corresponding to a particular dive(s), referred to by number.



plotDiveModel-methods 27

Usage

## S4 method for signature 'TDR,numeric,numeric'
extractDive(obj, diveNo, id)
## S4 method for signature 'TDRcalibrate,numeric,missing'
extractDive(obj, diveNo)

Arguments

obj TDR object.

diveNo numeric vector or scalar with dive numbers to extract.

id numeric vector or scalar of dive numbers from where diveNo should be chosen.

Value

An object of class TDR or TDRspeed.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)
dcalib # the 'TDRcalibrate' that was created

diveX <- extractDive(divesTDR, 9, getDAct(dcalib, "dive.id"))
plotTDR(diveX, interact=FALSE)

diveX <- extractDive(dcalib, 5:10)
plotTDR(diveX, interact=FALSE)

plotDiveModel-methods
Methods for plotting models of dive phases

Description

Methods for function plotDiveModel.
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Usage

## S4 method for signature 'diveModel,missing'
plotDiveModel(x, diveNo)

## S4 method for signature 'numeric,numeric'
plotDiveModel(x, y, times.s, depths.s, d.crit, a.crit,

diveNo=1, times.deriv, depths.deriv,
d.crit.rate, a.crit.rate)

## S4 method for signature 'TDRcalibrate,missing'
plotDiveModel(x, diveNo)

Arguments

x A diveModel (diveMode,missing method), numeric vector of time step ob-
servations (numeric,numeric method), or TDRcalibrate object (TDRcali-
brate,numeric method).

diveNo integer representing the dive number selected for plotting.

y numeric vector with depth observations at each time step.

times.s numeric vector with time steps used to generate the smoothing spline (i.e. the
knots, see diveModel.

depths.s numeric vector with smoothed depth (see diveModel).

d.crit integer denoting the index where descent ends in the observed time series (see
diveModel).

a.crit integer denoting the index where ascent begins in the observed time series (see
diveModel).

times.deriv numeric vector representing the time steps where the derivative of the smoothing
spline was evaluated diveModel.

depths.deriv numeric vector representing the derivative of the smoothing spline evaluated at
times.deriv diveModel.

d.crit.rate numeric scalar: vertical rate of descent corresponding to the quantile used (see
diveModel.

a.crit.rate numeric scalar: vertical rate of ascent corresponding to the quantile used (see
diveModel.

Methods

All methods produce a double panel plot. The top panel shows the depth against time, the cubic
spline smoother, the identified descent and ascent phases (which form the basis for identifying the
rest of the dive phases), while the bottom panel shows the first derivative of the smooth trace.

signature(x = "diveModel", y = "missing") Given a diveModel object and (pos-
sibly) the dive number that it corresponds to, the plot shows the model data.

signature(x = "numeric", y = "numeric") This is the main method, which requires
all aspects of the model to be provided.
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signature(x = "TDRcalibrate", y = "missing") Given a TDRcalibrate ob-
ject and a dive number to extract from it, this method plots the observed data and the model.
The intended use of this method is through plotTDR when what="dive.model".

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

diveModel

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)

## 'diveModel' method
dm <- getDiveModel(dcalib, 100)
plotDiveModel(dm, diveNo=100)

## 'TDRcalibrate' method
plotDiveModel(dcalib, diveNo=100)

plotTDR-methods Methods for plotting objects of class "TDR" and "TDRcalibrate"

Description

Main plotting method for objects of these classes. Plot and optionally set zero-offset correction
windows in TDR records, with the aid of a graphical user interface (GUI), allowing for dynamic
selection of offset and multiple time windows to perform the adjustment.

Usage

## S4 method for signature 'POSIXt,numeric'
plotTDR(x, y, concurVars=NULL, xlim=NULL, depth.lim=NULL,

xlab="time (dd-mmm hh:mm)", ylab.depth="depth (m)",
concurVarTitles=deparse(substitute(concurVars)),
xlab.format="%d-%b %H:%M", sunrise.time="06:00:00",
sunset.time="18:00:00", night.col="gray60",
dry.time=NULL, phase.factor=NULL, plot.points=FALSE,
interact=TRUE, key=TRUE, cex.pts=0.4, ...)

## S4 method for signature 'TDR,missing'
plotTDR(x, y, concurVars, concurVarTitles, ...)
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## S4 method for signature 'TDRcalibrate,missing'
plotTDR(x, y, what=c("phases", "dive.model"),

diveNo=seq(max(getDAct(x, "dive.id"))), ...)

Arguments

x POSIXct object with date and time, TDR, or TDRcalibrate object.

y numeric vector with depth in m.

concurVars matrix with additional variables in each column to plot concurrently with depth.
For the (TDR,missing) and (TDRcalibrate,missing) methods, a character
vector naming additional variables from the concurrentData slot to plot, if
any.

xlim POSIXct or numeric vector of length 2, with lower and upper limits of time to
be plotted.

depth.lim numeric vector of length 2, with the lower and upper limits of depth to be plotted.
xlab, ylab.depth

character strings to label the corresponding y-axes.
concurVarTitles

character vector of titles to label each new variable given in concurVars .

xlab.format character: format string for formatting the x axis; see strptime.
sunrise.time, sunset.time

character string with time of sunrise and sunset, respectively, in 24 hr format.
This is used for shading night time.

night.col color for shading night time.

dry.time subset of time corresponding to observations considered to be dry.

phase.factor factor dividing rows into sections.

plot.points logical: whether to plot points.

interact logical: whether to provide interactive tcltk controls and access to the associated
ZOC functionality.

key logical: whether to draw a key.

cex.pts Passed to points to set the relative size of points to plot (if any).

... For the (POSIXt,numeric) method, arguments passed to par for all meth-
ods; useful defaults las=1, bty="n", and mar (the latter depending on whether
additional concurrent data will be plotted) are provided, but they can be overrid-
den. For other methods, except (TDRcalibrate,missing), these can be
any of the arguments for the (POSIXt,numeric)method. For (TDRcalibrate,missing),
these are arguments for the appropriate methods.

diveNo numeric vector or scalar with dive numbers to plot.

what character: what aspect of the TDRcalibrate to plot, which selects the method
to use for plotting.
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Details

This function is used primarily to correct drifts in the pressure transducer of TDR records and noise
in depth measurements via method=“visual” in calibrateDepth.

Value

If called with the interact argument set to TRUE, returns a list (invisibly) with as many compo-
nents as sections of the record that were zero-offset corrected, each consisting of two further lists
with the same components as those returned by locator.

Methods

plotTDR signature(x="TDR", y="numeric"): interactive graphical display of time-depth
data, with zooming and panning capabilities.

plotTDR signature(x="TDR", y="missing"): As method above.

plotTDR signature(x="TDRcalibrate", y="missing"): plot selected aspects of TDRcalibrate
object. Currently, two aspects have plotting methods:

• phases (Optional arguments: concurVars, surface) Plots all dives, labelled by
the activity phase they belong to. It produces a plot consisting of one or more panels;
the first panel shows depth against time, and additional panels show other concurrent
data in the object. Optional argument concurVars is a character vector indicating
which additional components from the concurrentData slot to plot, if any. Optional
argument surface is a logical: whether to plot surface readings.

• dive.model Plots the dive model for the selected dive number (diveNo argument).

Author(s)

Sebastian P. Luque <spluque@gmail.com>, with many ideas from CRAN package sfsmisc.

See Also

calibrateDepth, .zoc

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)
## Use interact=TRUE (default) to set an offset interactively
## Plot the 'TDR' object
plotTDR(getTime(divesTDR), getDepth(divesTDR), interact=FALSE)
plotTDR(divesTDR, interact=FALSE)

## Plot different aspects of the 'TDRcalibrate' object
plotTDR(dcalib, interact=FALSE)
plotTDR(dcalib, diveNo=19:25, interact=FALSE)
plotTDR(dcalib, what="dive.model", diveNo=25)
if (dev.interactive(orNone=TRUE)) {
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## Add surface observations and interact
plotTDR(dcalib, surface=TRUE)
## Plot one dive
plotTDR(dcalib, diveNo=200)

}

plotZOC-methods Methods for visually assessing results of ZOC procedure

Description

Plots for comparing the zero-offset corrected depth from a TDRcalibrate object with the uncor-
rected data in a TDR object, or the progress in each of the filters during recursive filtering for ZOC
(calibrateDepth).

Usage

## S4 method for signature 'TDR,matrix'
plotZOC(x, y, xlim, ylim, ylab="Depth (m)", ...)
## S4 method for signature 'TDR,TDRcalibrate'
plotZOC(x, y, xlim, ylim, ylab="Depth (m)", ...)

Arguments

x TDR object.

y matrix with the same number of rows as there are observations in x, or a TDRcalibrate
object.

xlim POSIXct or numeric vector of length 2, with lower and upper limits of time to
be plotted. Defaults to time range of input.

ylim numeric vector of length 2 (upper, lower) with axis limits. Defaults to range of
input.

ylab character strings to label the corresponding y-axis.

... Arguments passed to legend.

Details

The TDR,matrix method produces a plot like those shown in Luque and Fried (2011).

The TDR,TDRcalibrate method overlays the corrected depth from the second argument over
that from the first.

Value

Nothing; a plot as side effect.
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Methods

plotTDR signature(x="TDR", y="matrix"): This plot helps in finding appropriate pa-
rameters for diveMove:::.depthFilter, and consists of three panels. The upper panel
shows the original data, the middle panel shows the filters, and the last panel shows the cor-
rected data. method=“visual” in calibrateDepth.

plotTDR signature(x="TDR", y="TDRcalibrate"): This plots depth from the TDRcalibrate
object over the one from the TDR object.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Luque, S.P. and Fried, R. (2011) Recursive filtering for zero offset correction of diving depth time
series. PLoS ONE 6:e15850

See Also

calibrateDepth, .zoc

Examples

## Using the Example from '?diveStats':

utils::example("diveStats", package="diveMove",
ask=FALSE, echo=FALSE)

## Plot filters for ZOC
## Work on first trip subset, to save processing time, since
## there's no drift nor shifts between trips
tdr <- divesTDR[1:15000]
## Try window widths (K), quantiles (P) and bound the search (db)
K <- c(3, 360); P <- c(0.5, 0.02); db <- c(0, 5)
d.filter <- diveMove:::.depthFilter(depth=getDepth(tdr),

k=K, probs=P, depth.bounds=db,
na.rm=TRUE)

old.par <- par(no.readonly=TRUE)
plotZOC(tdr, d.filter, ylim=c(0, 6))
par(old.par)

## Plot corrected and uncorrected depth, regardless of method
## Look at three different scales
xlim1 <- c(getTime(divesTDR)[7100], getTime(divesTDR)[11700])
xlim2 <- c(getTime(divesTDR)[7100], getTime(divesTDR)[7400])
xlim3 <- c(getTime(divesTDR)[7100], getTime(divesTDR)[7200])
par(mar=c(3, 4, 0, 1) + 0.1, cex=1.1, las=1)
layout(seq(3))
plotZOC(divesTDR, dcalib, xlim=xlim1, ylim=c(0, 6))
plotZOC(divesTDR, dcalib, xlim=xlim2, ylim=c(0, 70))
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plotZOC(divesTDR, dcalib, xlim=xlim3, ylim=c(0, 70))
par(old.par)

readLocs Read comma-delimited file with location data

Description

Read a delimited (*.csv) file with (at least) time, latitude, longitude readings.

Usage

readLocs(locations, loc.idCol, idCol, dateCol, timeCol=NULL,
dtformat="%m/%d/%Y %H:%M:%S", tz="GMT",
classCol, lonCol, latCol, alt.lonCol=NULL, alt.latCol=NULL, ...)

Arguments

locations character: a string indicating the path to the file to read, or a data.frame
available in the search list. Provide the entire path if the file is not on the current
directory. This can also be a text-mode connection, as allowed in read.csv.

loc.idCol integer: column number containing location ID. If missing, a loc.id column
is generated with sequential integers as long as the input.

idCol integer: column number containing an identifier for locations belonging to dif-
ferent groups. If missing, an id column is generated with number one repeated
as many times as the input.

dateCol integer: column number containing dates, and, optionally, times.

timeCol integer: column number containing times.

dtformat character: a string specifying the format in which the date and time columns,
when pasted together, should be interpreted (see strptime) in file.

tz character: a string indicating the time zone for the date and time readings.

lonCol integer: column number containing longitude readings.

latCol integer: column number containing latitude readings.

classCol integer: column number containing the ARGOS rating for each location.

alt.lonCol integer: column number containing alternative longitude readings.

alt.latCol integer: Column number containing alternative latitude readings.

... Passed to read.csv

Details

The file must have a header row identifying each field, and all rows must be complete (i.e. have the
same number of fields). Field names need not follow any convention.
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Value

A data frame.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

zz <- gzfile(system.file(file.path("data", "sealLocs.csv.gz"),
package="diveMove"), open="r")

locs <- readLocs(zz, idCol=1, dateCol=2,
dtformat="%Y-%m-%d %H:%M:%S", classCol=3,
lonCol=4, latCol=5, sep=";")

summary(locs)

readTDR Read comma-delimited file with "TDR" data

Description

Read a delimited (*.csv) file containing time-depth recorder (TDR ) data from various TDR models.
Return a TDR or TDRspeed object. createTDR creates an object of one of these classes from
other objects.

Usage

readTDR(file, dateCol=1, timeCol=2, depthCol=3, speed=FALSE,
subsamp=5, concurrentCols=4:6,
dtformat="%d/%m/%Y %H:%M:%S", tz="GMT", ...)

createTDR(time, depth, concurrentData=data.frame(), speed=FALSE, dtime, file)

Arguments

file character: a string indicating the path to the file to read. This can also be a
text-mode connection, as allowed in read.csv.

dateCol integer: column number containing dates, and optionally, times.

timeCol integer: column number with times.

depthCol integer: column number containing depth readings.

speed logical: whether speed is included in one of the columns of concurrentCols.

subsamp numeric scalar: subsample rows in file with subsamp interval, in s.
concurrentCols

integer vector of column numbers to include as concurrent data collected.
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dtformat character: a string specifying the format in which the date and time columns,
when pasted together, should be interpreted (see strptime).

tz character: a string indicating the time zone assumed for the date and time read-
ings.

... Passed to read.csv

time A POSIXct object with date and time readings for each reading.

depth numeric vector with depth readings.
concurrentData

data.frame with additional, concurrent data collected.

dtime numeric scalar: sampling interval used in seconds. If missing, it is calculated
from the time argument.

Details

The input file is assumed to have a header row identifying each field, and all rows must be complete
(i.e. have the same number of fields). Field names need not follow any convention. However, depth
and speed are assumed to be in m, and m · s−1, respectively, for further analyses.

If speed is TRUE and concurrentCols contains a column named speed or velocity, then an object of
class TDRspeed is created, where speed is considered to be the column matching this name.

Value

An object of class TDR or TDRspeed.

Note

Although TDR and TDRspeed classes check that time stamps are in increasing order, the integrity
of the input must be thoroughly verified for common errors present in text output from TDR devices
such as duplicate records, missing time stamps and non-numeric characters in numeric fields. These
errors are much more efficiently dealt with outside of GNU R using tools like GNU awk or GNU
sed, so diveMove does not currently attempt to fix these errors.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

zz <- gzfile(system.file(file.path("data", "dives.csv.gz"),
package="diveMove"), open="r")

srcfn <- basename(summary(zz)$description)
readTDR(zz, speed=TRUE, sep=";", na.strings="", as.is=TRUE)

## Or more pedestrian
zz <- gzfile(system.file(file.path("data", "dives.csv.gz"),

package="diveMove"), open="r")
tdrX <- read.csv(zz, sep=";", na.strings="", as.is=TRUE)
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date.time <- paste(tdrX$date, tdrX$time)
tdr.time <- as.POSIXct(strptime(date.time, format="%d/%m/%Y %H:%M:%S"),

tz="GMT")
createTDR(tdr.time, tdrX$depth, concurrentData=data.frame(speed=tdrX$speed),

file=srcfn, speed=TRUE)

rqPlot Plot of quantile regression for speed calibrations

Description

Plot of quantile regression for assessing quality of speed calibrations

Usage

rqPlot(rddepth, speed, z, contours, rqFit, main="qtRegression",
xlab="rate of depth change (m/s)", ylab="speed (m/s)",
colramp=colorRampPalette(c("white", "darkblue")),
col.line="red", cex.pts=1)

Arguments

speed numeric vector with speed in m/s.

rddepth numeric vector with rate of depth change.

z list with the bivariate kernel density estimates (1st component the x points of the
mesh, 2nd the y points, and 3rd the matrix of densities).

contours list with components: pts which should be a matrix with columns named x and
y, level a number indicating the contour level the points in pts correspond
to.

rqFit object of class “rq” representing a quantile regression fit of rate of depth change
on mean speed.

main character: string with title prefix to include in ouput plot.

xlab, ylab character vectors with axis labels.

colramp function taking an integer n as an argument and returning n colors.

col.line color to use for the regression line.

cex.pts numeric: value specifying the amount by which to enlarge the size of points.

Details

The dashed line in the plot represents a reference indicating a one to one relationship between speed
and rate of depth change. The other line represent the quantile regression fit.

Author(s)

Sebastian P. Luque <spluque@gmail.com>
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See Also

diveStats

sealLocs Ringed and Gray Seal ARGOS Satellite Location Data

Description

Satellite locations of a gray (Stephanie) and a ringed (Ringy) seal caught and released in New York.

Format

A data frame with the following information:

id String naming the seal the data come from.

time The date and time of the location.

class The ARGOS location quality classification.

lon, lat x and y geographic coordinates of each location.

Source

WhaleNet Satellite Tracking Program http://whale.wheelock.edu/Welcome.html.

See Also

readLocs, distSpeed.

Examples

zz <- gzfile(system.file(file.path("data", "sealLocs.csv.gz"),
package="diveMove"), open="r")

sealLocs <- read.csv(zz, sep=";")
str(sealLocs)
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TDR-accessors Coerce, Extractor, and Replacement methods for class "TDR" objects

Description

Basic methods for manipulating objects of class TDR.

Show Method

show signature(object="TDR"): print an informative summary of the data.

Coerce Methods

as.data.frame signature(x="TDR"): Coerce object to data.frame. This method returns a
data frame, with attributes “file” and “dtime” indicating the source file and the interval between
samples.

as.data.frame signature(x="TDRspeed"): Coerce object to data.frame. Returns an object
as for TDR objects.

as.TDRspeed signature(x="TDR"): Coerce object to TDRspeed class.

Extractor Methods

[ signature(x="TDR"): Subset a TDR object; these objects can be subsetted on a single index
i . Selects given rows from object.

getDepth signature(x = "TDR"): depth slot accessor.

getCCData signature(x="TDR", y="missing"): concurrentData slot accessor.

getCCData signature(x="TDR", y="character"): access component named y in x.

getDtime signature(x = "TDR"): sampling interval accessor.

getFileName signature(x="TDR"): source file name accessor.

getTime signature(x = "TDR"): time slot accessor.

getSpeed signature(x = "TDRspeed"): speed accessor for TDRspeed objects.

Replacement Methods

depth<- signature(x="TDR"): depth replacement.

speed<- signature(x="TDR"): speed replacement.

ccData<- signature(x="TDR"): concurrent data frame replacement.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

extractDive, plotTDR.
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Examples

data(divesTDR)

## Retrieve the name of the source file
getFileName(divesTDR)
## Retrieve concurrent temperature measurements
temp <- getCCData(divesTDR, "temperature"); head(temp)
temp <- getCCData(divesTDR); head(temp)

## Coerce to a data frame
dives.df <- as.data.frame(divesTDR)
head(dives.df)

## Replace speed measurements
newspeed <- getSpeed(divesTDR) + 2
speed(divesTDR) <- newspeed

TDR-class Classes "TDR" and "TDRspeed" for representing TDR information

Description

These classes store information gathered by time-depth recorders.

Details

Since the data to store in objects of these clases usually come from a file, the easiest way to construct
such objects is with the function readTDR to retrieve all the necessary information. The methods
listed above can thus be used to access all slots.

Objects from the Class

Objects can be created by calls of the form new("TDR", ...) and new("TDRspeed",
...).

‘TDR’ objects contain concurrent time and depth readings, as well as a string indicating the file
the data originates from, and a number indicating the sampling interval for these data. ‘TDRspeed’
extends ‘TDR’ objects containing additional concurrent speed readings.

Slots

In class TDR:

file: Object of class ‘character’, string indicating the file where the data comes from.

dtime: Object of class ‘numeric’, sampling interval in seconds.

time: Object of class POSIXct, time stamp for every reading.

depth: Object of class ‘numeric’, depth (m) readings.

concurrentData: Object of class data.frame, optional data collected concurrently.



TDRcalibrate-accessors 41

Class ‘TDRspeed’ must also satisfy the condition that a component of the concurrentData slot is
named speed or velocity, containing the measured speed, a vector of class ‘numeric’ containing
speed measurements in (m/s) readings.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

readTDR, TDRcalibrate.

TDRcalibrate-accessors
Methods to Show and Extract Basic Information from "TDRcalibrate"
Objects

Description

Show and extract information from TDRcalibrate objects.

Usage

## S4 method for signature 'TDRcalibrate,missing'
getDAct(x)
## S4 method for signature 'TDRcalibrate,character'
getDAct(x, y)
## S4 method for signature 'TDRcalibrate,missing'
getDPhaseLab(x)
## S4 method for signature 'TDRcalibrate,numeric'
getDPhaseLab(x, diveNo)
## S4 method for signature 'TDRcalibrate,missing'
getDiveModel(x)
## S4 method for signature 'TDRcalibrate,numeric'
getDiveModel(x, diveNo)
## S4 method for signature 'diveModel'
getDiveDeriv(x, phase=c("all", "descent", "bottom", "ascent"))
## S4 method for signature 'TDRcalibrate'
getDiveDeriv(x, diveNo, phase=c("all", "descent", "bottom", "ascent"))
## S4 method for signature 'TDRcalibrate,missing'
getGAct(x)
## S4 method for signature 'TDRcalibrate,character'
getGAct(x, y)
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Arguments

x TDRcalibrate object.

diveNo numeric vector with dive numbers to extract information from.

y string; “dive.id”, “dive.activity”, or “postdive.id” in the case of getDAct, to ex-
tract the numeric dive ID, the factor identifying activity phases (with underwater
and diving levels possibly represented), or the numeric postdive ID, respectively.
In the case of getGAct it should be one of “phase.id”, “activity”, “begin”, or
“end”, to extract the numeric phase ID for each observation, a factor indicating
what major activity the observation corresponds to (where diving and underwa-
ter levels are not represented), or the beginning and end times of each phase in
the record, respectively.

phase character vector indicating phase of the dive for which to extract the derivative.

Value

The extractor methods return an object of the same class as elements of the slot they extracted.

Show Methods

show signature(object="TDRcalibrate"): prints an informative summary of the data.

show signature(object="diveModel"): prints an informative summary of a dive model.

Extractor Methods

getDAct signature(x="TDRcalibrate", y="missing"): this accesses the dive.activity
slot of TDRcalibrate objects. Thus, it extracts a data frame with vectors identifying all
readings to a particular dive and postdive number, and a factor identifying all readings to a
particular activity.

getDAct signature(x="TDRcalibrate", y="character"): as the method for miss-
ing y, but selects a particular vector to extract. See TDRcalibrate for possible strings.

getDPhaseLab signature(x="TDRcalibrate", diveNo="missing"): extracts a fac-
tor identifying all readings to a particular dive phase. This accesses the dive.phases slot of
TDRcalibrate objects, which is a factor.

getDPhaseLab signature(x="TDRcalibrate", diveNo="numeric"): as the method
for missing y, but selects data from a particular dive number to extract.

getDiveModel signature(x="TDRcalibrate", diveNo="missing"): extracts a list
with all dive phase models. This accesses the dive.models slot of TDRcalibrate objects.

getDiveModel signature(x="TDRcalibrate", diveNo="numeric"): as the method
for missing diveNo, but selects data from a particular dive number to extract.

getDiveDeriv signature(x="TDRcalibrate"): extracts the derivative (list) of the dive
model (smoothing spline) from the dive.models slot of TDRcalibrate objects for one or
all phases of a dive.

getDiveDeriv signature(x="diveModel"): as the method for TDRcalibrate, but se-
lects data from one or all phases of a dive.
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getGAct signature(x="TDRcalibrate", y="missing"): this accesses the gross.activity
slot of TDRcalibrate objects, which is a named list. It extracts elements that divide the
data into major wet and dry activities.

getGAct signature(x="TDRcalibrate", y="character"): as the method for miss-
ing y, but extracts particular elements.

getTDR signature(x="TDRcalibrate"): this accesses the tdr slot of TDRcalibrate
objects, which is a TDR object.

getSpeedCoef signature(x="TDRcalibrate"): this accesses the speed.calib.coefs
slot of TDRcalibrate objects; the speed calibration coefficients.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

diveModel, plotDiveModel, plotTDR.

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)
dcalib # the 'TDRcalibrate' that was created

## Beginning times of each successive phase in record
getGAct(dcalib, "begin")

## Factor of dive IDs
dids <- getDAct(dcalib, "dive.id")
table(dids[dids > 0]) # samples per dive

## Factor of dive phases for given dive
getDPhaseLab(dcalib, 19)
## Full dive model
(dm <- getDiveModel(dcalib, 19))
str(dm)

## Derivatives
getDiveDeriv(dcalib, diveNo=19)
(derivs.desc <- getDiveDeriv(dcalib, diveNo=19, phase="descent"))
(derivs.bott <- getDiveDeriv(dcalib, diveNo=19, phase="bottom"))
(derivs.asc <- getDiveDeriv(dcalib, diveNo=19, phase="ascent"))
if (require(lattice)) {

fl <- c("descent", "bottom", "ascent")
bwplot(~ derivs.desc$y + derivs.bott$y + derivs.asc$y,

outer=TRUE, allow.multiple=TRUE, layout=c(1, 3),
xlab=expression(paste("Vertical rate (", m %.% s^-1, ")")),
strip=strip.custom(factor.levels=fl))

}
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TDRcalibrate-class Class "TDRcalibrate" for dive analysis

Description

This class holds information produced at various stages of dive analysis. Methods are provided for
extracting data from each slot.

Details

This is perhaps the most important class in diveMove, as it holds all the information necessary for
calculating requested summaries for a TDR.

Objects from the Class

Objects can be created by calls of the form new("TDRcalibrate", ...). The objects of this
class contain information necessary to divide the record into sections (e.g. dry/water), dive/surface,
and different sections within dives. They also contain the parameters used to calibrate speed and
criteria to divide the record into phases.

Slots

call: Object of class call.
The matched call to the function that created the object.

tdr: Object of class TDR.
This slot contains the time, zero-offset corrected depth, and possibly a data frame. If the object
is also of class "TDRspeed", then the data frame might contain calibrated or uncalibrated
speed. See readTDR and the accessor function getTDR for this slot.

gross.activity: Object of class ‘list’.
This slot holds a list of the form returned by .detPhase, composed of 4 elements. It con-
tains a vector (named phase.id) numbering each major activity phase found in the record, a
factor (named activity) labelling each row as being dry, wet, or trivial wet activity. These
two elements are as long as there are rows in tdr. This list also contains two more vectors,
named begin and end: one with the beginning time of each phase, and another with the
ending time; both represented as POSIXct objects. See .detPhase.

dive.activity: Object of class ‘data.frame’.
This slot contains a data.frame of the form returned by .detDive, with as many rows as
those in tdr, consisting of three vectors named: dive.id, which is an integer vector, se-
quentially numbering each dive (rows that are not part of a dive are labelled 0), dive.activity is
a factor which completes that in activity above, further identifying rows in the record
belonging to a dive. The third vector in dive.activity is an integer vector sequen-
tially numbering each postdive interval (all rows that belong to a dive are labelled 0). See
.detDive, and getDAct to access all or any one of these vectors.
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dive.phases: Object of class ‘factor’. This slot is a factor that labels each row in the record as
belonging to a particular phase of a dive. It has the same form as the “phase.labels” component
of the list returned by .labDivePhase.

dive.models: Object of class ‘list’. This slot contains the details of the process of dive phase
identification for each dive. It has the same form as the dive.models component of the
list returned by .labDivePhase. It has as many components as there are dives in the TDR
object, each of them of class diveModel.

dry.thr: Object of class ‘numeric’ the temporal criteria used for detecting dry periods that
should be considered as wet.

wet.thr: Object of class ‘numeric’ the temporal criteria used for detecting periods wet that
should not be considered as foraging time.

dive.thr: Object of class ‘numeric’ the criteria used for defining a dive.

speed.calib.coefs: Object of class ‘numeric’ the intercept and slope derived from the speed
calibration procedure. Defaults to c(0, 1) meaning uncalibrated speeds.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

TDR for links to other classes in the package. TDRcalibrate-methods for the various methods
available.

timeBudget-methods Describe the Time Budget of Major Activities from "TDRcalibrate"
object.

Description

Summarize the major activities recognized into a time budget.

Usage

## S4 method for signature 'TDRcalibrate,logical'
timeBudget(obj, ignoreZ)

Arguments

obj TDRcalibrate object.

ignoreZ logical: whether to ignore trivial aquatic periods.

Details

Ignored trivial aquatic periods are collapsed into the enclosing dry period.
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Value

A data frame with components:

phaseno A numeric vector numbering each period of activity.

activity A factor labelling the period with the corresponding activity.

beg, end POSIXct objects indicating the beginning and end of each period.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

calibrateDepth

Examples

## Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE)
dcalib # the 'TDRcalibrate' that was created

timeBudget(dcalib, TRUE)
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