
Description of the graphComp package: Visual
comparison of graphs on the same node set

Khadija El Amrani ∗† Ulrich Mansmann∗

June 3, 2011

Contents

1 Abstract 3

2 Introduction 3
2.1 Nonspecific filtering . 4
2.2 Gene selection . 5

3 Estimating Graphs 6
3.1 GeneNet . 6
3.2 PC-Algorithm . 7
3.3 glasso . 8

4 Function Description 10
4.1 Function: compare2Graphs() 10

4.1.1 Function: get.edges() 11
4.1.2 Function: get.hubs() 11
4.1.3 Function: getMixed.hubs() 11

4.2 Function: compGraphs.vis() 12
4.3 Function: compGraphs.interactive() 12

∗Division of Biometrics and Bioinformatics, IBE, University of Munich, 81377 Munich,
Germany
†Package maintainer ,Email: Khadija.Amrani@campus.lmu.de

1

5 Graphical comparison 12
5.1 Function: compare2Graphs . 12

5.1.1 Comparison of the GeneNet and PC graphs 12
5.1.2 Comparison of the PC and glasso graphs 13
5.1.3 Comparison of the GeneNet and glasso graphs 16
5.1.4 Function: get.edges() 16
5.1.5 Function: get.hubs() 18
5.1.6 Function: getMixed.hubs() 19

5.2 Function: compGraphs.vis() 20
5.3 Function: compGraphs.interactive() 20

6 Summary 21

7 SessionInfo 24

2

1 Abstract

The graphComp package for R [8] provides functions for visual comparison
of graphs. It is designed to compare graphs defined on the same set of nodes.

This vignette demonstrates how the package graphComp can be used. For
this purpose, a comparison of estimated graphs with the packages GeneNet
[7], pcalg [6] and glasso [3] is performed. These packages are available at the
Comprehensive R Archive Network (CRAN) at http://cran.r-project.

org.

2 Introduction

The graphComp package contains functions for visual graph comparison. The
package is designed to compare graphs defined on the same set of nodes.
Given two graphNEL graphs, the graphComp package enables the visualiza-
tion and comparison of the input graphs in a merged graph, and allows the
analyst to visually compare the differences and similarities of the graphs that
are distinguished by colors. In order to compare the proportion of degrees of
nodes in both graphs, the nodes are represented as pie charts.

For a realistic estimation of graphs a real data set from ALL data is used.
The data are available in the R package ALL. To reduce computation time
a small data set to B-cell ALL is selected.

> library(ALL)

> data("ALL")

> ALL

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 128 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... LAL4 (128 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

3

http://cran.r-project.org
http://cran.r-project.org

pubMedIds: 14684422 16243790

Annotation: hgu95av2

The ALL data consist of micorarrays from 128 different individuals with acute
lymphoblastic leukemia (ALL). There are 95 samples with B-cell ALL and
33 with T-cell ALL. These are different tissues and quite different diseases.
A number of additional covariates is available, but not used in this example.
The focus here will be on B-cell ALL tumors. The data have been normalized
(using rma [5]) and are presented in the form of an ’ExpressionSet’ object.
The data set is available in the package ALL and more information can be
found in [2].

To select the corresponding data set to B-cell ALL the information from
the annotation slot ’BT’ is used.

> BcellIds <- grep("^B", ALL$BT)

> ALL_B <- ALL[, BcellIds]

> dim(ALL_B)

Features Samples

12625 95

2.1 Nonspecific filtering

The function nsFilter() is available in the package genefilter . It identifies
and removes features that appear to be less informative. Use cases for this
function are: variable selection for subsequent sample clustering or classifi-
cation tasks; independent filtering of features used in subsequent hypothesis
testing, with the aim of increasing the detection rate.

> library(genefilter)

> library(hgu95av2.db)

> nALL_B <- nsFilter(ALL_B)

> dim(nALL_B$eset)

Features Samples

4399 95

4

2.2 Gene selection

To reduce further computation time, for clearness and for biological inter-
pretation, only some genes belonging to the p53 signaling pathway will be
analysed. This pathway play crucial roles in tumor development. It is avail-
able at the KEGG database and has the ID ’hsa04115’. The following code
extracts the probe names for the p53 signaling pathway from the KEGG
database and builds an expression matrix with the selected probes.

> library(hgu95av2.db)

> xx <- as.list(hgu95av2PATH2PROBE)

> ids <- xx$"04115"

> mat_B <- exprs(nALL_B$eset)

> ids <- ids[ids %in% rownames(mat_B)]

> mat_B <- mat_B[ids,]

> dim(mat_B)

[1] 40 95

The following function is used to translate the probe names into gene names:

> get.genes <- function(IDs = c("")) {

+ result <- 1:length(IDs)

+ require(hgu95av2.db)

+ xx <- as.list(hgu95av2SYMBOL)

+ for (i in 1:length(IDs)) {

+ if (is.na(xx[[IDs[i]]]) == TRUE) {

+ result[i] <- IDs[i]

+ }

+ else {

+ result[i] <- xx[[IDs[i]]]

+ }

+ }

+ return(result)

+ }

> genes <- get.genes(rownames(mat_B))

> length(rownames(mat_B))

[1] 40

5

> length(genes)

[1] 40

In this example each gene is represented by one probe set, therefore the
rownames of the matrix could be replaced by genes. If there is at least one
gene that is represented by more than one probe set, you should estimate the
probe set graph and translate it in gene graph.

> rownames(mat_B) <- get.genes(rownames(mat_B))

3 Estimating Graphs

In the following, the gene-graphs to the data set will be estimated with the
above mentioned methods.

3.1 GeneNet

The input data must be arranged in a matrix where columns correspond to
genes and rows correspond to individual measurements. For this purpose,
the matrix should be transposed. Then the partial correlation matrix is
estimated with the function ggm.estimate.pcor(). An edge is considered
to be ”significant” if the probability of an edge to be ”present” is larger than
a given value. A graph object must be generated containing all significant
edges. The function geneNetGraph() given below gets a matrix and a value
pval (between 0 and 1) as parameters. It returns the estimated graph to
the given matrix with GeneNet [7]. The estimated graph is visualized in
Figure˜1.

> geneNetGraph <- function(matrix, pval) {

+ require(GeneNet)

+ corr <- ggm.estimate.pcor(t(matrix))

+ results <- ggm.test.edges(corr, plot = F)

+ sig <- results$prob > pval

+ geneNetGr <- ggm.make.graph(results[sig,], colnames(t(matrix)))

+ return(geneNetGr)

+ }

We use the value 0.8 for the estimation of the graph.

6

> geneNetGr <- geneNetGraph(mat_B, pval = 0.8)

> require(Rgraphviz)

> plot(geneNetGr, main = "B-cell ALL")

B−cell ALL

●CDK6 ●DDB2 ●CDKN2A ●CDK2 ●CCND3 ●CDK1 ●GADD45A ●CCNG2 ●CCNG1 ●MDM4 ●TP53 ●CDK4

●CCNB1

●BAX ●ATM ●CDKN1A ●SIAH1

●CCNB2

●BID ●SFN ●CASP8 ●TNFRSF10B ●CCNE2

●CYCS ●RCHY1

●CASP3

●CCND2 ●PPM1D

●ATR ●EI24

●SERPINE1

●CCND1 ●TSC2 ●GADD45G ●PTEN

●GADD45B

●GTSE1 ●PMAIP1 ●CCNE1 ●CASP9

Figure 1: The estimated graph with GeneNet

3.2 PC-Algorithm

The PC-Algorithm is a method for estimating the skeleton of a very high-
dimensional Directed Acyclic Graph (DAG) with corresponding Gaussian dis-
tribution [6]. The skeleton of a DAG G is the undirected graph obtained from
G by substituting undirected edges for directed edges. alpha is a parameter
of significance level for the individual partial correlation tests. The follow-
ing function pcGraph() returns the estimated graph with the PC-Algorithm.
This graph is visualized in Figure˜2.

7

> pcGraph <- function(mat, alpha) {

+ require(pcalg)

+ pcGr <- pcAlgo(t(mat), alpha = alpha)

+ pcGr <- pcGr@graph

+ nodes(pcGr) <- rownames(mat)

+ return(pcGr)

+ }

> pcGr <- pcGraph(mat_B, alpha = 0.05)

This function is deprecated and is only kept for backward compatibility.

Please use skeleton, pc, or fci instead

> plot(pcGr, main = "B-cell ALL")

3.3 glasso

In the following, a function lassoGraph() is given. This function returns
for a given matrix the estimated graph with glasso(). The function cov()

returns the corresponding covariance matrix for the given matrix. The graph
estimated with the glasso-Algorithm [3] is visualized in Figure˜3.

> lassoGraph <- function(matrix, rho){

+ library(glasso)

+ c <- cov(t(matrix))

+ gl <- glasso(c, rho=rho, zero=NULL, thr=1.0e-4,

+ maxit=1e4, approx=F, penalize.diagonal=TRUE)

+ wi <- gl$wi

+ for(i in 1:length(wi[1,])){

+ for(j in 1:length(wi[,1])){

+ if(wi[j,i]!=0) {

+ wi[j,i]=1

+ }

+

+ }

+ }

+ diag(wi)=0

+ g_las <- as(wi,"graphNEL")

+ nodes(g_las) <- rownames(matrix)

8

B−cell ALL

CDK6 DDB2 CDKN2A

CDK2

CCND3 CDK1

GADD45ACCNG2

CCNG1MDM4

TP53

CDK4

CCNB1BAXATM

CDKN1ASIAH1 CCNB2

BID

SFN

CASP8

TNFRSF10B

CCNE2

CYCS

RCHY1

CASP3

CCND2

PPM1D

ATR

EI24

SERPINE1

CCND1

TSC2

GADD45G

PTEN GADD45B GTSE1

PMAIP1

CCNE1

CASP9

Figure 2: The estimated graph with PC-Algorithm

9

+ return(g_las)

+ }

The following code chunk plots the estimated graph.

> lassoGr <- lassoGraph(mat_B, 0.15)

> plot(lassoGr, main = "B-cell ALL")

B−cell ALL

●CDK6

●DDB2

●CDKN2A

●CDK2

●CCND3●CDK1

●GADD45A

●CCNG2

●CCNG1

●MDM4

●TP53

●CDK4

●CCNB1 ●BAX

●ATM

●CDKN1A

●SIAH1

●CCNB2 ●BID

●SFN

●CASP8

●TNFRSF10B●CCNE2●CYCS

●RCHY1

●CASP3

●CCND2●PPM1D●ATR

●EI24 ●SERPINE1

●CCND1 ●TSC2

●GADD45G●PTEN

●GADD45B

●GTSE1

●PMAIP1

●CCNE1 ●CASP9

Figure 3: The estimated graph with glasso

4 Function Description

4.1 Function: compare2Graphs()

The compare2Graphs() function is a routine to compare two graphs on
the same node set. The function needs at least the mandatory parameter

10

graphList, this is a list of two graphNEL graphs. For more details about
the optional parameters, see the help files. The function returns an Ragraph
object that can be further used as input parameter to the following sub-
functions: get.edges(), get.hubs() and getMixed.hubs() to get edges or
hubs. Additionally the function plots the graphs in a merged graph where
edges of both graphs and common edges are distinguished by colors. It prints
the number of edges to the used colors and the total number of edges in the
comparative graph. In order to compare the proportion of degrees of nodes
in both graphs, the nodes are represented as pie charts using the function
pieGlyph() from the package Rgraphviz [4]. This representation of nodes is
used in all implemented functions.

> compare2Graphs(list(graph1, graph2))

4.1.1 Function: get.edges()

The function get.edges() needs an Ragraph object (returned from the func-
tion compare2Graphs()) and one color from the color list, which is used by
the function compare2Graphs() to color the edges of the comparative graph,
as input parameters (both parameters are necessary). This function returns
edges of the given Ragraph object that are colored with the given color.

4.1.2 Function: get.hubs()

The function get.hubs() needs an Ragraph object (returned from the func-
tion compare2Graphs()), one color from the color list, which is used by the
function compare2Graphs() to color the edges of the comparative graph and
a threshold value p (value between 1 and 100, default: 20) as input pa-
rameters. This function returns nodes which highly interact, the hubs. A
node is considered a hub if it is incident to at least p percent of the to-
tal number of edges in the comparative graph. In contrast to the function
getMixed.hubs(), this function returns hubs incident to edges colored with
the given color only.

4.1.3 Function: getMixed.hubs()

The function getMixed.hubs() is similar to the function get.hubs(), how-
ever it returns hubs incident to edges colored with at least two colors. There-
fore, the color parameter is not necessary.

11

4.2 Function: compGraphs.vis()

The function compGraphs.vis() needs only the mandatory parameter graphList.
The other optional parameters could be passed via the control panel that
appears after calling the function. The control panel is constructed using
functions from the rpanel package [1]. Additionally to the visualization of
the comparative graph, this function enables the visualization of the graph
with edges that exist in only one of the compared graphs and the graph with
common edges only. In this way, a side-by-side visual comparison of graphs
is also provided.

4.3 Function: compGraphs.interactive()

The function compGraphs.interactive() needs at least the mandatory pa-
rameter graphList (list of two graphNEL graphs). For more details about the
optional parameters, see the help files. Additionally to the visualization of
the comparative graph, this function offers the user the possibility to click
on any node to visualize the subgraph with the clicked node and its direct
neighbors in a new window.

5 Graphical comparison

Now the generated graphs in section ˜3 will be compared with the imple-
mented methods in the graphComp package.

5.1 Function: compare2Graphs

5.1.1 Comparison of the GeneNet and PC graphs

The following code chunk compares the GeneNet and PC graphs. The re-
turned Ragraph graph from the function compare2Graphs() is Ragr.

> library(graphComp)

Package `rpanel', version 1.0-6

type help(rpanel) for summary information

> Ragr <- compare2Graphs(list(geneNetGr, pcGr), cexx=1.5,

+ graphTitle="The comparative graph of the GeneNet and PC graphs",

12

+ legendGr1="Edges of GeneNet graph",

+ legendGr2="Edges of the PC graph")

Color Number.edges

1 blue 0

2 green4 41

3 red 8

4 sum 49

The resulting graph is visualized in Figure˜4. The GeneNet and PC graphs
have 8 edges in common that are colored red. The edges of PC graph are
colored green. There are no edges that exist only in the GeneNet graph and
do not exist in the PC graph, therefore the color for these edges is missing in
the comparative graph. The nodes are represented as pie charts to illustrate
the proportion of colored edges that are incident to each node.

5.1.2 Comparison of the PC and glasso graphs

The following code chunk compares the PC and glasso graphs.

> compare2Graphs(list(pcGr, lassoGr), cexx=1.5,

+ graphTitle="The comparative graph of the PC and glasso graphs",

+ legendGr1="Edges of PC",legendGr2="Edges of glasso graph",

+ legendPosition="bottomleft")

Color Number.edges

1 blue 21

2 green4 55

3 red 28

4 sum 104

[1] "A graph with 40 nodes."

The resulting graph is visualized in Figure˜5. The graphs of PC and glasso
have 29 edges in common and other edges that exist only in one of the graphs.
Therefore, the edges of the comparative graph are colored with three colors:
red for common edges, blue for edges of the PC graph and green for edges of
the glasso graph.

13

The comparative graph of the GeneNet and PC graphs

CDK6 DDB2 CDKN2A

CDK2

CCND3 CDK1

GADD45ACCNG2

CCNG1MDM4

TP53

CDK4

CCNB1BAXATM

CDKN1ASIAH1 CCNB2

BID

SFN

CASP8

TNFRSF10B

CCNE2

CYCS

RCHY1

CASP3

CCND2

PPM1D

ATR

EI24

SERPINE1

CCND1

TSC2

GADD45G

PTEN GADD45B GTSE1

PMAIP1

CCNE1

CASP9 Common edges

Edges of PC graph

Figure 4: The comparative graph of GeneNet and PC graphs

14

The comparative graph of the PC and glasso graphs

CDK6

DDB2 CDKN2A

CDK2

CCND3

CDK1

GADD45A

CCNG2

CCNG1

MDM4

TP53

CDK4

CCNB1BAX

ATM

CDKN1A

SIAH1

CCNB2

BID

SFNCASP8

TNFRSF10B CCNE2 CYCS

RCHY1

CASP3

CCND2

PPM1D

ATR

EI24SERPINE1

CCND1

TSC2

GADD45G

PTEN

GADD45B

GTSE1

PMAIP1

CCNE1

CASP9Common edges

Edges of PC graph

Edges of glasso graph

Figure 5: The comparative graph of PC and glasso graphs

15

5.1.3 Comparison of the GeneNet and glasso graphs

The following code chunk compares the GeneNet and glasso graphs. The
GeneNet and glasso graphs have 8 edges in common that are colored red.
The edges of glasso graph are colored green. There are no edges that exist
only in the GeneNet graph and do not exist in the glasso graph, therefore
the color for these edges is missing in the comparative graph.

> compare2Graphs(list(geneNetGr, lassoGr), cexx=1.5,

+ graphTitle="The comparative graph of the GeneNet and glasso graphs",

+ legendGr1="Edges of GeneNet graph",

+ legendGr2="Edges of glasso graph")

Color Number.edges

1 blue 0

2 green4 75

3 red 8

4 sum 83

[1] "A graph with 40 nodes."

The resulting graph is visualized in Figure˜6.
In the following, the returned graph from compare2Graphs() by the com-

parison of GeneNet and PC graphs is given as parameter to the functions
get.edges(), get.hubs() and getMixed.hubs().

5.1.4 Function: get.edges()

The function get.edges() is called with the returned graph from compare2Graphs()

by the comparison of GeneNet and PC graphs and the color blue as param-
eters to get edges that exist only in the GeneNet graph. The returned value
is NULL because there are no edges that are present only in the GeneNet
graph, see Figure˜4

> get.edges(Ragr, EdgColor = "blue")

NULL

The following function call returns edges of the PC graph.

> get.edges(Ragr, EdgColor = "green4")

16

The comparative graph of the GeneNet and glasso graphs

CDK6

DDB2

CDKN2A

CDK2

CCND3CDK1

GADD45A

CCNG2

CCNG1

MDM4

TP53

CDK4

CCNB1 BAX

ATM

CDKN1A

SIAH1

CCNB2 BID

SFN

CASP8

TNFRSF10BCCNE2CYCS

RCHY1

CASP3

CCND2PPM1DATR

EI24 SERPINE1

CCND1 TSC2

GADD45GPTEN

GADD45B

GTSE1

PMAIP1

CCNE1 CASP9

Common edges

Edges of glasso graph

Figure 6: The comparative graph of GeneNet and glasso

17

[1] "CCND3~DDB2" "CDK4~DDB2" "TSC2~DDB2"

[4] "CCNE2~CDK2" "ATR~CDK2" "PTEN~CDK2"

[7] "TP53~CCND3" "ATM~CCND3" "CASP9~CDK1"

[10] "CCNE2~GADD45A" "PMAIP1~GADD45A" "SIAH1~CCNG2"

[13] "RCHY1~CCNG2" "ATR~CCNG1" "CCND1~CCNG1"

[16] "TP53~MDM4" "BAX~MDM4" "CDK4~TP53"

[19] "CASP8~TP53" "SFN~BAX" "CCNE2~BAX"

[22] "ATR~BAX" "GTSE1~CDKN1A" "PTEN~SIAH1"

[25] "PMAIP1~SIAH1" "GTSE1~CCNB2" "CCNE1~CCNB2"

[28] "CASP9~SFN" "CASP3~CASP8" "PTEN~CASP8"

[31] "CCND2~TNFRSF10B" "GTSE1~CCNE2" "PPM1D~RCHY1"

[34] "TSC2~RCHY1" "PPM1D~CASP3" "EI24~ATR"

[37] "PTEN~ATR" "GADD45G~CCND1" "CASP9~TSC2"

[40] "GADD45B~GADD45G" "PMAIP1~GADD45B"

Finally we get common edges of GeneNet and PC graphs as follows:

> get.edges(Ragr, EdgColor = "red")

[1] "SERPINE1~CDK6" "CCNB1~CDK1" "CCND2~GADD45A"

[4] "CYCS~CDK4" "CCNB2~CCNB1" "GADD45B~CDKN1A"

[7] "PPM1D~SIAH1" "RCHY1~TNFRSF10B"

5.1.5 Function: get.hubs()

The function get.hubs() is used here to get hubs that are present in the
GeneNet graph only. In the following, the value p is used to define a node as
a hub, p=30 means that a node will be considered as a hub if it is incident
to at least 30 percent edges of the total number of edges in the comparative
graph. It is expected that there are no hubs in the GeneNet graph, because
there are no edges of this graph in the comparative graph (blue edges), see
Figure˜4 .

> get.hubs(Ragr, color = "blue", p = 30)

[1] "There are no hubs to the given color"

To get hubs (incident to at least 30 percent edges) that exist in the PC graph
only, the function get.hubs() is called with the corresponding color.

18

> get.hubs(Ragr, color = "green4", p = 30)

[1] "There are no hubs to the given threshold"

There are no hubs with the threshold p=30, this value is decreased from 30
to 5.

> get.hubs(Ragr, color = "green4", p = 5)

ATR CCNE2 PTEN TP53 BAX CCND3 DDB2 TSC2 CDK2 CASP9

5 4 4 4 4 3 3 3 3 3

PMAIP1 CASP8 GTSE1

3 3 3

The numbers under the nodes are the degrees of these nodes in the compar-
ative graph. To get hubs that are present in the GeneNet and PC graphs,
the function get.hubs() is called with the color red as parameter.

> get.hubs(Ragr, color = "red", p = 30)

[1] "There are no hubs to the given threshold"

> get.hubs(Ragr, color = "red", p = 5)

[1] "There are no hubs to the given threshold"

5.1.6 Function: getMixed.hubs()

In contrast to the function get.hubs(), the function getMixed.hubs() re-
turns hubs incident to edges colored with at least two colors.

> getMixed.hubs(Ragr, p = 30)

[1] "There are no mixed hubs to the given threshold"

> getMixed.hubs(Ragr, p = 5)

19

[[1]]

red green4

GADD45A 1 2

CDK4 1 2

CCNB2 1 2

GADD45B 1 2

PPM1D 1 2

SIAH1 1 3

RCHY1 1 3

By decreasing the threshold to define hubs from 30 to 5, the function returns
some hubs. The printed matrix illustrates the number of colored edges that
are incident to each hub.

5.2 Function: compGraphs.vis()

To illustrate the functionality of the function compGraphs.vis(), the graphs
estimated with PC-Algorithm and glasso will be compared.

> compGraphs.vis(list(pcGr, lassoGr))

After calling the function, the control panel in Figure ˜7 will appear.
Pressing the button The comparative graph will plot the same graph as that
visualized in Figure˜5. Pressing the buttons Graph1, Graph2 and Common
graph will plot the graphs visualized in Figures ˜8, ˜9 and ˜10 respectively.

5.3 Function: compGraphs.interactive()

The following code compares the estimated graphs with PC-Algorithm and
glasso. The resulted comparative graph is the same as that visualized in
Figure˜5. Clicking on the node CASP8 for example results in plotting the
subgraph with the direct neighbours of this node in a new window. The
resulted subgraph is visualized in Figure˜11.

> compGraphs.interactive(list(pcGr, lassoGr),

graphTitle="The comparative graph of the PC and glasso graphs",

legendGr1="Edges of the PC graph",

legendGr2="Edges of the glasso graph")

20

Figure 7: The created control panel with the function compGraphs.vis()

6 Summary

This article proposes the new package graphComp for visual comparison of
graphs defined on the same set of nodes. To illustrate how this package
could be used, estimated graphs for a real data set to B-cell ALL data are
compared. The graphs are estimated with the packages GeneNet , pcalg and
glasso. The estimated graphs have more different edges than common edges.
Table˜1 summarizes the edges found with each of the three algorithms and
the common edges. An important question is: which of these gene interac-
tions represent trustworthy biological relationships?

21

Graph with only edges in graph1

ATM

ATR

BAX

CCND1

BID

CASP3

CASP8

CASP9

CCNB1CCND2

CCND3 CCNE1CCNG1CCNG2 CDC2 CDK2CDK4

CDK6

CDKN1A

CDKN2A

DDB2GADD45A

SFN MDM4GADD45B

SERPINE1

PMAIP1

PTEN

SIAH1

TP53

TSC2

PPM1D

TNFRSF10B

CCNB2

CCNE2

EI24

GADD45G

RCHY1

GTSE1

CYCS

Figure 8: The graph with edges of PC graph only

Edges found

with the

three

algorithms

"CDC2~CCNB1" "CCNB2~CCNB1" "CYCS~CDK4" "SERPINE1~CDK6"

"GADD45B~CDKN1A" "GADD45G~GADD45B" "PPM1D~SIAH1"

"RCHY1~TNFRSF10B"

22

Edges found

with glasso

"CASP8~ATM" "CCNG2~ATR" "CDK2~ATR" "MDM4~ATR" "CYCS~CCNB2"

"CCNB2~ATR" "CCNE2~ATR" "CYCS~ATR" "PMAIP1~SERPINE1"

"PMAIP1~BAX" "CCND2~BID" "GADD45A~BID" "GADD45A~CCNG1"

"CCNB1~CASP8" "CCND2~CASP8" "CCNG2~CASP8" "CDKN1A~CASP3"

"GADD45A~CASP8" "PMAIP1~CASP8" "SIAH1~CASP8" "PPM1D~CASP8"

"TNFRSF10B~CASP8" "CCNE2~CASP8" "RCHY1~CASP8" "CYCS~CASP8"

"CDK4~CCNB1" "PMAIP1~CCNB1" "CYCS~CCNB1" "CCND3~CCND2"

"CCNG1~CCND2" "CCNG2~CCND2" "DDB2~CCND2" "PMAIP1~CCNG2"

"SERPINE1~CCND2" "GADD45B~CCND3" "CDKN1A~CCNG1" "CDK4~CASP8"

"GADD45B~CCNG1" "PMAIP1~CCNG1" "GADD45B~CCNG2" "MDM4~CCND2"

"PTEN~CCNG2" "CCNB2~CDC2" "CCNB2~CDK4" "GADD45B~GADD45A"

"SIAH1~CDKN1A" "PPM1D~CDKN1A" "MDM4~GADD45A" "PMAIP1~CDKN1A"

"SERPINE1~GADD45B" "TP53~GADD45B" "PPM1D~GADD45B" "CASP8~BAX"

"PPM1D~PMAIP1" "CCNE2~PPM1D" "CCNE2~CCNB2" "EI24~CCNB2"

Edges found

with

PC-Algorithm

"CCNG1~CCND1" "GADD45G~CCND1" "CYCS~BID" "PTEN~CDK2"

"SFN~CASP9" "TSC2~CASP9" "CCNB2~CCNE1" "PPM1D~CASP3"

"CCNB2~CDK2" "CCNE2~CDK2" "DDB2~CDK4" "SIAH1~PTEN"

"GTSE1~CDKN1A" "TSC2~DDB2" "TP53~MDM4" "TP53~CDK4"

"RCHY1~TSC2" "RCHY1~PPM1D" "GTSE1~CCNB2" "GTSE1~CCNE2"

Edges found

with glasso

and

PC-Algorithm

"CCNG2~ATM" "PMAIP1~ATM" "BAX~ATR" "CCNG1~ATR" "PTEN~ATR"

"EI24~ATR" "MDM4~BAX" "CCNE2~BAX" "CASP8~CASP3" "PTEN~CASP8"

"TP53~CASP8" "GADD45A~CCND2" "TNFRSF10B~CCND2" "DDB2~CCND3"

"TP53~CCND3" "SIAH1~CCNG2" "RCHY1~CCNG2" "PMAIP1~GADD45A"

"CCNE2~GADD45A" "PMAIP1~GADD45B" "SIAH1~PMAIP1"

Table 1: The edges found with the three algorithms

23

Graph with only edges in graph2

ATM

ATR

BAX

CCND1

BID

CASP3

CASP8

CASP9

CCNB1CCND2

CCND3 CCNE1CCNG1CCNG2 CDC2 CDK2CDK4

CDK6

CDKN1A

CDKN2A

DDB2GADD45A

SFN MDM4GADD45B

SERPINE1

PMAIP1

PTEN

SIAH1

TP53

TSC2

PPM1D

TNFRSF10B

CCNB2

CCNE2

EI24

GADD45G

RCHY1

GTSE1

CYCS

Figure 9: The graph with edges of glasso graph only

7 SessionInfo

This document was produced using

R version 2.12.1 (2010-12-16)

Platform: i486-pc-linux-gnu (32-bit)

locale:

[1] LC_CTYPE=de_DE.utf8 LC_NUMERIC=C

[3] LC_TIME=de_DE.utf8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=de_DE.utf8

[7] LC_PAPER=de_DE.utf8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=de_DE.utf8 LC_IDENTIFICATION=C

24

Graph with common edges

ATM

ATR

BAX

CCND1

BID

CASP3

CASP8

CASP9

CCNB1CCND2

CCND3 CCNE1CCNG1CCNG2 CDC2 CDK2CDK4

CDK6

CDKN1A

CDKN2A

DDB2GADD45A

SFN MDM4GADD45B

SERPINE1

PMAIP1

PTEN

SIAH1

TP53

TSC2

PPM1D

TNFRSF10B

CCNB2

CCNE2

EI24

GADD45G

RCHY1

GTSE1

CYCS

Figure 10: The graph with common edges

attached base packages:

[1] tcltk grid stats graphics grDevices utils

[7] datasets methods base

other attached packages:

[1] graphComp_1.0 rpanel_1.0-6 glasso_1.4

[4] pcalg_1.1-2 sfsmisc_1.0-14 abind_1.3-0

[7] Rgraphviz_1.18.1 graph_1.28.0 GeneNet_1.2.4

[10] fdrtool_1.2.6 longitudinal_1.1.5 corpcor_1.5.7

[13] hgu95av2.db_2.4.5 org.Hs.eg.db_2.4.6 RSQLite_0.9-4

[16] DBI_0.2-5 AnnotationDbi_1.12.0 genefilter_1.32.0

[19] ALL_1.4.7 Biobase_2.10.0

25

Subgraph of the comparative graph

CASP8

ATM

BAX

CASP3

CCNB1CCND2

CCNG2 CDK4GADD45A

PMAIP1 PTEN

SIAH1

TP53

PPM1D

TNFRSF10B

CCNE2 RCHY1

CYCS

Common edges
Edges of the PC graph
Edges of the glasso graph

Figure 11: The plotted subgraph with the function
compGraphs.interactive() by clicking on the node CASP8

loaded via a namespace (and not attached):

[1] RBGL_1.26.0 annotate_1.28.0 ggm_1.0.4

[4] robustbase_0.5-0-1 splines_2.12.1 survival_2.36-2

[7] tools_2.12.1 xtable_1.5-6

References

[1] A.˜W. Bowman and E.˜Crawford. R package rpanel: simple control
panels (version 1.0-5). University of Glasgow, UK, 2008.

[2] Sabina Chiaretti, Xiaochun Li, Robert Gentleman, Antonella Vitale,

26

Marco Vignetti, Franco Mandelli, Jerome Ritz, and Robin Foa. Gene
expression profile of adult t-cell acute lymphocytic leukemia identifies
distinct subsets of patients with different response to therapy and sur-
vival. Blood, 103(7):2771–2778, Apr 2004.

[3] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. glasso: Graphical
lasso- estimation of Gaussian graphical models. R package version 1.4.

[4] Jeff Gentry, Robert Gentleman, and Wolfgang Huber. How To Plot A
Graph Using Rgraphviz, 2009.

[5] Rafael˜A Irizarry, Bridget Hobbs, Francois Collin, Yasmin˜D Beazer-
Barclay, Kristen˜J Antonellis, Uwe Scherf, and Terence˜P Speed. Ex-
ploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics, 4(2):249–264, Apr 2003.

[6] Markus Kalisch and Martin Maechler. pcalg: Estimating the skeleton and
equivalence class of a DAG, 2009. R package version 0.1-8.

[7] Juliane Schaefer, Rainer Opgen-Rhein, , and Korbinian Strimmer.
GeneNet: Modeling and Inferring Gene Networks, 2008. R package ver-
sion 1.2.3.

[8] R˜Development˜Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2007. ISBN 3-900051-07-0.

27

	Abstract
	Introduction
	Nonspecific filtering
	Gene selection

	Estimating Graphs
	GeneNet
	PC-Algorithm
	glasso

	Function Description
	Function: compare2Graphs()
	Function: get.edges()
	Function: get.hubs()
	Function: getMixed.hubs()

	Function: compGraphs.vis()
	Function: compGraphs.interactive()

	Graphical comparison
	Function: compare2Graphs
	Comparison of the GeneNet and PC graphs
	Comparison of the PC and glasso graphs
	Comparison of the GeneNet and glasso graphs
	Function: get.edges()
	Function: get.hubs()
	Function: getMixed.hubs()

	Function: compGraphs.vis()
	Function: compGraphs.interactive()

	Summary
	SessionInfo

