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McNemar’s Original Test

Consider paired binary response data. For example, suppose you have twins randomized to
two treatment groups (Test and Control) then tested on a binary outcome (pass or fail).
There are 4 possible outcomes for each pair: (a) both twins fail, (b) the twin in the control
group fails and the one in the test group passes, (c) the twin on the test group fails and the
one in the control group passes, or (d) both twins pass. Here is a table where the of the
number of sets of twins falling in each of the four categories are denoted a,b,c and d:

Test
Control Fail Pass
Fail a b
Pass c d

In order to test if the treatment is helpful, we use only the number discordant pairs of
twins, b and c, since the other pairs of twins tell us nothing about whether the treatment is
helpful or not. McNemar’s test is

Q ≡ Q(b, c) =
(b− c)2

b+ c

which for large samples is distributed like a chi-squared distribution with 1 degree of freedom.
A closer approximation to the chi-squared distributin uses a continuity correction:

QC ≡ QC(b, c) =
(|b− c| − 1)2

b+ c

In R this test is given by the function ‘mcnemar.test’.
Case-control data may be analyzed this way as well. Suppose you have a set of people

with some rare disease (e.g., a certain type of cancer); these are called the cases. For this
design you match each case with a contol who is as similar as feasible on all important
covariates except the exposure of interest. Here is a table:

Exposed
Not Exposed Control Case
Control a b
Case c d

For this case as well we can use Q or QC to test for no association between cases/control
status and exposure status.

For either design, we can estimate the odds ratio by b/c, which is the maximum likelihood
estimate (see Breslow and Day, 1980, p. 165).

Consider some hypothetical data (chosen to highlight some points):
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Test
Control Fail Pass
Fail 21 9
Pass 2 12

When we perform McNemar’s test with the continuity correction we get

> x <- matrix(c(21, 9, 2, 12), 2, 2)

> mcnemar.test(x)

McNemar's Chi-squared test with continuity correction

data: x

McNemar's chi-squared = 3.2727, df = 1, p-value = 0.07044

Without the continuity correction we get

> mcnemar.test(x, correct = FALSE)

McNemar's Chi-squared test

data: x

McNemar's chi-squared = 4.4545, df = 1, p-value = 0.03481

Since the inferences change so much, and are on either side of the traditional 0.05 cutoff
of significance, it would be nice to have an exact version of the test to be clearer about
significance at the 0.05 level. We study that in the next section.

Exact Version of McNemar’s Test

After conditioning on the total number of discordant pairs, b+ c, we can treat the problem
as B ∼ Binomial(b + c, θ), where B is the random variable associated with b. Under the
null hypothesis θ = .5. We can tranform the parameter θ into an odds ratio by

Odds Ratio ≡ φ =
θ

1− θ
(1)

(Breslow and Day, 1980, p. 166). Since it is easy to perform exact tests on a binomial param-
eter, we can perform exact versions of McNemar’s test by using the ‘binom.exact’ function of
the package ‘exactci’ then transform the results into odds ratios via equation 1. This is how
the calculations are done in the ‘exact2x2’ function when paired=TRUE. The ‘alternative’
and the ‘tsmethod’ options work in the way one would expect. So although McNemar’s test
was developed as a two-sided test, we can easily get one-sided exact McNemar-type Tests.
For two-sided tests we can get three different versions of the two-sided exact McNemar’s
test using the three ‘tsmethod’ options. In the appendix we show that all three two-sided
methods give the same p-value and they all are equivalent to the exact version of McNe-
mar’s test. So there is only one defined exact McNemar’s test. The difference between the
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’tsmethod’ options is in the calculation of the confidence intervals. The default is to use
’central’ confidence intervals so that the probability that the true parameter is less than the
lower 100(1 − α)% confidence interval is guaranteed to be less than or equal to α/2, and
similarly for the upper confidence interval. These guarantees on each tail are not true for
the ’minlike’ and ’blaker’ two-sided confidence intervals.

Using x defined earlier, here is the exact McNemar’s test with the central confidence
intervals:

> mcnemar.exact(x)

Exact McNemar test (with central confidence intervals)

data: x

b = 2, c = 9, p-value = 0.06543

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.02336464 1.07363844

sample estimates:

odds ratio

0.2222222

Appendix: Equivalence of two-sided p-values

For the two-sided exact tests, the sample space is B ∈ {0, 1, . . . , b + c}. Let n = b + c and
let the binomial mass function under the null hypothesis of θ = .5 (i.e., φ = 1) be

f(x) =

(
n
x

)(
1

2

)x (1

2

)n−x

= 2−n

(
n
x

)
.

The exact McNemar p-value is defined as

pe =
∑

x:Q(x,n−x)≥Q(b,c)

f(x)

Here are the definitions of the exact p-values for the three two-sided methods. For the
‘central’ method, it is

pc = min
{

1, 2 ∗min
(
F (x), F̄ (x)

)}
where F (x) =

∑x
i=0 f(i) and F̄ (x) = 1−F (x− 1) and F (−1) = 0. For the ‘minlike’ method

the p-value is

pm =
∑

x:f(x)≤f(b)

f(x)

For the ‘blaker’ method the p-value is

pb =
∑

x:min{F (x),F̄ (x)}≤min{F (b),F̄ (b)}
f(x)
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To show the equivalence of pe, pc, pm, and pb we first rewrite the summation indices in pe.
Note that

Q(x, n− x) =
4(x− n

2
)2

n

so the summation indices may be rewritten as:

{x : Q(x, n− x) ≥ Q(b, c)} =
{
x :

∣∣∣∣x− n

2

∣∣∣∣ ≥ ∣∣∣∣b− n

2

∣∣∣∣} (2)

In other words, pe is just the sum of f(x) for all x that are as far away or further from the
center (n/2) as b. Note that f(x) is increasing for all x < n/2 and decreasing for all x > n/2.
Further note that f(x) = f(n−x) for all x so that F (x) = F̄ (n−x) for all x. Thus, it makes
sense that all 4 p-values are equivalent for the case when θ = .5.

Here are the details showing the equivalence. We break up the possibilities into three
cases:

Case 1, b = n/2: In this case, from equation 2, the whole sample space is covered so pe = 1.
Also F (x) = F̄ (x) > 1/2 so pc = 1. Because the unique peak of the f(x) function
happens at n/2 when n is even (n must be even when b = n/2), we can see that pm = 1.

Also because of that peak, min
{
F (x), F̄ (x)

}
is maximized at b = n/2 and pb = 1.

Case 2, b < n/2: In this case, the set of all x described by equation 2 is all x ≤ b and all

n− x ≥ n− b so that pe = F (b) + F̄ (n− b). Also, min
{
F (x), F̄ (x)

}
is F (x), and

F (x) =
∑

i:f(i)≤f(x) and i<n/2

f(i).

Further,
F (x) = F̄ (n− x) =

∑
i:f(i)≤f(x) and i>n/2

f(i).

So pc = 2 ∗ F (b) = F (b) + F̄ (n− b) =
∑

i:f(i)≤f(b) f(i) which is equivalent to pm. Also

since F (x) = F̄ (n − x) we can see that all values of x with min
{
F (x), F̄ (x)

}
≤ F (b)

will also give the same p-value and pb is equivalent to the other p-values.

Case 3, b > n/2: By symmetry, we can show through similar arguments to Case 2 that all
4 p-values are equivalent.
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