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Abstract

The following description of the package grofit was also published as Kahm et al.
(2010). The grofit package was developed to fit many growth curves obtained under dif-
ferent conditions in order to derive a conclusive dose-response curve, for instance for a
compound that potentially affects growth. grofit fits data to different parametric mod-
els and in addition provides a model free spline method to circumvent systematic errors
that might occur within application of parametric methods. This amendment increases
the reliability of the characteristic parameters (e.g.,lag phase, maximal growth rate, sta-
tionary phase) derived from a single growth curve. By relating obtained parameters to
the respective condition (e.g.,concentration of a compound) a dose response curve can be
derived that enables the calculation of descriptive pharma-/toxicological values like half
maximum effective concentration (EC50). Bootstrap and cross-validation techniques are
used for estimating confidence intervals of all derived parameters.

Keywords: growth curve, dose response curve, EC50, bootstrap.

1. Introduction

Modeling biological growth pertains to several hierarchically ordered complexity levels like
cells, organisms, populations and communities or ecosystems. Approaches to understanding
patterns of change comprise but are not limited to issues as e.g., cellular growth rates (Airoldi
et al. 2009), coordination of growth with cell division (Alarcorn and Tindall 2007), growth
and metamorphosis within development and life cycles at the organismal level (Qu et al. 2004)
birth and survival rates or variations within species at the population level and not least living
ecosystems and growth (Jorgensen et al. 2000; Fath et al. 2004) or food chains. Compared
to kinetic analyses of biochemical data such issues are oriented towards the understanding of
the mechanisms that link two or more processes, like e.g., the relationships between growth
and cell cycle have been fitted using empirical functions or, more recently, by mathematical
modeling based on a signal transduction network (Qu et al. 2004). In contrast, modeling of
biochemical data pertain to a single or few biochemical components or enzyme kinetic studies,
the narrowest/lowest functional level within the system properties of a cell. Obtained data
sets require in depth parametric statistics to estimate the precision of the results involving also
descriptive methods and virtually all of the models needed for kinetic studies are non-linear.

Biologists often utilize growth experiments to analyse basic properties of a given organism or
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cellular model. To investigate the specific effect of a given experimental set up or condition,
e.g., a compound or substrate, characteristic parameters of the growth curves are derived.
This should ideally reveal a relationship between the concentration of a compound/substrate
and its corresponding effect on a particular growth parameter. Having obtained a statistical
relevant number of such growth curves (under different conditions like compound/substrate
concentrations) dose response plots can be computed that enable the estimation of characteris-
tic descriptive values such as EC50, IC50 (half maximum effective or inhibitory concentration)
or else.
A typical example of the workflow implemented in grofit is given in Figure 1. Yeast cells
were treated with different concentrations of a compound (here Hygromycin B). Growth was
measured as the optical density (see (Hasenbrink et al. 2006) for details) at different time
points. From the fitted growth curves the maximum growth rate µ (see Figure 2) was derived.
The response µ was then plotted against the dose in Figure 1(b). A dose response curve was
fitted and the EC50 value was estimated (see Section 4).
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Figure 1: Deriving dose response curves from growth experiments: (a) Several fitted growth
curves obtained under different concentrations (in µM) of Hygromycin B. (b) The maximum
slope corresponding to the growth rate µ (see Figure 2) of each curve in (a) is calculated
and plotted vs. the corresponding concentration. From these data points a dose response
curve is estimated by fitting a smoothed spline. Consequently, the EC50 value 6.92 µM is
estimated. (c) In order to obtain a more uniform distribution of the data points a logarithmic
transformation to the concentration axis can be applied.

Many different mathematical models for growth have been developed, see e.g., Zwietering
et al. (1990) for a review. These models can be fitted to the data using nonlinear least
squares and characteristic growth parameters can be derived from the fit. Our experience
is, however, that parametric growth curves like e.g., Gompertz or logistic law do not always
accurately describe cellular growth. For some data sets the application of these models can
potentially lead to systematic errors, because the functional relation between time and growth
is not obvious, introducing considerable alterations in the conclusions derived from growth
curve experiments.
Birch (1999) introduced a generalised model of growth equations in support of the notion that
knowledge of the underlying mathematical model may be not essential, but the reliable esti-
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Model Formula Parameter
Logistic y(t) = A

1+exp( 4µ
A

(λ−t)+2) A,µ, λ

Gompertz y(t) = A · exp
[
− exp

(µ·e
A (λ− t) + 1

)]
A,µ, λ

modified Gompertz y(t) = A · exp
[
− exp

(µ·e
A (λ− t) + 1

)]
+A · exp (α(t− tshift)) A,µ, λ, α, tshift

Richards y(t) = A·[
1 + ν · exp

(
1 + ν + µ

A · (1 + ν)1+1/ν · (λ− t)
)](−1/ν)

A,µ, λ, ν

Table 1: Growth y(t) as function of time t for the models implemented in grofit.

mation of the characteristic growth parameters. In accordance with this we apply model-free
spline fits in addition to the conventional parametric fit to estimate characteristic parameters
from the growth curve.

The methods applied for fitting growth curves and for deriving doses response curves are
described in the second section. Sections 3-4 describe the functions and the application
of grofit. The package is available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=grofit and also from the developers website http://www.
rheinahrcampus.de/Software.2447.0.html.

2. Methods

2.1. Fitting of growth curves

grofit applies two different strategies for fitting a given growth curve: Model-based fits and
model-free spline fits. The former requires a mathematical model for the description of cellular
growth. Four different models (Table 1) were implemented in grofit: 1. Logistic growth, 2.
Gompertz growth, 3. modified Gompertz growth and 4. Richards growth (Table 1). All these
models have at least three characteristic parameters: the length of lag phase λ, the growth
rate µ and the maximum cell growth A. The features of these parameters are illustrated in
Figure 2. The modified Gompertz growth model and the Richards model offer some flexibility
utilizing additional parameter values. The modified Gompertz law enables a second increase
after the function enters a first saturation plateau. Here, the shifting parameter tshift and the
scaling factor α control the location (time) and the strength (slope) of the second increase.
The shape exponent of Richards law enables flexible adjustment that the point of inflexion
can be at any value between zero and A, see Zwietering et al. (1990) for details.

The fitting of the parametric growth models is described in the algorithm from Table 2.
Nonlinear least square fits require suitable starting values for the parameter values to be es-
timated. Starting values are obtained from local weighted regression fit lowess (Cleveland
1979). The nls (Bates and Watts 1988; Bates and Chambers 1992) package is used for nonlin-
ear least squares fitting of these models. Decisions pertaining which model fits the data best
are drawn according to an Akaike information criterion (Akaike 1973). According to this, the
best fitting model is then used to estimate the growth parameters λ, µ and A. In addition,
the area under the curve is estimated by numerical integration as an alternative characteristic
of cellular growth (Hasenbrink et al. 2006).

http://CRAN.R-project.org/package=grofit
http://CRAN.R-project.org/package=grofit
http://www.rheinahrcampus.de/Software.2447.0.html
http://www.rheinahrcampus.de/Software.2447.0.html
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Figure 2: Typical parameters derived from growth curves: length of lag phase λ, growth rate
represented by the maximum slope µ and the maximum cell growth A. The integral (area
under the curve) is also used as growth parameter.

Parametric growth curves are useful and straight forward to interprete when they accurately
fit the data. We noticed, however, that often real data cannot sufficiently be described by
using a parametric model. As an alternative we implemented a model-free method (Table 3).
This model free fit applies a smoothed cubic spline as it is implemented in the R function
smooth.spline. A spline fit per se does not assume a functional relationship between time
and growth data. The smoothness can individually be set by a parameter and an optimal
value of this parameter can be identified by the program using cross-validation techniques.

Figure 3 shows the main differences between the two approaches. All four characteristic
growth parameters (λ, µ, A and the area under the curve) were estimated from the parametric
model and from the spline fit. According to the Akaike criterion, the best fitting parametric
model was the logistic equation approaching the limit A for large values of time t. However,
the maximum growth A was not reached by the actual data points. In this example, a
diauxic shift prevents the curve from reaching saturation in the observed time interval. Thus,
a more reliable parameter of growth is the maximum growth rate µ. It is estimated from the
maximum slope of the fitted growth curve. It appears conclusive that the smoothing spline
gives a more accurate estimate of µ. We conclude therefore that the derivation of descriptive
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Figure 3: Comparison of parametric and model free spline fits. The growth data (circles)
were fitted by a spline fit (black line). The maximum slope of the spline fit was used as an
estimate for the growth rate µ. This estimate is more accurate than the best fitting parametric
model (Richards equation, red lines), as can be seen from the difference in the slopes of the
tangents (straight lines).
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characteristics from parametric fits may potentially lead to unreliable predictions. A spline
fit in contrast produces more accurate estimates of the characteristic growth parameters.

Confidence intervals for µ and the other parameters are estimated by using a nonparametric
bootstrap method (Efron and Tibshirani 1993), see algorithm from Table 4. A bootstrap
sample (with replacement) is generated from the original data. For each of the bootstrap
samples, the characteristic parameter values λ, µ and A are estimated. These values can be
displayed as bootstrap histograms (plot) and provide a visual guide to the variability of the
different growth parameters. Standard bootstrap estimates are computed for the mean values
and confidence intervals of λ, µ and A. The same procedure is also performed for the integral
of the growth curve.

2.2. Fitting of dose response curves

Each of the four parameters derived from the growth curves at different compound concen-
trations can in principle be perceived as a characteristic response variable. The decision for
one particular parameter depends in most cases on the specific experiment performed. It is
advised to empirically estimate, which of the variables computed by grofit shows the highest
sensitivity and indicates changes in growth most reliable. In addition, the confidence intervals
obtained from fitting the growth curves provide further guidance to the best choice of the
response variable. From our experiences with cellular growth (Hasenbrink et al. 2006) data
we conclude that in many cases the maximum growth rate µ is a reliable descriptor.

A dose response curve was derived from a fit of the selected growth parameter versus the
dose, see again Figure 1(c). Here we applied again the spline technique to receive a model-free
relationship between dose and response (algorithm from Table 5). This offers the advantage
that a large variety of different dose-response functions can be captured with a single method.
From the resulting curve the EC50 value was estimated. EC50 confidence intervals were
obtained by a bootstrap method (algorithm from Table 6). Bootstrap histograms for the
EC50 and related parameters can be plotted for visual inspection.

3. Program application

grofit comes as a R package enabling the user to decide which functions are actually requested
thus providing maximum flexibility. Nevertheless, the package can be used to run a standard
workflow including all provided features.

To use grofit the R version 2.9.0 or later must be installed on your System. Visit http:
//www.r-project.org for downloading the latest version.

3.1. Preparation of input data

This describes the data format requested by the grofit function that implements the standard
workflow. Data can be imported preferably from *.csv files (comma separated values), that
are generated and read by any standard spreadsheet program. To run grofit the data must
be arranged in a special format. The function requires a numeric matrix with time data and
a data.frame object containing growth data as well as additional information.
Here we describe the numeric matrix named time. It consists of n columns for the time points

http://www.r-project.org
http://www.r-project.org


Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Fraté, Jost Ludwig, Maik Kschischo 7

Table 2: Algorithm for parametric fit (gcFitModel)

Input time and corresponding growth data for different conditions
Call gcFitSpline with lowess option to estimate initial values for parametric fit
for all datasets do

for all parametric models do
try to fit data according to currentModel by using R-function nls
if fit successful then

determine AIC
if currentAIC < bestAIC then

bestAIC = currentAIC
bestModel = currentModel

end if
end if

end for
end for
Determine characteristic values (A, µ, λ, integral) for bestModel

Table 3: Algorithm for model free fit (gcFitSpline)

Input time and related growth data
Call R-function smooth.spline
Estimate characteristic growth parameters from spline fit
Call R-function lowess
Estimate characteristic growth parameters from local weighted average fit

Table 4: Algorithm for parametric fit (gcFitModel)

Input time and related growth data of size k
for 1:number of bootstrap samples do

Choose with replacement a random sample of length k from given data
Call gcFitSpline with random samples of time and growth
Store characteristic growth values (A, µ, λ, integral)

end for
Generate bootstrap mean and confidence intervals for (A, µ, λ, integral)
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Table 5: Algorithm for dose response curve estimation (drFitSpline)

Input concentration and respecting characteristic growth parameter
Call R-function smooth.spline to estimate dose response curve
Estimate EC50 from spline fit

Table 6: Algorithm for bootstrap of dose response curve (drBootSpline)

Input concentration and respecting characteristic growth parameter
for 1:number of bootstrap samples do

Call R-function smooth.spline to estimate dose response curve
Estimate EC50 from spline fit
Store EC50

end for
Generate bootstrap mean and confidence intervals for EC50

and m rows for the different experiments.

. . . t1 t2 . . . tn
Experiment 1 1 2 ... 8
Experiment 2 1 3 ... 9

...
...

...
...

...
Experiment m 2 3 ... 7

(1)

Note: the matrix only contains the numerical values and not the description of the rows and
columns. In practical use the user may work with standard time points therefore having only
a vector of time data. To construct a matrix of time points just type

timepoints <- 1:15

time <- t(matrix(rep(timepoints, m), c(n, m)))

where n refers to the number of time points and m to the number of data sets.
Next we describe a data.frame object, named data. A data.frame is nothing but a matrix
except the fact that it may contain different data types. Requested is a data.frame of m
rows belonging to each experiment and 3 + n columns containing growth data corresponding
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to time and additional information. Therefore the data.frame appears as:

. . . Experiment Id Add. info Concentration d1 d2 . . . dn

Exp 1 test 1 medium 0.13 1 2 ... 20
Exp 2 test 1 high 0.23 3 5 ... 19
Exp 3 test 1 medium 0.46 2 3 ... 17
Exp 4 test 1 medium 0.57 1 3 ... 14

...
...

...
...

...
...

...
...

Exp m-1 test 2 low 0.12 1 3 ... 23
Exp m test 2 high 0.24 2 3 ... 20

(2)

The first three columns serve to identify individual experiments. In the second column the
user is free to put in any information considered as suitable. The first and the third column
are the most important. In the first column one should give one name for an experiment that
is made under a certain condition. In the third column one specifies that condition by giving
a concentration of the tested substance. That means: the entry of the first column will be
the same over several rows, while the entry in the third column will change. Such arragement
is necessary to determine the dose response curves. It does not matter in which order the
experiment ID or the concentrations appear.

Note: If one is only interested in growth curves the first three columns can be utilized in any
way. But the output of the growth curve fit cannot be further used for dose-response curve
fitting without manipulation.

Note: Do not use any special symbols like /, *, ü, ’ ’ (blank) etc. for description in the first
three rows. These symbols may cause errors in current or future versions of R. Use _, ., or -
instead.

Create input data using spreadsheet programs

An alternative to data import and manipulation is the use of a spreadsheet program like
Excel. Copy and paste the data in the format as it was described above. In case of missing
values the according cell is left empty. Then export the sheet as a csv-file (or *.txt either).
In R type

data <- read.table("PATH/data.csv", header = FALSE, sep = ";", dec = ".")

time <- read.table("PATH/time.csv", header = FALSE, sep = ";", dec = ".")

Note: Depending on the language settings of your system, one may need to use other options
for sep and dec. Open the exported *.csv file in an appropriate editor (WordPad, Kate etc.)
and see documentation of read.table to find out the necessary options.

3.2. Simulating data

We deposited a dataset for testing purposes in the data folder of the package. To create
simulated data sets we included the function ran.data. To generate a data set with 30
timepoints and 40 datasets type:

dataset <- ran.data(40, 30, 1, 5, 15)
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data <- dataset$data

time <- dataset$time

This will generate data according to Gompertz law using µ = 1, λ = 5 and A = 15. These
parameters are slightly changed in each data set to simulate the dependence of growth curves
from a substance. In addition some noise is added to the generated data

3.3. Options

The options can be set by the call of the grofit.control function, which returns an object
of class grofit.control, depicting a list including all grofit options. To change the default
values type MyOpt <- grofit.control(fit.opt = "s", model.type = c("gompertz"),
...) The options are related to different parts of the program and are described in detail
below.

3.4. Common options

� neg.nan.act: logical (TRUE/ FALSE), indicates whether the program should stop when
negative growth values or non numerical values appear (TRUE). Otherwise the program
remove these values silently (FALSE). Improper values may be caused by incorrect data
or input errors. Default: FALSE.

� clean.bootstrap: logical, determines if negative values which occur during bootstrap
should be removed (TRUE) or kept (FALSE). Note: Infinite values were always removed.
Default: TRUE.

� suppress.messages: logical, determines if grofit messages like information about cur-
rent growth curve, EC50 values etc. shall be printed to screen (FALSE) or not (TRUE).
This option serves to speed up the processing of high troughput data. Note: warning
messages are still displayed. Default: FALSE.

3.5. Fit growth curve options

� fit.opt: indicates whether the program should perform a model fit "m", a spline fit
"s" or both "b". Default: "b".

� log.x.gc, log.y.gc: logical, indicates whether a ln (x + 1). transformation should be
applied to time (x-axes) or growth values (y-axes). Default: FALSE.

� interactive: logical, controls whether the fit of each growth curve is controlled man-
ually by the user. Default: TRUE.

� nboot.gc: number of bootstrap samples used for the model free growth curve fitting.
Use 0 to disable the bootstrap. Default: 0.
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� smooth.gc: parameter describing the smoothness of the spline fit; usually (not neces-
sary) ∈ (0; 1]. Set smooth.gc to NULL causes the program to query an optimal value
via cross validation techniques. Note: This is partly experimental. In future improved
implementations of the smooth.spline function may lead to different results. See doc-
umentation of the R function smooth.spline for further details. Especially for datasets
with few data points the option NULL might result in a too small smoothing parameter,
which produces an error in smooth.spline. In that case the usage of a fixed value is
recommended. Default: NULL.

� model.type: string vector, giving the names of the parametric models which should
be fitted to the data. The addition of user defined models is described in Section 4.4.
Default: c("logistic", "gompertz", "richards", "gompertz.exp").

3.6. EC50 options

� have.atleast: minimum number of different values for the growth parameter one
should have for estimating a dose-response curve. Note that the bootstrapping pro-
cedure needs at least six values. Default: 6.

� parameter: The column in the output table which should be used for creating a dose
response curve. See the description of the output table in Section 4. Usually you will
use numbers ∈ [9; 12] and ∈ [28; 35]. Default: 9 (which represents µ from the parametric
fit).

� smooth.dr: parameter describing the smoothness of the spline fit; usually (not neces-
sary) ∈ (0; 1]. See documentation of the R function smooth.spline for further details.
Default: NULL.

� log.x.dr, log.y.dr: logical, indicates whether a ln (x + 1) transformation should be
applied to dose (x-axes) or response (y-value). Default: FALSE.

� nboot.dr: number of bootstrap samples for the EC50. Use 0 to disable bootstrapping.
Default: 0.

4. Program run

4.1. Standard workflow

Having the data successfully arranged one types

TestRun <- grofit(time, data, TRUE)

to run the program.

This will run the standard workflow of the program with the default options specified in
grofit.control. It is separated into two major parts: the growth curve fitting and the dose
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response curve fitting (see Figure 4). First, the function gcFit is called to perform the curve
fit with the desired options. This procedure includes the parametric fit, the model free fit and
respective bootstrapping.

Note: One should not get confused by the error messages, which will occur during the call of
the function gcFitModel. These messages result from the R procedure nls and indicate that
a certain parametric model could not be fitted to data. This inidicates that different models
are required.

The result of gcFit is an object of class gcFit. See documentation for further details.

The output table of summary(gcFit) serves as the input for drFit. The function au-
tonomously reads the table and determines the number of different experiments by using
the experiment ID in the first column of the table. Those which appear to have less valid
values than specified by have.atleast will be automatically removed.
If one is only interested in growth curve fitting type:

TestRun <- grofit(time, data, FALSE)

This will only run the gcFit function. Advanced users may use the given functions apart
from the standard workflow. We separated the program in modular parts that can be called
individually. See documentation for further details.

4.2. Example

In this section we provide an example for the standard workflow of grofit. The example
corresponds to Figure 1 and describes the fitting of growth curves (Figure 1 a) by using
the function gcFit and the subsequent estimation of the corresponding dose response curve
(Figure 1 b) and c) by drFit. One should carefully compare the workflow in the flowchart in
Figure 4 to monitor the different processing steps and have also a look to the options and
default values described in Section 3.3.

1. In a first step appropriate options can be set by the function grofit.conctrol, see
Section 3.3 for details. Following two slightly different settings are defined.

MyOpt1 <- grofit.control(smooth.gc = 0.5, parameter = 28,
interactive = FALSE)

MyOpt2 <- grofit.control(smooth.gc = 0.5, parameter = 28,
interactive = FALSE, log.x.dr = TRUE)

This sets the smoothness of the spline fit of growth curves (smooth.gc), chooses µ
of the model free fit as response parameter (parameter) and disables the interactive
mode. Differing from the first option, MyOpt2 enables the logarithmic transformation of
the concentrations for the dose response curve (log.x.dr).

2. The example data is part of the grofit package and is stored in the variables grofit.data
and grofit.time.

3. To start the standard workflow with the one and the other option type:

TestRun1 <- grofit(grofit.time, grofit.data, TRUE, MyOpt1)
TestRun2 <- grofit(grofit.time, grofit.data, TRUE, MyOpt2)
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The parameter TRUE indicates that a dose response curve will be estimated from the
growth curves.

In both cases grofit does the following: first the grofit function calls the gcFit function
that performs the growth curve fitting. The option fit.opt = "b" (both, default value; see
Section 3.5) means that both the parametric and the model free fit will be performed.
The parametric fit is processed by the gcFitModel function that utilises the R internal func-
tion nls. A guess of initial values for A,µ, λ is obtained from a local weighted regression
method (R function lowess) which is calculated by the gcFitSpline function. These values
are passed on to the initMODEL function generating initial values for possible additional pa-
rameters (in case of Richards or modified Gompertz law). Due to the option model.type =
c("logistic", "gompertz", "richards", "gompertz.exp") the program tries to fit every
available parametric model. On the screen the status of the fit is shown: OK, nls() failed
to converge with stopCode or ERROR in nls(). If nls fails to converge the respecting
stopCode (see documentation of nls) is provided. The ERROR status usually results from
sigular gradients or infinite values produced during the call of the nls function. This quite
frequent error is not to be taken critical and indicates only that a certain model is not an
appropriate description of the growth curve (see also documentation of gcFitModel).
Then, gcFit calls the gcFitSpline function to perform a model free spline fit by using the
R internal function smooth.spline.
In the interactive mode (not in this example) grofit presents both data fits and asks the
user for consistence with expectations. If the fit satisfies your expectations chose y, otherwise
the growth curve will be excluded from further analysis.
Following fitting the last growth curve, the gcFit function returns the calculated growth
parameters as an object of class gcFit to the grofit function.
The output of summary(gcFit) serves then as an input of drFit to generate dose response
curves. In the workspace a short message informs about the number of different experiments
and the number of valid datasets per experiment. Here the example dataset pertains to one
experiment with parameters from seven growth curves. In the workspace the half maximal
effective concentration (EC50) and the corresponding response value are shown. The following
lines gives the output produced by drFit in case of TestRun1.

=== EC 50 Estimation ==============================
---------------------------------------------------
--> Checking data ...
--> Number of distinct tests found: 1
--> Valid datasets per test:

TestID Number
Test1 7

=== Dose response curve estimation ================
--- EC 50 -----------------------------------------
--> Test1
xEC50 6.61638638638639 yEC50 0.0208673971407452

The complete code to reproduce Figures 1(a), 1(b) and 1(c):
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Define options

MyOpt1 <- grofit.control(smooth.gc = 0.5, parameter = 28,
interactive = FALSE)

MyOpt2 <- grofit.control(smooth.gc = 0.5, parameter = 28,
interactive = FALSE, log.x.dr = TRUE)

Run grofit

TestRun1 <- grofit(grofit.time, grofit.data, TRUE, MyOpt1)
TestRun2 <- grofit(grofit.time, grofit.data, TRUE, MyOpt2)

Defining color and plot symbol vector

colData <- c("black", "cyan", "magenta", "green", "blue", "orange", "grey")
pch <- 1:7
dev.new(width = 8, height = 3)
par(mfrow = c(1, 3), mar = c(5.1, 4.1, 3.1, 1.1))

Generate Fig. 1a, b, c

plot(TestRun1$gcFit, opt = "s", colData = colData, colSpline = 1,
pch = pch, cex = 1)

title("a")
plot(TestRun1$drFit$drFittedSplines[[1]], colData = colData,

pch = pch, cex = 1)
title("b")
plot(TestRun2$drFit$drFittedSplines[[1]], colData = colData,

pch = pch, cex = 1)
title("c")

Another useful example to test the effect of log.x.dr, is to choose parameter = 9 (maximum
slope of the parametric fit) for the dose response curve. While log.x.ec = FALSE leads to
an unreliable dose response curve, log.x.dr = TRUE produces acceptable results.

It is also recommended to try out the different generic plot functions for objects of class
gcFit, gcBootSpline, gcFitModel, drFitSpline and drBootSpline.

Logarithmic transformation might be useful in cases when the data points are not equally
distributed over the x-axes. However, data fitting is always a delicate issue so that we can not
provide general recommendations for data transformations or the choice of certain smoothing
parameters.

4.3. Performance

The performance was tested on an IBM T43 Notebook (Intel Pentium M 2GHz processor
with 1GB RAM and Windows XP Servicepack2) using R version 2.2.1. For a fair comparison
we used the automatic mode. For 100 growth curves each comprising 25 data points the
parametric fit, the model free fit and dose response curve estimation, took in total 19 sec.
Enabling bootstrap samples for the model free fit, as well as for the dose response curve (100
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Figure 4: The flowchart shows an overview of the standard workflow. grofit contains
two major components: gcFit and drFit. gcFit executes the routines for parametric
(gcFitModel) and model free (gcFitSpline) growth curve fitting as well as a bootstrap
procedure (gcBootSpline) for the model free fit. gcFitModel depends on several functions of
the grofit package and also on the R internal function nls. gcFitSpline provides the model
free spline fit and gcBootSpline creates a respective bootstrap sample by conducting several
times gcFitSpline. drFit uses the output of gcFit to relate concentrations to certain char-
acteristic growth values. The dose response curve fit and EC50 estimation is performed by
drFitSpline (using R function smooth.spline), whereas statistics of EC50 estimation are
obtained from a bootstrap sample given by drBootSpline. Blue boxes indicate R internal
functions.
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bootstrap samples) took 1 min. 51 sec. It appears thus reasonable to assume that the package
is also applicable to high throughput datasets.

4.4. Adding parametric models

The user can implement his own parametric growth model by writing a model definition file
and a function to generate respective initial values for the parameter estimation. To create
a model file, type fix(NEWMODEL). As a common standard in grofit the model definition has
to be dependent on time, A,µ, λ and a numeric vector that contains additional parameters,
used e.g., for Richards or the modified Gompertz growth law (see Table 1). In case that no
additional parameters are necessary initialize addpar = NULL in the function header.

Example for model definition without additional parameters

NEWMODEL <- function (time, A, mu, lambda, addpar = NULL)

{

NEWMODEL <- A / (1 + exp(4 * mu * (lambda - time) / A + 2))

}

Example for model definition with additional parameters

NEWMODEL <- function (time, A, mu, lambda, addpar)

{

alfa <- addpar[1]

tshift <- addpar[2]

e <- exp(1)

y <- A * exp(-exp(mu * e * (lambda - time) / A + 1))

+ A * exp(alfa * (time - tshift))

NEWMODEL <- y

}

The model definition file should be saved as NEWMODEL.R

The function to generate respective initial values follows the name convention initNEWMODEL.
It must be dependent on time, growth data, A,µ and λ. These parameters can be used
to calculate the initial values, which will be used in the R function nls during the run of
gcFitModel. The function returns a list object comprising all parameters that are imple-
mented in the model definition. One should ensure to initialize addpar = NULL in case that
no additional parameters are used.

Example for initial value function for a model without additional parameters

initNEWMODEL <- function (time, y, A, mu, lambda)

{

A <- max(y)

mu <- mu

lambda <- lambda

initNEWMODEL <- list (A = A, mu = mu, lambda = lambda, addpar = NULL)

}

Example for initial values function for a model with additional parameters
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initNEWMODEL <- function (time, y, A, mu, lambda)

{

alfa <- 0.1

tshift <- max(time) / 10

A <- max(y)

mu <- mu

lambda <- lambda

initNEWMODEL <- list(A = A, mu = mu, lambda = lambda,

addpar = c(alfa, tshift))

}

If one creates the functions with an editor outside the R environment, use of the source
command should be applied to make the functions available to R. To implement the new
model the string "NEWMODEL" in the model.type option (see Section 3.5) must be added.
During the program run grofit will search for the functions NEWMODEL and initNEWMODEL and
stop automatically with an error message if any of these is missing or not in the correct
format. Most likely such error messages are caused by simple spelling mistakes or due to the
lack of the correct source command.

grofit allows for adjusting specific settings like type of fit, logarithmic data transformation
or the number of bootstrap samples. The growth curve fit can be processed automatically
or in an interactive mode. In the interactive mode the user is allowed to exclude unreliable
measurements from dose response curve estimation.

To generate graphical out the package provides generic plot functions for objects of the classes
gcFit, drFit, gcFitModel, gcFitSpline, gcBootSpline, drFitSpline and drBootSpline
created by the functions of the same name.

The two output tables of presumably major interest are generated by the generic summary
functions for drFit and gcFit and described in the following tables labeled gcFit and drFit
(Tables 7, 8, 9, 10, 11).

5. Discussion and Conclusions

grofit is a useful tool for all scientists that employ biological growth analysis. Its properties
reduce the potential systematic error by enabling the user to carefully control the type of
fitting. It is anticipated that this type of control will correspondingly produce quite reliable
results. An earlier version of the package was used for Hasenbrink et al. (2006) and is therefore
assumed to be rather well tested.

Growth curve modeling is also popular in areas outside biology. For example, in economic
theory is much interest in relating government expenditures to economic growth. In the
social sciences, the analysis of growth curves encounters a fairly long tradition. Typically,
observations made on many individuals across pretest and post-test occasions are compared
and the effect of several covariables is analysed. In many cases, a parametric model for growth
is assumed or the inference is based on a general linear model Duncan et al. (2006). While
these applications may share some similarity with the specific application described above
there are some special issues that are not implemented in grofit.

The typical application of grofit considers a situation where a biomass or a similar quantitative
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gcFit
Column Number Column name Description

1 test.id Name of the experiment
2 add.id Additional information
3 concentration Concentration of substrate
4 reliability reliability flag
5 use.model parametric model used
6 log.x logarithmic transformation
7 log.y logarithmic transformation
8 nboot.fit number of bootstrap samples

Table 7: Description of gcFit. Each row of the above table is generated in the gcFit function.

gcFit continued
Column Number Column name Description

9 mu.model max. slope µ

10 lambda.model lag-phase λ

11 A.para maximum growth
12 Integral.model integral
13 stdmu.model standard deviation µ (cross validation)
14 stdlambda.model standard deviation λ (cross validation)
15 stdA.model standard deviation A (cross validation)
16 ci90.mu.model.lo 90 % CI lower boundary µ

17 ci90.mu.model.up 90 % CI interval upper boundary µ

18 ci90.lambda.model.lo 90 % CI interval lower boundary λ

19 ci90.lambda.model.up 90 % CI interval upper boundary λ

20 ci90.A.model.lo 90 % CI interval lower boundary A

21 ci90.A.model.up 90 % CI interval upper boundary A

22 ci95.mu.model.lo 95 % CI interval lower boundary µ

23 ci95.mu.model.up 95 % CI interval upper boundary µ

24 ci95.lambda.model.lo 95 % CI interval lower boundary λ

25 ci95.lambda.model.up 95 % CI interval upper boundary λ

26 ci95.A.model.lo 95 % CI interval lower boundary A

27 ci95.A.model.up 95 % CI interval upper boundary A

Table 8: Description of gcFit. Each row of the above table is generated by the call of generic
summary function for gcFitModel objects.



Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Fraté, Jost Ludwig, Maik Kschischo 19

gcFit continued
Column Number Column name Description

28 mu.spline max. slope µ

29 lambda.spline lag-phase λ

30 A.nonpara maximum growth
31 integral.spline integral

Table 9: Description of gcFit. Columns 28-31 are generated by the call of the function generic
summary function for gcFitSpline objects.

gcFit continued
Column Number Column name Description

32 mu.bt mean of bootstrap µ

33 lambda.bt mean of bootstrapλ

34 A.bt mean of bootstrapA

35 integral.bt mean of bootstrap integral
36 stdmu.bt standard deviation µ (bootstrap)
37 stdlambda.bt standard deviation λ (bootstrap)
38 stdA.bt standard deviation A (bootstrap)
39 stdIntegral.bt standard deviation integral (bootstrap)
40 ci90.mu.bt.lo 90 % CI lower boundary µ

41 ci90.mu.bt.up 90 % CI upper boundary µ

42 ci90.bt.lambda.lo 90 % CI lower boundary λ

43 ci90.bt.lambda.up 90 % CI upper boundary λ

44 ci90.A.bt.lo 90 % CI lower boundary A

45 ci90.A.bt.up 90 % CI upper boundary A

46 ci90.integral.bt.lo 90 % CI lower boundary integral
47 ci90.integral.bt.up 90 % CI upper boundary integral
48 ci95.mu.bt.lo 95 % CI lower boundary µ

49 ci95.mu.bt.up 95 % CI upper boundary µ

50 ci95.lambda.bt.lo 95 % CI lower boundary λ

51 ci95.lambda.bt.up 95 % CI upper boundary λ

52 ci95.A.bt.lo 95 % CI lower boundary A

53 ci95.A.bt.up 95 % CI upper boundary A

54 ci95.integral.bt.lo 95 % CI lower boundary integral
55 ci95.integral.bt.up 95 % CI upper boundary integral

Table 10: Description of gcFit. Columns 32-55 are generated by the call of the generic summary
function for gcBootSpline objects.



20 grofit: Fitting Biological Growth Curves with R

drFit
Column Number Column name Description

1 name name of experiment
2 log.x logarithmic transformation
3 log.y logarithmic transformation
4 Samples number of bootstrap samples
5 EC50 EC50 value
6 yEC50 y value corresponding to EC50
7 EC50.orig EC50 value in original scale
8 yEC50.orig y value EC50 in original scale
9 meanEC50 mean EC50 from bootstrap
10 sdEC50 standard deviation EC50 (bootstrap)
11 ci90EC50.lo 90 % CI lower boundary (bootstrap)
12 ci90EC50.up 90 % CI upper boundary (bootstrap)
13 ci95EC50.lo 95 % CI lower boundary (bootstrap)
14 ci95EC50.up 95 % CI upper boundary (bootstrap)
15 meanEC50.orig mean EC50 from bootstrap in original scale
16 ci90EC50.orig.lo 90 % CI lower boundary in original scale
17 ci90EC50.orig.up 90 % CI upper boundary in original scale
18 ci95EC50.orig.lo 95 % CI lower boundary in original scale
19 ci95EC50.orig.up 95 % CI upper boundary in original scale

Table 11: Description of output (drFit). Each row of the above table is generated in the
drFit function. Description of drFit continued. Columns 5-8 are generated by the call of the
generic summary function for drFitSpline objects. Columns 9-19 are generated by the call
of the generic summary function for drBootSpline objetcs.
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variable is measured over time under different experimental conditions. In this paper, we
used the example of cellular growth in the presence of different concentrations of a chemical
compound. Similar situations appear in other areas of biology and medicine. For example, a
researcher studying the effect of a certain drug on obesity will measure the animal weight over
time for different drug doses. In some cases, the growth curves can be described parametrically
in other situations the implemented model free approach based on splines might be more
appropriate. grofit offers the flexibility to derive characteristic growth parameters like A,µ, λ
from parametric and model free fits. The effect of quantitative variables like compound or drug
doses can correspondingly be studied by estimating a dose response relationship. Typically,
such data exhibit a much higher degree of scatter around the estimated ideal growth curve
than our example of cellular growth. This variability is per se taken into account by the
implemented bootstrap technique. The bootstrap confidence intervals for the characteristic
growth parameters will in such cases typically be larger reflecting the lower precision of the
measurements.
The related R package agce (Gottardo 2006) provides methods to compare growth curves
under different conditions using MANOVA and similar methods. The agce code is indeed
useful when the growth curve is a linear function of time or when the data can be transformed
to be approximately linear. grofit can be used for nonlinear growth curves where linear
statistical methods can not be applied. Another useful package depicts drc by Ritz and
Streibig (2005). The authors focus on the parametric fit of dose response curves and also
provide access for statistical analysis. Although grofit allows in principle the application
of the parametric fit routine gcFitModel to dose-response curve data, drc is much more
specialized and thereore recommended to users with a certain interest in parametric dose
response curves.
In the current version of grofit the effect of a covariable like e.g., drug concentration can be
analyzed by comparison of one of the characteristic parameters A,µ or λ with different values
of the covariable. The advantage of this approach is that standard univariate statistical
techniques can be applied. For example, if growth curves for a control and a treatment
situation are to be compared one can use a two sample statistical test to detect significant
effects of the treatment. The disadvantage of this approach is however, that the characteristic
parameter values only display a certain effect on the growth curve and can not in general
capture the treatment effect on the growth curve as a whole. We intend to improve grofit
to compute the influence of covariates in a more general way, see e.g., Altmann and Casella
(1995).
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University of Bonn
Institute for Cellular and Molecular Botany
Kirschallee 1
D-53115 Bonn/Germany

Jost Ludwig
University of Bonn
Institute for Cellular and Molecular Botany
Kirschallee 1
D-53115 Bonn/Germany

Maik Kschischo
University of Applied Sciences Koblenz, RheinAhrCampus
Department of Mathematics and Technology
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