
R package gdistance: distances and routes on
geographical grids (version 1.1-2)

Jacob van Etten

September 28, 2011

1 Introduction

This vignette describes gdistance, an R package which provides func-
tionality to calculate various distance measures and routes in heterogeneous
geographic spaces represented as grids. Distances are fundamental to geospa-
tial analysis (Tobler 1970). The most commonly used geographic distance
measure is the great-circle distance, which represents the shortest line be-
tween two points, taking into account the curvature of the earth. However,
the great-circle distance does not correspond very well to expected travel
time/effort between two points. Travel time and the real distance travelled
depend on the means of transport, the mode of route-finding, and the char-
acteristics of landscapes and infrastructure. The great-circle distance could
be considered as referring to a special case: goal-directed movement with
no obstacles, ‘as the crow flies’. Other distance measures are needed when
travel is not (or less) goal-directed and landscape characteristics affect move-
ment in a spatially heterogeneous way. Package gdistance was created to
calculate distances and determine routes using geographical grids (rasters)
to represent landscape heterogeneity. It provides the following distance and
route calculations.

• The least-cost distance mimics route finding ‘as the fox runs’, taking
into account obstacles and the local ‘friction’ of the landscape.

• A second type of route-finding is the random walk, which has no prede-
termined destination (‘drunkard’s walk’). Resistance distance reflects
the travel time from origin to goal of the average (Brownian) random
walk (McRae 2006).

1

2 gdistance: geographic distances and routes

• ‘Randomised shortest paths’ are an intermediate form between shortest
paths and Brownian random walks, recently introduced by Saerens et
al. (2009).

The functionality of gdistance corresponds to other software like ArcGIS
Spatial Analyst, GRASS GIS (r.cost, r.walk functions), and CircuitScape
(random walk / resistance distance). The gdistance package also contains
specific functionality for geographical genetic analyses. The package imple-
ments measures to model dispersal histories first presented by Van Etten and
Hijmans (2010). Section 9 below introduces with an example how gdistance

can be used in geographical genetics.
Package gdistance uses functionality from a number of other R packages.

The most important among these packages is raster. To use gdistance and
to understand the details of this vignette, the reader has to be familiar with
the basic functionality of raster.

2 Transition* classes

To make distance calculations as flexible as possible, distances and other
measures are calculated in various steps. The central classes in gdistance

are the S4 classes TransitionLayer and TransitionStack. Most operations
have an object of one of these classes either as input or output.

Transition* objects can be constructed from an object of class RasterLayer,
RasterStack or RasterBrick. These classes are from raster, a memory-
efficient and user-friendly R package which contains complete geographical
grid functionality. The class Transition* takes the necessary geographic ref-
erences (projection, resolution, extent) from the original Raster* object. It
also contains a matrix which specifies the probability of movements between
cells or, in more general terms, the ‘conductance’ of inter-cell connections.
Each row and column in the matrix represents a cell in the original Raster*
object. Row/column 1 in the transition matrix corresponds to cell 1 in the
original raster, and so on. Cell numbers in rasters go from left to right and
from top to bottom. For instance, a 3 x 3 raster would have the following
cell numbers:

1 2 3
4 5 6
7 8 9

This raster would produce a 9 x 9 transition matrix with rows/columns num-
bered from 1 to 9.

Using conductance values may be a bit confusing at first. Other soft-
ware generally uses friction surfaces to calculate distances. Also, distances

Jacob van Etten 3

are calculated in terms of accumulated friction or cost. 1 However, the re-
lation between conductance and friction is straightforward: conductance is
the reciprocal of friction (1/friction). It is not strange to use the word ‘con-
ductance’ in this context (or to use resistance as a synonym for friction).
There is an analogy between random walks on geographical grids and elec-
trical current in a mesh of resistors (McRae et al. 2008). Calculations of
‘resistance distance’ (see below) take advantage of this analogy. Another ad-
vantage of using conductance is that it makes it possible to store the values
very efficiently as a so-called sparse matrix. Sparse matrices only record the
non-zero values and information about their location in the matrix. In most
cases, cells are connected only with adjacent cells. Consequently, a conduc-
tance matrix contains only a small fraction of non-zero values, which occupy
little memory in a sparse matrix format. The package gdistance makes use
of sparse matrix classes and methods from the package Matrix, which gives
access to fast procedures implemented in the C language.

A first step in any analysis with gdistance is the construction of an object
of the class Transition*. The construction of a Transition* object from
a Raster* object is straightforward. We can define an arbitrary function
to calculate the conductance values from the values of each pair of cells to
be connected. Here, we create a raster with 10 degree cells and set it cells
to random values between 0.4 and 0.6. We then create a TransitionLayer

object. The transition value between each pair of cells is the mean of the two
cell values.

> library(gdistance)

raster version 1.9-19 (22-September-2011)

> r <- raster(nrows = 18, ncols = 36)

> r <- setValues(r, runif(ncell(r), min = 0.4, max = 0.6))

> r

class : RasterLayer

dimensions : 18, 36, 648 (nrow, ncol, ncell)

resolution : 10, 10 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : in memory

min value : 0.4000163

max value : 0.5995257

1‘Permeability’ is a synonym of conductance. Impedance, resistance, cost and friction
are used interchangeably to denote the contrary.

4 gdistance: geographic distances and routes

> tr1 <- transition(r, transitionFunction = mean,

+ directions = 8)

We set the directions argument to value 8. This connects all adjacent
cells in 8 directions. Cells can also be connected in 4 or 16 connections.
In chess terms, setting directions to 4 connects all cells with all possible
one-cell rook movements (producing ‘Manhattan’ distances), while setting
directions to 8 connects with one-cell queen movements. With 16 directions,
all cells are connected with both one-cell queen movements and one-turn
knight movements. This can make distance calculations more accurate.2

If we inspect the object we created, we see that the resulting TransitionLayer
object keeps much information from the original RasterLayer object.

> tr1

class : TransitionLayer

dimensions : 18, 36, 648 (nrow, ncol, ncell)

resolution : 10, 10 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dsCMatrix

It is also possible to create asymmetric matrices, in which the conductance
from i to j is not always the same as the conductance from j back to i.
This is relevant, among other things, for modelling travel in hilly terrain,
as shown in Example 1 below. On the same slope, a downslope traveler
experiences less resistance than an upslope traveler. In this case, the function
to calculate conductance values is non-commutative: f(i, j) 6= f(j, i). The
symm argument in transition needs to be set to FALSE.

> ncf <- function(x) max(x) - x[1] + x[2]

> tr2 <- transition(r, ncf, 4, symm = FALSE)

> class(transitionMatrix(tr1))

[1] "dsCMatrix"

attr(,"package")

[1] "Matrix"

2Connecting in 16 directions was inspired by the function r.cost in GRASS 6, and the
documentation of this function illustrates nicely why connecting in 16 directions can in-
crease the accuracy of the calculations http://grass.itc.it/grass64/manuals/html64_
user/r.cost.html. Also, see the section on distance transforms in de Smith et al. (2009).

http://grass.itc.it/grass64/manuals/html64_user/r.cost.html
http://grass.itc.it/grass64/manuals/html64_user/r.cost.html

Jacob van Etten 5

> class(transitionMatrix(tr2))

[1] "dgCMatrix"

attr(,"package")

[1] "Matrix"

The sparse matrix class dsCMatrix is symmetric and contains only half of
the matrix. The class dgCMatrix can hold an asymmetric matrix. Different
mathematical operations can be done with Transition* objects. This makes
it possible to flexibly model different components of landscape friction.

> tr3 <- tr1 * tr2

> tr3 <- tr1 + tr2

> tr3 <- tr1 * 3

> tr3 <- sqrt(tr1)

Operations with more than one object require that the different objects have
the same resolution and extent.

Also, it is possible to extract and replace values in the matrix using in-
dices.

> tr3[cbind(1:9, 1:9)] <- tr2[cbind(1:9, 1:9)]

> tr3[1:9, 1:9] <- tr2[1:9, 1:9]

> tr3[1:5, 1:5]

5 x 5 sparse Matrix of class "dgCMatrix"

[1,] . 0.5833925 . . .

[2,] 0.478976 . 0.6168308 . .

[3,] . 0.5311842 . 0.4703616 .

[4,] . . 0.6776534 . 0.5776266

[5,] . . . 0.4703616 .

Some functions require that Transition* objects do not contain any
isolated ‘clumps’. This can be avoided when creating Transition* objects,
for instance by giving conductance values between all adjacent cells some
minimum value. Also, it can be checked visually. Here are a few ways
to visualize a Transition* object. You can extract the transition matrix
with function transitionMatrix. This gives a sparse matrix which can be
vizualized with function image. This shows the rows and columns of the
transition matrix and indicates which has a non-zero value (“connection”) as
a black dot (Figure 1).

6 gdistance: geographic distances and routes

> image(transitionMatrix(tr1))

Dimensions: 648 x 648
Column

R
ow

100

200

300

400

500

600

100 200 300 400 500 600

Figure 1: Visualizing a TransitionLayer with function image()

In Figure 1, the central diagonal line represents cell connections between
raster cells in the same row. The two adjacent lines represent cells in the
same column in the raster, separated by the length of the row in the raster.
The curious dots around these lines have to do with the special character
of the original raster. Since this raster covers the whole world, the outer
meridians touch each other. The software takes this into account and as a
result the cells in the extreme left column are connected to the extreme right
column! The diagonal connections between the extreme columns explain the
isolated dots in Figure 1.

Figure 1 shows which cells contain non-zero values, but gives no further
information about levels of conductance. However, we can transform the
transition matrix back in to a raster to visualize this. To summarize the
information in transition matrix, we can take means or sums across rows
or columns, for instance. You can do this with function raster. Applied
to a TransitionLayer, this function converts it to a RasterLayer. For
the different options see method?raster("TransitionLayer"). The default,
shown in Figure 2, takes the column-wise means of the non-zero values. All
these forms of transformation unavoidably cause information loss, of course.

Jacob van Etten 7

> plot(raster(tr1))

−150 −100 −50 0 50 100 150

−
50

0
50

0.44
0.46
0.48
0.50
0.52
0.54
0.56

Figure 2: Visualizing a TransitionLayer using the function raster()

3 Correcting inter-cell conductance values

The function transition calculates transition values based on the val-
ues of adjacent cells in the input raster. However, the centres of diagonally
connected cells are more remote from each other than in the case of orthogo-
nally connected cells. Secondly, on equirectangular (lonlat) projection grids,
W-E connections are longer at the equator and become shorter towards the
poles. Therefore, the values in the matrix need to be corrected for these two
types of distortion. Both types of distortion can be corrected by dividing
each conductance matrix value between the inter-cell distance. This is what
function geoCorrection does for us.

> tr1CorrC <- geoCorrection(tr1, type = "c", multpl = FALSE)

> tr2CorrC <- geoCorrection(tr2, type = "c", multpl = FALSE)

For random walks on longlat grids, there is an additional consideration to
be made. The number of connections in N-S direction remains equal when
moving from the equator to the poles. This is problematic, because random
walks can be seen as analogous to electrical current through a networks of
resistors. The inter-cell connections should be thought of as parallel resistors.
Moving away from the equator, the inter-meridian space each individual re-
sistor bridges becomes narrower, tending to zero at the poles. Therefore, the

8 gdistance: geographic distances and routes

N-S resistance between parallels should decrease when moving away from the
equator. The function geoCorrection corrects this distortion by multiplying
the N-S transition values with the cosine of the average latitude of the cell
centres. This is done with function geoCorrection, by setting the argument
type to “r”,

> tr1CorrR <- geoCorrection(tr1, type = "r", multpl = FALSE)

When similar Transition* objects with equal resolution and extent need
to be corrected repetitively, computational effort may be reduced by prepar-
ing an object that only needs to be multiplied with the Transition* object to
produce a corrected version of it. The following is equivalent to the previous
procedure.

> tr1CorrMatrix <- geoCorrection(tr1, type = "r",

+ multpl = TRUE)

> tr1CorrR <- tr1 * tr1CorrMatrix

Object trCorr1Matrix is only calculated once. It can be multiplied with
Transition* objects, as long as they have the same extent, resolution, and
directions of cell connections. We need to take special care that the geo-
correction multiplication matrix (tr1CorrMatrix) contains all non-zero val-
ues that are present in the Transition* object with which it will be multi-
plied (tr1).3

4 Calculating distances

With the corrected Transition* object we can calculate distances be-
tween points. It is important to note that all distance functions require a
Transition* object with conductance values, even though distances will be
expressed in 1/conductance (friction or resistance) units.

To calculate distances, we need to have the coordinates of point locations.
This is done by creating a two-row matrix of coordinates. Functions will also
accept a SpatialPoints object or, if there is only one point, a vector of
length two.

> sP <- cbind(c(65, 5, -65), c(55, 35, -35))

Calculating a distance matrix is straightforward now.

3A good alternative is to use geoCorrection(mulpl=FALSE) with a Transition* object
with cells connected with value 1.

Jacob van Etten 9

> costDistance(tr1CorrC, sP)

1 2

2 9805972

3 31745174 22335047

> costDistance(tr2CorrC, sP)

[,1] [,2] [,3]

[1,] 0 11415775 34951321

[2,] 10816497 0 26753977

[3,] 33813271 26327784 0

> resistanceDistance(tr1CorrR, sP)

1 2

2 3012.742

3 3599.843 3317.169

5 Dispersal paths

To determine dispersal paths with a random element, we use the function
passage. This function can be used for both random walks and randomised
shortest paths. The function calculates the number of passages through cells
before arriving in the destination cell. Either the total or net number of
passages can be calculated. The net number of passages is the number of
passages that are not reciprocated by a passage in the opposite direction.

Figure 3 shows the probability of passage through each cell, assuming
randomised shortest paths with the parameter theta set to 2. Here we see
again how the package takes into account that we are dealing with a raster
that covers the whole world. The route crosses the 180 degrees meridian
without any problem.

10 gdistance: geographic distances and routes

> origin <- SpatialPoints(cbind(105, -55))

> goal <- SpatialPoints(cbind(-105, 55))

> rSPraster <- passage(tr1, origin, goal, theta = 2)

> plot(rSPraster)

−150 −100 −50 0 50 100 150

−
50

0
50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Probability of passage

6 Path overlap and non-overlap

One of the specific uses, for which package gdistance was created, is to
look at trajectories coming from the same source (van Etten and Hijmans
2010).

The degree of coincidence of two trajectories can be visualized by multi-
plying the probabilities of passage.

> r1 <- passage(tr1, origin, sP[1,], theta = 2)

> r2 <- passage(tr1, origin, sP[2,], theta = 2)

> rJoint <- r1 * r2

Jacob van Etten 11

> plot(rJoint)

−150 −100 −50 0 50 100 150

−
50

0
50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Overlapping part of the two routes

> rDiv <- max(max(r1, r2) * (1 - min(r1, r2)) -

+ min(r1, r2), 0)

With the function pathInc() we can calculate measures of path overlap
and non-overlap for a large number of points. These measures can be used
to predict patterns of diversity if these are due to dispersal from a single
common source (van Etten and Hijmans 2010). If the argument type contains
two elements (divergent and joint), the result is a list of distances matrices.

> pathInc(tr1CorrC, sP[1,], sP[2:3,], type = c("divergent",

+ "joint"))

$divergent

1

2 36010415

$joint

1

2 583857.4

12 gdistance: geographic distances and routes

> plot(rDiv)

−150 −100 −50 0 50 100 150

−
50

0
50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Non-overlapping part of the two routes

7 Example 1: Hiking around Maunga Whau

The previous examples were somewhat theoretical, based on randomly
generated values. More realistic examples serve to illustrate the various uses
that can be given to this package.

Determining the fastest route between two points in complex terrain is
useful for hikers. Tobler’s Hiking Function provides a rough estimate for the
the maximum hiking speed given the slope of the terrain (Tobler 1993). The
maximum speed of off-path hiking (in m/s) is:

speed = exp(-3.5 * abs(slope + 0.05))

Note that the function is not symmetric around 0 (see Figure 6).

Jacob van Etten 13

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

slope

sp
ee

d
(m

/s
)

Figure 6: Tobler’s Hiking Function

We use the Hiking Function to determine the shortest path to hike around
the volcano Maunga Whau (Auckland, New Zealand). First, we read in the
altitude data for the volcano. This is a geo-referenced version of the“volcano”
data available in Base R datasets (see ?volcano for more information).

> r <- raster(system.file("external/maungawhau.grd",

+ package = "gdistance"))

The Hiking Function requires the slope as input.

slope = difference in height / distance travelled

The units of height and distance should be identical. Here, we use meters
for both. We calculate the height differences between cells first. Then we use
the function geoCorrection() to divide by the distance between cells.

> heightDiff <- function(x){x[2] - x[1]}

> hd <- transition(r,heightDiff,8,symm=FALSE)

> slope <- geoCorrection(hd, scl=FALSE)

Subsequently, we calculate the speed. We need to exercise special care, be-
cause the matrix values between non-adjacent cells is 0, but the slope between

14 gdistance: geographic distances and routes

these cells is not 0! Therefore, we need to restrict the calculation to adjacent
cells. We do this by creating an index for adjacent cells (adj) with the func-
tion adjacency(). Using this index, we extract and replace adjacent cells,
without touching the other values.

> adj <- adjacency(x = r, fromCells = 1:ncell(r),

+ toCells = 1:ncell(r), directions = 8)

> speed <- slope

> speed[adj] <- exp(-3.5 * abs(slope[adj] + 0.05))

Now we have calculated the speed of movement between adjacent cells. We
are close to having the final conductance values. Attainable speed is a mea-
sure of the ease of crossing from one cell to another on the grid. However, we
also need to take into account the distance between cell centres. Travelling
with the same speed, a diagonal connection between cells takes longer to cross
than a straight connection. Therefore, we use the function geoCorrection()

again!

> x <- geoCorrection(speed, scl = FALSE)

This gives our final ”conductance” values.

What do these ”conductance”values mean? The function geoCorrection()

divides the values in the matrix with the distance between cell centres. So,
with our last command we calculated this:

conductance = speed / distance

This looks a lot like a measure that we are more familiar with:

travel time = distance / speed

In fact, the conductance values we have calculated are the reciprocal of travel
time.

1 / travel time = speed / distance = conductance

Maximizing the reciprocal of travel time is exactly equivalent to minimizing
travel time!

Now we define two coordinates, A and B, and determine the paths be-
tween them. We test if the quickest path from A to B is the same as the
quickest path from B back to A.

Jacob van Etten 15

2667400 2667600 2667800 2668000

64
78

80
0

64
79

00
0

64
79

20
0

64
79

40
0

100

120

140

160

180

A

B

Figure 7: Quickest hiking routes around Maunga Whau

> A <- c(2667670, 6479000)

> B <- c(2667800, 6479400)

> AtoB <- shortestPath(x, A, B, output = "SpatialLines")

> BtoA <- shortestPath(x, B, A, output = "SpatialLines")

> plot(r)

> lines(AtoB, col = "red", lwd = 2)

> lines(BtoA, col = "blue")

> text(A[1] - 10, A[2] - 10, "A")

> text(B[1] + 10, B[2] + 10, "B")

A small part of the A-B (red) and B-A (blue) lines in the figure do not
overlap. This is a consequence of the asymmetry of the Hiking Function.

16 gdistance: geographic distances and routes

8 Example 2: Geographical genetics

The direct relation between genetic and geographic distances is known as
isolation by distance (Wright 1943). Recent work has expanded this relation-
ship to random movement in heterogeneous landscapes (McRae 2006). Also,
the geography of dispersal routes can explain observed geospatial patterns
of genetic diversity. For instance, diffusion from a single origin (Africa) ex-
plains much of the current geographical patterns of human genetic diversity
(Ramachandran 2005). As a result, the mutual genetic distance between a
pair of humans from different parts from the globe depends on the extent
they share their prehistoric migration history.

Within a single continent, however, human genetic diversity may have to
do with more recent events. Let’s look at diversity in Europe, using the data
presented by Balaresque et al. (2010). Within Europe, genetic diversity is
often thought to be a result of the migration of early Neolithic farmers from
Anatolia (Turkey) to the west.

First we read in the data, including the coordinates of the populations
(Figure 8) and mutual genetic distances.

> Europe <- raster(system.file("external/Europe.grd",

+ package = "gdistance"))

> Europe[is.na(Europe)] <- 0

> data(genDist)

> data(popCoord)

> pC <- as.matrix(popCoord[c("x", "y")])

Then we create three geographical distance matrices. The first corre-
sponds to the great-circle distance between populations. The second is the
least-cost distance between locations. Travel is restricted to the land mass.
The third is the resistance distance (using the same conductance matrix),
which is related to the random-walk travel time between points (McRae
2006).

> geoDist <- pointDistance(pC, longlat = TRUE)

> geoDist <- as.dist(geoDist)

> Europe <- aggregate(Europe, 3)

> tr <- transition(Europe, mean, directions = 8)

> tr <- geoCorrection(tr, "c")

> tR <- geoCorrection(tr, "r")

> cosDist <- costDistance(tr, pC)

> resDist <- resistanceDistance(tR, pC)

> cor(genDist, geoDist)

Jacob van Etten 17

−20 −10 0 10 20 30 40

30
40

50
60

70

0.0

0.2

0.4

0.6

0.8

1.0

DK

EN1

EN2

FR1

FR2

FR3

FR4

FR7

GE

GE1

GR

IR

IT1
IT2

NL

SB

SP2

SP4

SP5

SP6

TK1 TK2TK3

Figure 8: Map of genotyped populations

18 gdistance: geographic distances and routes

[1] 0.5962655

> cor(genDist, cosDist)

[1] 0.5889319

> cor(genDist, resDist)

[1] -0.05532471

Interestingly, the great-circle distance between points turns out to be the
best predictor of genetic distance. The other distance measures incorporate
more information about the geographic space in which geneflow takes place,
but do not improve the prediction. But how well does a wave of expansion
from Anatolia explain the spatial pattern?

> origin <- unlist(popCoord[22, c("x", "y")])

> pI <- pathInc(tr, origin = origin, fromCoords = pC,

+ type = "joint", theta = 2)

> cor(genDist, pI)

[1] NA

At least at first sight, the overlap of dispersal routes explain the spatial pat-
tern better than any of the previous measures. The negative sign of the
last correlation coefficient was expected, as more overlap in routes is associ-
ated with lower genetic distance. While additional work would be needed to
improve predictions and compare the different models more rigorously, the
promise of dispersal modelling with gdistance is clear.

9 Final remarks

Questions about the use of gdistance can be posted on the r-sig-geo email
list. Bug reports and requests for additional functionality can be mailed to
jacobvanetten@yahoo.com.

10 References

Balaresque P., et al. 2010. A predominantly Neolithic origin for European
paternal lineages. PLoS Biology 8(1): e1000285.

Jacob van Etten 19

de Smith, M.J., M.F. Goodchild, and P.A. Longley. 2009. Geospatial Anal-
ysis. Matador. 3rd edition.

McRae B.H. 2006. Isolation by resistance. Evolution 60: 1551–1561.
McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to

model connectivity in ecology, evolution, and conservation. Ecology
89:2712-2724.

Ramachandran S., et al. 2005. Support from the relationship of genetic and
geographic distance in human populations for a serial founder effect
originating in Africa. PNAS 102: 15942–15947.

Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-
path problems: two related models. Neural Computation, 21(8):2363-
2404.

Tobler W. 1970. A computer movie simulating urban growth in the Detroit
region. Economic Geography, 46(2): 234-240.

Tobler W. 1993. Three Presentations on Geographical Analysis and Mod-
eling. http://www.ncgia.ucsb.edu/Publications/Tech_Reports/

93/93-1.PDF

van Etten, J., and R.J. Hijmans. 2010. A geospatial modelling approach in-
tegrating archaeobotany and genetics to trace the origin and dispersal
of domesticated plants. PLoS ONE 5(8): e12060.

Wright, S. 1943. Isolation by distance. Genetics 28: 114–138.

http://www.ncgia.ucsb.edu/Publications/Tech_Reports/93/93-1.PDF
http://www.ncgia.ucsb.edu/Publications/Tech_Reports/93/93-1.PDF

	Introduction
	Transition* classes
	Correcting inter-cell conductance values
	Calculating distances
	Dispersal paths
	Path overlap and non-overlap
	Example 1: Hiking around Maunga Whau
	Example 2: Geographical genetics
	Final remarks
	References

