
Import and Export of Spectra Files
Vignette for the R package hyperSpec

Claudia Beleites <cbeleites@units.it>

CENMAT and DI3, University of Trieste

September 22, 2011

hyperSpec supports a number of file formats relevant for different types of spectroscopy. This is
naturally only a subset of the file formats produced by different spectroscopic equipment.
If you use hyperSpec with data formats not mentioned in this document, please send an email to
Claudia Beleites <cbeleites@units.it>, so that this document can be updated.
The information should include

• The type of spectroscopy

• Spectrometer model, manufacturer, and software

• The “native” file format (including a sample file)

• Description of relevant procedures to convert the file

• R code to import the data together with an example file that can actually be read by R.

• Documentation, particularly the description of the data format

If you need help finding out how to import your data, hyperSpec has a mailing list hyperspec-help@
lists.r-forge.r-project.org, subscription and archives are available at http://r-forge.

r-project.org/mail/?group_id=366.

Supported File Formats

The source code of this vignette including the spectra files are available as .zip file at hyperSpec’s
home page: http://hyperspec.r-forge.r-project.org/fileio.zip
Note that some definitions are in file vignettes.defs.

Reproducing the Examples in this Vignette

Contents

1. Introduction 2

2. Creating a hyperSpec object with new 3

1

<cbeleites@units.it>
mailto:Claudia Beleites <cbeleites@units.it>
mailto:hyperspec-help@lists.r-forge.r-project.org
mailto:hyperspec-help@lists.r-forge.r-project.org
http://r-forge.r-project.org/mail/?group_id=366
http://r-forge.r-project.org/mail/?group_id=366
http://hyperspec.r-forge.r-project.org/fileio.zip

3. ASCII files 3
3.1. ASCII files with samples in columns . 3
3.2. JCAMP-DX . 4
3.3. ASCII Export . 4

4. Binary file formats 4
4.1. Matlab Files . 4

4.1.1. Matlab Export . 5
4.2. ENVI Files . 5

4.2.1. ENVI Export . 5
4.3. spc Files . 6

5. Manufacturer-Specific Discussion of File Import 8
5.1. Manufacturer Specific Import Functions . 8
5.2. Bruker FT-IR Imaging . 8
5.3. Nicolet FT-IR Imaging . 8
5.4. Varian/Agilent FT-IR Imaging . 9
5.5. Kaiser Optical Systems Raman . 9

5.5.1. Kaiser Optical Systems ASCII Files . 9
5.5.2. Kaiser Optical Systems Raman Maps . 9

5.6. Renishaw Raman . 10
5.6.1. Renishaw ASCII data . 10

5.7. Horiba Jobin Yvon . 11

6. Writing your own Import Function 12
6.1. A new ASCII Import Function: scan.txt.PerkinElmer 12
6.2. Deriving a More Specific Function: read.ENVI.Nicolet 14
6.3. Deriving import filters for spc files . 15

A. File Import Functions by Format 16

B. File Import Functions by Manufacturer 17

C. File Import Functions by Spectroscopy 17

1. Introduction

This document describes how spectra can be imported into hyperSpec objects. Some possibilities to
export hyperSpec objects as files are mentioned, too.

The most basic funtion to create hyperSpec objects is new ("hyperSpec") (section 2). It makes a
hyperSpec object from data already in R’s workspace. Thus, once the spectra are imported into R,
conversion to hyperSpec objects is straightforward.

In addition, hyperSpec comes with predifined import functions for different data formats. This
document divides the discussion into dealing with ASCII files (section 3, p. 3) and binary file formats
(section 4, p. 4). If data export for the respective format is possible, it is discussed in the same
sections. As sometimes the actual data written by the spectrometer software exhibits peculiarities,
hyperSpec offers several specialized import functions. These are in general named after the data
format followed by the manufacturer (e. g. read.ENVI.Nicolet).

Overview lists of the directly supported file formats are in the appendix: sorted by file format
(appendix A, p. 16), manufacturer (appendix B, p. 17), and by spectroscopy (appendix C, p. 17).

2

2. Creating a hyperSpec object with new

To create a hyperSpec object from data in R’s workspace, use:

spc <- new ("hyperSpec", spc, wavelength, data, labels)}

With the arguments:

spc the spectra matrix (may also be given as matrix inside column $spc of data)

wavelength the wavelength axis vector

data the extra data (possibly already including the spectra matrix in column spc)

labels a list with the proper labels. Do not forget the wavelength axis label in $.wavelength

and the spectral intensity axis label in $spc.

Thus, once your data is in R’s workspace, creating a hyperSpec object is easy. I suggest wrapping
the code to import your data and the line joining it into a hyperSpec object by your own import
function. You are more than welcome to contribute such import code to hyperSpec. Secion 6, (p. 12)
discusses examples of custom import functions.

3. ASCII files

Currently, hyperSpec provides two functions for general ASCII data import:

read.txt.long imports long format ASCII files, i. e. one intensity value per row

read.txt.wide imports wide format ASCII files, i. e. one spectrum per row

The import functions immediately return a hyperSpec object.

Internally, they use read.table, a very powerful ASCII import function. R supplies another ASCII
import function, scan. scan imports numeric data matrices and is faster than read.table, but
cannot import column names. If your data does not contain a header or it is not important and can
safely be skipped, you may want to import your data using scan.

Note that R allows to use a variety of compressed file formats directly as ASCII files (for example, see
section 5.6.1 on p. 10). Also, both read.txt.long and read.txt.wide accept connections instead
of file names.

3.1. ASCII files with samples in columns

Richard Pena asked about importing another ASCII file type:

Triazine5 31.txt file corresponds to X ray powder diffraction data (Bruker AXS). The
native files data “.raw” are read with EVA software then they are converted into .uxd
file with the File Exchange software (Bruker AXS). The .uxd file are opened with Excel
software and saved as .txt file, csv file (ChemoSpec) or xls.
The first and following columns corresponds to the angle diffraction and the intensity
values of samples respectively.

This file thus differs from the ASCII formats discussed above in that the samples are actually in
columns whereas hyperSpec expects them to be in rows. The header line gives the name of the sample.
Import is straightforward, just the spectra matrix needs to be transposed to make a hyperSpec object:

3

> file <- read.table ("txt.t/Triazine 5_31.txt", header = TRUE, dec = ",", sep = "\t")

> triazine <- new ("hyperSpec", wavelength = file [,1], spc = t (file [, -1]),

+ data = data.frame (sample = colnames (file [, -1])),

+ labels = list (.wavelength = expression (2 * theta / degree),

+ spc = "I / a.u."))

> triazine

hyperSpec object

25 spectra

2 data columns

1759 data points / spectrum

wavelength: 2 * theta/degree [numeric] 5.0025 5.0173 ... 31.004

data: (25 rows x 2 columns)

1. sample: [factor] DIV1208200 DIV1208300 ... VCA0106703

2. spc: I / a.u. [matrix1759] 92 96 ... 163

> plot (triazine [1])

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0
20

00
40

00
60

00

2θ °

I /
 a

.u
.

3.2. JCAMP-DX

JCAMP-DX files[1] are not supported as there has not yet been the need to import them.

3.3. ASCII Export

ASCII export can be done in wide and long format using write.txt.long and write.txt.wide. If
you need a specific header or footer, use R’s functions for writing files: write.table, write, cat
and so on offer fine-grained control of writing ASCII files.

4. Binary file formats

4.1. Matlab Files

Matlab files can be read and written using the package R.matlab[2], which is available at CRAN and
can be installed by install.packages ("R.matlab").

spc.mat <- readMat ("spectra.mat")

If the .mat file was saved with compression, the additional package Rcompression is needed. It can
be installed from omegahat:

install.packages("Rcompression", repos = "http://www.omegahat.org/R")

See the documentation of R.matlab for more details and possibly needed further packages.

readMat imports the .mat file’s contents as a list. The variables in the .mat file are properly named
elements of the list. The hyperSpec object can be created using new, see 2 (p. 3).

Again, you probably want to wrap the import of your matlab files into a function.

4

4.1.1. Matlab Export

R.matlab’s function writeMat can be used to write R objects into .mat files. To save an hyperSpec
object x for use in Matlab, you most likely want to save:

• the wavelength axis as obtained by wl (x),

• the spectra matrix as obtained by x [[]], and

• possibly also the extra data as obtained by x$..

• as well as the axis labels labels (x).

• Alternatively, x$. yields the extra data together with the spectra matrix.

However, it may be convenient to transform the saved data according to how it is needed in Matlab.
The functions as.long.df and as.wide.df may prove useful for reshaping the data.

4.2. ENVI Files

ENVI files are binary data accompanied by an ASCII header file. hyperSpec’s function read.ENVI

can be used to import them. Usually, the header file name is the same as the binary data file
name with the suffix replaced by .hdr. Otherwise, the header file name can be given via parameter
headerfile .

As we experienced missing header files (Bruker’s Opus software frequently produced header files
without any content), the data that would usually be read from the header file can also be handed to
read.ENVI as a list in parameter header . Arguments given in header replace corresponding entries
of the header file. The help page gives details on what elements the list should contain, see also the
discussion of ENVI files written by Bruker’s OPUS software (section 5.2, p. 8).

Here is how to use read.ENVI:

> spc <- read.ENVI ("ENVI/example2.img")

.read.ENVI.header: Guessing header file name (ENVI/example2.hdr)

> spc

hyperSpec object

420 spectra

3 data columns

1738 data points / spectrum

wavelength: [numeric] 649.90 651.83 ... 3999.7

data: (420 rows x 3 columns)

1. x: [integer] 0 0 ... 13

2. y: [integer] 0 1 ... 29

3. spc: [matrix1738] 0 0 ... 0

Please see also the manufacturer specific notes in section 5.1, p. 8.

4.2.1. ENVI Export

Use package caTools or rgdal with GDAL for writing ENVI files.

5

4.3. spc Files

Thermo Galactic’s .spc file format[3] can be imported by read.spc.

A variety of sub-formats exists. hyperSpec’s importread.spc function does not support the old file
format that was used before 1996. In addition, no test data with w planes was available — thus the
import of such files could not be tested. If you come across such files, please contact the package
maintainer (Claudia Beleites <cbeleites@units.it>).

Here are some tests using Thermo Galactic’s example files:

> ## old format files stop with an error:

> old <- paste ("spc", c ('CONTOUR.SPC', 'DEMO 3D.SPC', 'LC DIODE ARRAY.SPC'), sep = "/")

> for (f in old)

+ try (read.spc (f))

> ## all other files should be good for import

> other <- setdiff (Sys.glob ("spc/*.[sS][pP][cC]"), old)

> for (f in other){

+ spc <- read.spc (f)

+

+ if (is (spc, "hyperSpec"))

+ cat (f, ": ", nrow (spc), " spectrum(a), ", nwl (spc), " data pts / spc.\n", sep = "")

+ else

+ cat (f, ": list of ", length (spc), " spectra, ",

+ paste (range (sapply (spc, nwl)), collapse = " - "),

+ " data pts / spc\n", sep = "")

+ }

spc/BARBITUATES.SPC: list of 286 spectra, 4 - 101 data pts / spc

spc/barbsvd.spc: list of 286 spectra, 4 - 101 data pts / spc

spc/BENZENE.SPC: 1 spectrum(a), 1842 data pts / spc.

spc/DRUG SAMPLE_PEAKS.SPC: list of 6 spectra, 80 - 253 data pts / spc

spc/DRUG SAMPLE.SPC: list of 400 spectra, 2 - 254 data pts / spc

spc/FID.SPC: 1 spectrum(a), 8192 data pts / spc.

spc/HCL.SPC: 1 spectrum(a), 8361 data pts / spc.

spc/HOLMIUM.SPC: 1 spectrum(a), 901 data pts / spc.

spc/IG_BKGND.SPC: 1 spectrum(a), 4096 data pts / spc.

spc/IG_MULTI.SPC: 10 spectrum(a), 4096 data pts / spc.

spc/IG_SAMP.SPC: 1 spectrum(a), 4645 data pts / spc.

spc/KKSAM.SPC: 1 spectrum(a), 751 data pts / spc.

spc/POLYR.SPC: 1 spectrum(a), 1844 data pts / spc.

spc/POLYS.SPC: 1 spectrum(a), 1844 data pts / spc.

spc/SINGLE POLYMER FILM.SPC: 1 spectrum(a), 1844 data pts / spc.

spc/SPECTRUM WITH BAD BASELINE.SPC: 1 spectrum(a), 1400 data pts / spc.

spc/TOLUENE.SPC: 1 spectrum(a), 801 data pts / spc.

spc/TUMIX.SPC: 1 spectrum(a), 1775 data pts / spc.

spc/TWO POLYMER FILMS.SPC: 1 spectrum(a), 1844 data pts / spc.

spc/XYTRACE.SPC: 1 spectrum(a), 3469 data pts / spc.

The header and subheader blocks of spc files store additional information of pre-defined types (see
the file format specification[3]). Further information can be stored in the so-called log block at the
end of the file, and should be in a key-value format (although even the official example files do not
always). This information is often useful (Kaiser’s Hologram software e. g. stores the stage position
in the log block).

read.spc has four arguments that allow fine-grained control of storing such information in the
hyperSpec object:

keys.hdr2data parameters from the spc file and subfile headers that should become extra data
columns

6

mailto:Claudia Beleites <cbeleites@units.it>

keys.hdr2log parameters from the spc file and subfile headers that should be stored as list entries
in the long.description of the log entry

keys.log2data parameters from the spc file log block that should become extra data columns

keys.log2log parameters from the spc file log block that should be stored as list entries in the
long.description of the log entry

The value of these arguments can either be logical (amounting to either use all or none of the
information in the file) or a character vector giving the names of the parameters that should be
used. Note that the header file field names are always lowercase, while the log entries are treated
case sensitive.

.spc files may contain multiple spectra that do not share a common wavelength axis. In this case,
read.spc returns a list of hyperSpec objects with one spectrum each. collapse may be used to
combine this list into one hyperSpec object:

> barbiturates <- read.spc ("spc/BARBITUATES.SPC")

> save (barbiturates, file = "barbiturates.rda")

> class (barbiturates)

[1] "list"

> length (barbiturates)

[1] 286

> barbiturates <- do.call (collapse, barbiturates)

> barbiturates <- orderwl (barbiturates)

> barbiturates

hyperSpec object

286 spectra

6 data columns

375 data points / spectrum

wavelength: frac(m, z)/frac(u, e) [numeric] 25.95 26.05 ... 244.05

data: (286 rows x 6 columns)

1. z: t/min [numeric] 4.0272 4.0341 ... 5.9978

2. z.end: t/min [numeric] 4.0272 4.0341 ... 5.9978

3. fexper: [factor] NA NA ... NA + NA

4. fres: [factor] ...

5. fsource: [factor] MS_5971 MS_5971 ... MS_5971

6. spc: I/"a. u." [matrix375] NA NA ... NA + NA

> barbiturates [[1:10, , 25 ~ 30]]

25.95 26.05 26.15 26.95 27.05 27.15 28.05 28.15 29.05 29.15 29.95

[1,] NA NA NA NA 562 NA NA 11511 6146 NA NA

[2,] NA NA NA NA NA 618 10151 NA 5040 NA NA

[3,] NA NA NA NA 638 NA NA 10722 5253 NA NA

[4,] NA NA NA NA NA NA 10548 NA 5865 NA NA

[5,] NA NA NA NA NA NA NA 10519 4664 NA NA

[6,] NA NA NA 796 NA NA 10519 NA 5110 NA NA

[7,] NA NA NA NA NA NA 10096 NA 4769 NA 907

[8,] NA NA NA NA NA NA NA 10929 5400 NA NA

[9,] NA NA NA NA NA NA 10235 NA 4930 NA NA

[10,] NA NA NA NA NA NA NA 10663 4690 NA 799

Deriving manufacturer specific import filters. Please note that future changes inside the read.spc
function are likely to occur. However, if you just post-process the hyperSpec object returned by
read.spc, you should be fine.

7

5. Manufacturer-Specific Discussion of File Import

5.1. Manufacturer Specific Import Functions

Many spectrometer manufacturers provide a function to export their spectra into ASCII files. The
functions discussed above are written in a very general way, and are highly customizable. I rec-
ommend wrapping these calls with the appropriate settings for your spectra format in an import
function. Please consider contributing such import filters to hyperSpec: send me the documented
code (for details see the box at the beginning of this document). If you are able to import data of
any format not mentioned in this document (even without the need of new converters), please let
me know (details again in the box at the beginning of this document).

5.2. Bruker FT-IR Imaging

We use read.ENVI to import IR-Images collected with a Bruker Hyperion spectrometer with OPUS
software. As mentioned above, the header files are frequently empty. We found the necessary
information to be:

> header <- list (samples = 64 * no.images.in.row,

+ lines = 64 * no.images.in.column,

+ bands = no.data.points.per.spectrum,

+ `data type` = 4,

+ interleave = "bip")

No spatial information is given in the ENVI header (if written). The lateral coordinates can be setup
by specifying origin and pixel size for x and y directions. For details please see the help page.

The proprietary file format of the Opus software is not yet supported.

5.3. Nicolet FT-IR Imaging

Also Nicolet saves imaging data in ENVI files. These files use some non-standard keywords in the
header file that should allow to reconstruct the lateral coordinates as well as the wavelength axes and
units for wavelength and intensity axis. hyperSpec has a specialized function read.ENVI.Nicolet

that uses these header entries.

It seems that the position of the first spectrum is recorded in µm, while the pixel size is in mm. Thus
a flag nicolet.correction is provided that divides the pixel size by 1000. Alternatively, the correct
offset and pixel size values may be given as function arguments.

> spc <- read.ENVI.Nicolet ("ENVI/example2.img", nicolet.correction = TRUE)

.read.ENVI.header: Guessing header file name (ENVI/example2.hdr)

> spc ## dummy sample with all intensities zero

hyperSpec object

420 spectra

3 data columns

1738 data points / spectrum

wavelength: [numeric] 649.90 651.83 ... 3999.7

data: (420 rows x 3 columns)

1. x: [numeric] -102377 -102377 ... -102312

2. y: [numeric] -8936 -8931 ... -8791

3. spc: [matrix1738] 0 0 ... 0

8

5.4. Varian/Agilent FT-IR Imaging

Agilent (Varian) uses a variant of ENVI (with binary header). A specialized form of read.ENVI will
be coming soon.

5.5. Kaiser Optical Systems Raman

Spectra obtained using Kaiser’s Hologram software can be saved either in their own .hol format and
imported into Matlab (from where the data may be written to a .mat file readable by R.matlab’s
readMat. Hologram can also write ASCII files and .spc files. We found working with .spc files the
best option.

The spectra are usually interpolated by Hologram to an evenly spaced wavelength (or ∆ν̃) axis unless
the spectra are saved in a by-pixel manner. In this case, the full spectra consist of two files with
consecutive file names: one for the low and one for the high wavenumber region. See the example
for .spc import.

5.5.1. Kaiser Optical Systems ASCII Files

The ASCII files are long format that can be imported by read.txt.long (see section 3, p. 3).

We experienced two different problems with these files:

1. If the instrument computer’s locale is set so that also the decimal separator is a comma, commas
are used both as decimal and as column separator.

2. Values with a decimal fraction of 0 are written with decimal separator but no further digits
(e. g. 2,). This may be a problem for certain conversion functions (read.table works fine,
though).

Still the files may be imported, though care must be taken:

> ## 1. import as character

> tmp <- scan ("txt.Kaiser/test-lo-4.txt", what = rep ("character",4), sep = ",")

> tmp <- matrix (tmp, nrow = 4)

> ## 2. concatenate every two columns by a dot

> wl <- apply (tmp [1:2,], 2, paste, collapse = '.')

> spc <- apply (tmp [3:4,], 2, paste, collapse = '.')

> ## 3. convert to numeric and create hyperSpec object

> spc <- new ("hyperSpec", spc = as.numeric (spc), wavelength = as.numeric (wl))

5.5.2. Kaiser Optical Systems Raman Maps

hyperSpec provides the function read.spc.KaiserMap to easily import spatial collections of .spc
files written by Kaiser’s Hologram software. The filenames of all .spc files to be read into one
hyperSpec object can be provided either as a character vector or as a wildcard expression (e. g.
”path/to/files/*.spc”).

The data for the following example was saved with wavelength axis being camera pixels rather than
Raman shift. Thus two files for each spectrum were saved by Hologram. Thus, a file name pattern
is difficult to give and a vector of file names is used instead:

> files <- Sys.glob ("spc.Kaisermap/*.spc")

> spc.low <- read.spc.KaiserMap (files [seq (1, length (files), by = 2)])

> spc.high <- read.spc.KaiserMap (files [seq (2, length (files), by = 2)])

> wl (spc.high) <- wl (spc.high) + 1340

> spc

9

hyperSpec object

1 spectra

1 data columns

2110 data points / spectrum

wavelength: [numeric] 121.5 122.4 ... 2019.6

data: (1 rows x 1 columns)

1. spc: [matrix2110] 1202.51 770.35 ... 141.01

5.6. Renishaw Raman

Renishaw’s Wire software comes with an file format converter. This program can produce a long
ASCII format, .spc, or .jdx files.

We experienced that the conversion to .spc is not fully reliable: maps were saved as depth profile,
loosing all spatial information. In addition, an evenly spaced wavelength axis was produced, although
this was de-selected in the converter. We therefore recommend using the ASCII format. Otherwise
the import using read.spc worked.

5.6.1. Renishaw ASCII data

An optimized import function for the ASCII files is available: scan.txt.Renishaw. The file may
be compressed via gzip, bzip2, xz or lzma. zip compressed files are read via scan.zip.Renishaw.
The ASCII files can easily become very large, particularly with linefocus- or streamline imaging.
scan.txt.Renishaw provides two mechanisms to avoid running out of memory during data im-
port. The file may be imported in chunks of a given number of lines (see the last example).
scan.txt.Renishaw can calculate the correct number of wavelengths (i. e. data points per spec-
trum) if the system command wc is available on your computer.

In addition, the processing of the long ASCII format into the spectra matrix is done by reshap-
ing the vector of intensities into a matrix. This process does not allow any missing values in the
data. Therefore it is not possible to import multi-spectra files with individually “zapped” spectra using
scan.txt.Renishaw.

The second argument to scan.txt.Renishaw decides what type of experiment is imported. Sup-
ported types are:

"xyspc" maps, images, multiple spectra with x and y coordinates (default)

"spc" single spectrum

"depth", "zspc" depth series

"ts" time series

Instead of a file name, scan.txt.Renishaw accepts also a connection.

> paracetamol <- scan.txt.Renishaw ("txt.Renishaw/paracetamol.txt", "spc")

> paracetamol

hyperSpec object

1 spectra

1 data columns

4064 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] 96.787 98.143 ... 3200.1

data: (1 rows x 1 columns)

1. spc: I / a.u. [matrix4064] 2056.5 2224.8 ... 299.23

> save (paracetamol, file = "paracetamol.rda")

> scan.txt.Renishaw ("txt.Renishaw/laser.txt.gz", "ts")

10

hyperSpec object

84 spectra

2 data columns

140 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] -199.08 -196.90 ... 99.934

data: (84 rows x 2 columns)

1. t: t / s [numeric] 0 2 ... 5722

2. spc: I / a.u. [matrix140] 29.801 32.093 ... 81.3

Very large files can be read in chunks to save memory:

> scan.txt.Renishaw ("txt.Renishaw/chondro.txt", nlines = 1e5, nspc = 875)

............

hyperSpec object

875 spectra

3 data columns

1272 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] 601.62 602.66 ... 1802.2

data: (875 rows x 3 columns)

1. y: y/(mu * m) [numeric] -4.77 -4.77 ... 19.23

2. x: x/(mu * m) [numeric] -11.55 -10.55 ... 22.45

3. spc: I / a.u. [matrix1272] 501.72 518.53 ... 151.92 + NA

R accepts a variety of compressed file formats for ASCII files:

> scan.txt.Renishaw ("txt.Renishaw/chondro.gz")

> scan.txt.Renishaw ("txt.Renishaw/chondro.xz")

> scan.txt.Renishaw ("txt.Renishaw/chondro.lzma")

> scan.txt.Renishaw ("txt.Renishaw/chondro.gz")

> scan.txt.Renishaw ("txt.Renishaw/chondro.bz2")

For .zip packed files, however, a connection must be used:

> scan.txt.Renishaw (unzip ("txt.Renishaw/chondro.zip"))

5.7. Horiba Jobin Yvon

Horiba Jobin Yvon’s Labspec software saves spectra in a wide ASCII format which is read by
read.txt.wide, e. g.:

> spc <- read.txt.wide ("txt.HoribaJobinYvon/test.txt",

+ cols = list (

+ x = expression (`/` (x, mu * m)),

+ y = expression (`/` (y, mu * m)),

+ spc = "I / a.u.",

+ .wavelength = expression (Delta * tilde (nu) / cm^-1)),

+ sep = '\t', header = TRUE)

> spc

hyperSpec object

398 spectra

3 data columns

616 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] 50.00 55.61 ... 3500

data: (398 rows x 3 columns)

1. x: x/(mu * m) [numeric] -60.612 -60.612 ... 43.234

2. y: y/(mu * m) [numeric] -40.855 -35.600 ... 48.489

3. spc: I / a.u. [matrix616] 0 0 ... 898.61

Note that this data set contains lots of spectra with zero intensity: Labspec saves a complete rect-
angular grid even if only part of it was measured. These spectra can be removed by

11

> ## a floating point precision tolerant version of ==

> `%~=%` <- function (x, y, tolerance = .Machine$double.eps^0.5)

+ abs (x - y) < tolerance

> spc <- spc [rowSums (abs (spc [[]])) %~=% 0]

> spc

hyperSpec object

257 spectra

3 data columns

616 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] 50.00 55.61 ... 3500

data: (257 rows x 3 columns)

1. x: x/(mu * m) [numeric] -60.612 -60.612 ... 37.978

2. y: y/(mu * m) [numeric] -40.855 -35.600 ... 43.234

3. spc: I / a.u. [matrix616] 0 0 ... 0

6. Writing your own Import Function

This section gives examples how to write import functions. The first example implements an import
filter for an ASCII file format basically from scratch. The second example shows how to implement
more details for an already existing import filter.

6.1. A new ASCII Import Function: scan.txt.PerkinElmer

The raw spectra of the flu data set (see also the respective vignette) are in Perkin Elmer’s ASCII
file format, one spectrum per file.

We need a function that automatically reads all files specified by a pattern, such as *.txt. In order
to gain speed, the spectra matrix should be preallocated after the first file is read.

A short examination of the files (flu*.txt in directory txt.PerkinElmer) reveals that the actual
spectrum starts at line 55, after a line containing #DATA. For now, no other information of the files
is to be extracted. It is thus easier to skip the first 54 lines than searching for the line after #DATA.

A fully featured import function should support:

• Reading multiple files by giving a pattern

• hand further arguments to scan. This comes handy in case the function is used later to import
other data types.

• Also skipping 54 lines would be a weird default, so we rather require it to be given explicitly.

• The same applies for the axis labels: they should default to reasonable settings for fluorescence
spectra, but it should be possible to change them if needed.

• The usual log entry arguments should be supplied.

• A sanity check should be implemented: stop with an error if a file does not have the same
wavelength axis as the others.

• Finally, if no file can be found, an empty hyperSpec object is a reasonable result: There is no
need to stop with an error, but it is polite to issue an additional warning.

scan.txt.PerkinElmer.R
scan.txt.PerkinElmer <- function (files = "*.txt", ..., label = list (),

short = "scan.txt.PerkinElmer", user = NULL, date = NULL) {

set some defaults

long <- list (files = files, ..., label = label)

12

label <- modifyList (list (.wavelength = expression (lambda / nm),

spc = expression (I[fl] / "a.u.")),

label)

find the files

files <- Sys.glob (files)

if (length (files) == 0){

warning ("No files found.")

return (new ("hyperSpec"))

}

read the first file

buffer <- matrix (scan (files [1], ...), ncol = 2, byrow = TRUE)

first column gives the wavelength vector

wavelength <- buffer [, 1]

preallocate the spectra matrix:

one row per file x as many columns as the first file has

spc <- matrix (ncol = nrow (buffer), nrow = length (files))

the first file's data goes into the first row

spc [1,] <- buffer [, 2]

now read the remaining files

for (f in seq (along = files)[-1]) {

buffer <- matrix (scan (files [f], ...), ncol = 2, byrow = TRUE)

check whether they have the same wavelength axis

if (! all.equal (buffer [, 1], wavelength))

stop (paste(files [f], "has different wavelength axis."))

spc [f,] <- buffer[, 2]

}

make the hyperSpec object

new ("hyperSpec", wavelength = wavelength, spc = spc,

data = data.frame (file = files), label = label,

log = list (short = short, long = long, user = user, date = date))

}

Note how the labels are set. The label with the special name .wavelength corresponds to the
wavelength axis, all data columns should have a label with the same name. The spectra are always
in a data column called spc.

Thus,

> source ("scan.txt.PerkinElmer.R")

> scan.txt.PerkinElmer ("txt.PerkinElmer/flu?.txt", skip = 54)

hyperSpec object

6 spectra

2 data columns

181 data points / spectrum

wavelength: lambda/nm [numeric] 405.0 405.5 ... 495

data: (6 rows x 2 columns)

1. file: [factor] txt.PerkinElmer/flu1.txt txt.PerkinElmer/flu2.txt ... txt.PerkinElmer/flu6.txt

2. spc: I[fl]/"a.u." [matrix181] 27.150 66.801 ... 294.65

imports the spectra.

This function is not exported by hyperSpec. While it is already useful for importing files, it is not

13

yet general enough to work immediately with new data: the the file header is completely ignored.
Thus information like the excitation wavelength is lost.

6.2. Deriving a More Specific Function: read.ENVI.Nicolet

The function read.ENVI.Nicolet is a good example for a more specific import filter derived from a
general filter for the respective file type. Nicolet FT-IR Imaging software saves some non-standard
keywords in the header file of the ENVI data. These information can be used to reconstruct the x

and y axes of the images. The units of the spectra are saved as well.

read.ENVI.Nicolet thus first adjusts the parameters for read.ENVI. Then read.ENVI does the main
work of importing the file. The resulting hyperSpec object is post-processed according to the special
header entries.

For using the function, see section 5.3 (p. 8).
read.ENVI.Nicolet.R

read.ENVI.Nicolet <- function (..., # goes to read.ENVI

file headerfile, header

x = NA, y = NA, # NA means: use the specifications from the header file if possible

log = list (),

keys.hdr2log = TRUE,

nicolet.correction = FALSE) {

set some defaults

log <- modifyList (list (short = "read.ENVI.Nicolet",

long = list (call = match.call ())),

log)

the additional keywords to interprete must be read

if (! isTRUE (keys.hdr2log))

keys.hdr2log <- unique (c ("description", "z plot titles", "pixel size", keys.hdr2log))

most work is done by read.ENVI

spc <- read.ENVI (..., keys.hdr2log = keys.hdr2log,

x = if (is.na (x)) 0 : 1 else x,

y = if (is.na (y)) 0 : 1 else y,

log = log)

get the header for post-processing

header <-spc@log$long.description [[1]]$header

From here on processing the additional keywords in Nicolet's ENVI header ************************

z plot titles --

default labels

label <- list (x = expression (`/` (x, micro * m)),

y = expression (`/` (y, micro * m)),

spc = 'I / a.u.',

.wavelength = expression (tilde (nu) / cm^-1))

get labels from header information

if (!is.null (header$'z plot titles')){

pattern <- "^[[:blank:]]*([[:print:]^,]+)[[:blank:]]*,.*$"

tmp <- sub (pattern, "\\1", header$'z plot titles')

if (grepl ("Wavenumbers (cm-1)", tmp, ignore.case = TRUE))

label$.wavelength <- expression (tilde (nu) / cm^(-1))

else

label$.wavelength <- tmp

pattern <- "^[[:blank:]]*[[:print:]^,]+,[[:blank:]]*([[:print:]^,]+).*$"

tmp <- sub (pattern, "\\1", header$'z plot titles')

if (grepl ("Unknown", tmp, ignore.case = TRUE))

14

label$spc <- "I / a.u."

else

label$spc <- tmp

}

modify the labels accordingly

spc@label <- modifyList (label, spc@label)

set up spatial coordinates ---

look for x and y in the header only if x and y are NULL

they are in `description` and `pixel size`

set up regular expressions to extract the values

p.description <- paste ("^Spectrum position [[:digit:]]+ of [[:digit:]]+ positions,",

"X = ([[:digit:].-]+), Y = ([[:digit:].-]+)$")

p.pixel.size <- "^[[:blank:]]*([[:digit:].-]+),[[:blank:]]*([[:digit:].-]+).*$"

if (is.na (x) && is.na (y) &&

! is.null (header$description) && grepl (p.description, header$description) &&

! is.null (header$'pixel size') && grepl (p.pixel.size, header$'pixel size')) {

x [1] <- as.numeric (sub (p.description, "\\1", header$description))

y [1] <- as.numeric (sub (p.description, "\\2", header$description))

x [2] <- as.numeric (sub (p.pixel.size, "\\1", header$'pixel size'))

y [2] <- as.numeric (sub (p.pixel.size, "\\2", header$'pixel size'))

it seems that the step size is given in mm while the offset is in micron

if (nicolet.correction) {

x [2] <- x [2] * 1000

y [2] <- y [2] * 1000

}

now calculate and set the x and y coordinates

x <- x [2] * spc$x + x [1]

if (! any (is.na (x)))

spc@data$x <- x

y <- y [2] * spc$y + y [1]

if (! any (is.na (y)))

spc@data$y <- y

}

spc

}

6.3. Deriving import filters for spc files

Please note that future changes inside the read.spc function are likely to occur. However, if you just
post-process the hyperSpec object returned by read.spc, you should be fine.

References

[1] Robert S. McDonald and Jr. Paul A. Wilks. Jcamp-dx: A standard form for the exchange of
infrared spectra in computer readable form. Applied Spectroscopy, 42(1):151–162, 1988.

[2] Henrik Bengtsson and Jason Riedy. R.matlab: Read and write of MAT files together with R-to-
Matlab connectivity, 2011. URL http://CRAN.R-project.org/package=R.matlab. R package
version 1.3.7.

[3] Universal Data Format Specification. Galactic Industries Corp., 1997. URL https://

ftirsearch.com/features/converters/gspc_udf.zip.

15

http://CRAN.R-project.org/package=R.matlab
https://ftirsearch.com/features/converters/gspc_udf.zip
https://ftirsearch.com/features/converters/gspc_udf.zip

A. File Import Functions by Format

Format Manufacturer Function section Notes

ASCII file formats

ASCII long read.txt.long 3, p. 3

ASCII long Renishaw (Raman) scan.txt.Renishaw 5.6.1, p. 10

ASCII long Kaiser (Raman) read.txt.long 5.5.1, p. 9 Not recommended, see
discussion

ASCII long Perkin Elmer (Fluorescence) read.txt.PerkinElmer 6.1, p. 12 Reads multiple files,
needs to be sourced.

ASCII wide read.txt.wide 3, p. 3

ASCII wide Horiba Jobin Yvon read.txt.wide 5.7, p. 11

JCAMP-DX - 3.2, p. 4 not available

JCAMP-DX Renishaw (Raman) - 3.2, p. 4 not available

binary file formats

ENVI read.ENVI 4.2, p. 5

ENVI Bruker (Infrared Imaging) read.ENVI 5.2, p. 8

ENVI Nicolet (Infrared Imaging) read.ENVI.Nicolet 5.3, p. 8

hol Kaiser (Raman) - 5.5, p. 9 via Matlab

Matlab Matlab R.matlab::readMat 4.1, p. 4

Opus Bruker (Infrared Imaging) - 5.2, p. 8

spc read.spc 4.3, p. 6

spc Kaiser (Raman Map) read.spc.KaiserMap 5.5.2, p. 9 Reads multiple files

spc Kaiser (Raman) read.spc 4.3, p. 6 Reads multiple files

spc Renishaw (Raman) read.spc 5.6.1, p. 10 Not recommended, see
discussion of ASCII files.

16

B. File Import Functions by Manufacturer

Manufacturer Format Function section Notes

Manufacturers

Bruker (Infrared Imaging) ENVI read.ENVI 5.2, p. 8

Bruker (Infrared Imaging) Opus - 5.2, p. 8

Horiba Jobin Yvon ASCII wide read.txt.wide 5.7, p. 11

Kaiser (Raman) ASCII long read.txt.long 5.5.1, p. 9 Not recommended, see
discussion

Kaiser (Raman) hol - 5.5, p. 9 via Matlab

Kaiser (Raman Map) spc read.spc.KaiserMap 5.5.2, p. 9 Reads multiple files

Kaiser (Raman) spc read.spc 4.3, p. 6 Reads multiple files

Matlab Matlab R.matlab::readMat 4.1, p. 4

Nicolet (Infrared Imaging) ENVI read.ENVI.Nicolet 5.3, p. 8

Perkin Elmer (Fluorescence) ASCII long read.txt.PerkinElmer 6.1, p. 12 Reads multiple files,
needs to be sourced.

Renishaw (Raman) ASCII long scan.txt.Renishaw 5.6.1, p. 10

Renishaw (Raman) JCAMP-DX - 3.2, p. 4 not available

Renishaw (Raman) spc read.spc 5.6.1, p. 10 Not recommended, see
discussion of ASCII files.

C. File Import Functions by Spectroscopy

Spectroscopy Format Manufacturer Function section Notes

Fluorescence ASCII long Perkin Elmer read.txt.PerkinElmer 6.1, p. 12 Reads multiple files,
needs to be sourced.

Infrared Imaging ENVI Bruker read.ENVI 5.2, p. 8

Infrared Imaging ENVI Nicolet read.ENVI.Nicolet 5.3, p. 8

Infrared Imaging Opus Bruker - 5.2, p. 8

Raman ASCII long Renishaw scan.txt.Renishaw 5.6.1, p. 10

Raman ASCII long Kaiser read.txt.long 5.5.1, p. 9 Not recommended,
see discussion

Raman hol Kaiser - 5.5, p. 9 via Matlab

Raman JCAMP-DX Renishaw - 3.2, p. 4 not available

Raman spc Kaiser read.spc 4.3, p. 6 Reads multiple files

Raman spc Renishaw read.spc 5.6.1, p. 10 Not recommended,
see discussion of
ASCII files.

Raman Map spc Kaiser read.spc.KaiserMap 5.5.2, p. 9 Reads multiple files

17

Index

Agilent
ENVI, 9

ASCII
compressed, 10
JCAMP-DX, 4
long, 3

Fluorescence, 12
Kaiser, 9
Perkin Elmer, 12
Raman, 9, 10
Renishaw, 10

samples in columns, 3
transposed, 3
wide, 3

Horiba Jobin Yvon, 11
zip, 10

Bruker
AXS, 3
ENVI, 5, 8
powder diffraction, 3
x-ray, 3

create hyperSpec object, 3

ENVI
Agilent, 9
Bruker, 5, 8
Infrared, 5, 8, 9

Nicolet, 14
Map, 5, 8, 9, 14
Nicolet, 8, 14
Varian, 5

Fluorescence
ASCII long, 12
Perkin Elmer

ASCII, 12
FT-IR, see Infrared

hol
Kaiser, 9

Horiba Jobin Yvon
ASCII

wide, 11
hyperSpec object

create, 3

Image, see Map
Infrared

ENVI, 5, 8, 9, 14
Map, 14
Nicolet, 14

initialize hyperSpec object, 3

JCAMP-DX
ASCII, 4

jdx, see JCAMP-DX

Kaiser
ASCII long, 9
hol, 9

Map, 9
spc, 6, 9

Map, 9
ENVI, 5, 8, 9
Kaiser, 9
Raman, 9

Matlab, 4

new hyperSpec object, 3
Nicolet

ENVI, 8, 14
Infrared, 14
Map, 14

Perkin Elmer
ASCII long, 12
Fluorescence, 12

powder diffraction
Bruker, 3

Raman
ASCII long, 9, 10
hol, 9
Horiba Jobin Yvon

ASCII wide, 11
Kaiser, 6, 9
Map, 9
Renishaw, 6

ASCII, 10
spc, 10

spc, 6, 9
Renishaw

ASCII long, 10
Raman, 10
spc, 6, 10

spc, 6
Kaiser, 6, 9
Raman, 6, 9, 10
Renishaw, 6, 10

Varian, see Agilent
ENVI, 5

x-ray
Bruker, 3

18

Session Info

R version 2.13.1 (2011-07-08)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C LC_TIME=de_DE.UTF-8

[4] LC_COLLATE=de_DE.UTF-8 LC_MONETARY=C LC_MESSAGES=de_DE.UTF-8

[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats graphics grDevices utils datasets methods base

other attached packages:

[1] hyperSpec_0.98-20110922 lattice_0.19-33

loaded via a namespace (and not attached):

[1] tools_2.13.1

19

	Introduction
	Creating a hyperSpec object with new
	ASCII files
	ASCII files with samples in columns
	JCAMP-DX
	ASCII Export

	Binary file formats
	Matlab Files
	Matlab Export

	ENVI Files
	ENVI Export

	spc Files

	Manufacturer-Specific Discussion of File Import
	Manufacturer Specific Import Functions
	Bruker FT-IR Imaging
	Nicolet FT-IR Imaging
	Varian/Agilent FT-IR Imaging
	Kaiser Optical Systems Raman
	Kaiser Optical Systems ASCII Files
	Kaiser Optical Systems Raman Maps

	Renishaw Raman
	Renishaw ASCII data

	Horiba Jobin Yvon

	Writing your own Import Function
	A new ASCII Import Function: scan.txt.PerkinElmer
	Deriving a More Specific Function: read.ENVI.Nicolet
	Deriving import filters for spc files

	File Import Functions by Format
	File Import Functions by Manufacturer
	File Import Functions by Spectroscopy

