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Abstract

In linear models and multivariate normal situations, prior information in linear in-
equality form may be encountered, or linear inequality hypotheses may be subjected to
statistical tests. R package ic.infer has been developed to support inequality-constrained
estimation and testing for such situations. This article gives an overview of the principles
underlying inequality-constrained inference that are far less well-known than methods for
unconstrained or equality-constrained models, and describes their implementation in the
package.
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1. Introduction

Inequality-constrained estimation and testing are relevant in various fields. Development of
R package ic.infer has been instigated by customer satisfaction research: researchers believe
that it is unreasonable if increase in an individual satisfaction aspect goes with decrease in
overall satisfaction. Multicollinearity among individual satisfaction aspects can cause some
estimated coefficients to be negative by chance, even if the true underlying coefficients are all
non-negative. Thus, Lipovetsky and Conklin (2001) – in the context of the so-called “Shapley
value regression” – have suggested an adjustment method for the coefficients that (among
other purposes) is supposed to establish non-negativity. The author believes that an explicit
restriction to non-negativity is more appropriate in such contexts (cf. also Grömping and Lan-
dau 2009). A further application of inequality-constrained inference lies in linear models with
ordered categorical predictors, where it can be reasonable to a priori restrict estimated effects
to be monotone in the expected direction. For example, if a monotone increase is expected,
this can be implemented either by ensuring increasing size of effects, or – with different cod-
ing of dummy variables – by ensuring non-negativity of all affected coefficients. Attention to
inequality-constrained inference is particularly high in econometrics, cf. e.g., Gourieroux and
Monfort (1995, Chapter 21). This is also reflected by the fact that software implementation
of inequality-constrained inference is found in econometric software (e.g. GAUSS, Aptech Sys-
tems, Inc. 2009) or in the econometric parts of general statistical software (e.g. the product
ETS in SAS, SAS Institute, Inc. 2009), if at all. In R, constrained estimation of means or
linear model coefficients can be handled by optimization packages, such as quadprog (Turlach
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and Weingessel 2007). However, direct usage of optimization routines forces the data analyst
to concentrate on numerical instead of statistical considerations and may lead to erroneous
application in applied statistics. In addition, optimization routines do not automatically yield
the ingredients for inference in terms of hypothesis tests. Distributional results for inequality-
constrained estimates are far more complicated than standard distributional results. The
recommended likelihood ratio approach to testing under normality requires calculation of
mixing weights for mixtures of χ2 or Beta distributions. While these can in principle be
calculated using package mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn
2009), literature on their calculation is not widely known, so that it is a severe impediment
against application of inequality-related testing if they are not readily available. R package
ic.infer implements inequality-constrained estimation and likelihood ratio tests for normal
means and linear models. It is the first statistical package in R that accomodates general-
purpose inequality restrictions (there are already packages that offer specific methods like
the Bioconductor package SAGx (Broberg 2009) that offers the non-parametric Jonckheere-
Terpstra trend test). The package is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=ic.infer.

Literature on inequality-constrained likelihood ratio testing dates back to Bartholomew (1961),
who proposed a test for detecting trends in group means. Kudô (1963) introduced the theory
on testing the null hypothesis of mean 0 within the non-negative orthant as the parameter
space under multivariate normality. Shapiro (1988) gave a review of the work on inequality-
constrained testing up to that point in time, generalizing tests in the spirit of Kudô as well
as tests of an inequality restriction against an unrestricted alternative. Sasabuchi (1980) in-
troduced a likelihood ratio test for the reversed test problem, where the inequality restriction
(with strict inequalities only) constitutes the alternative hypothesis. The latter test coincides
with the intersection-union test (cf. Gleser 1973), which rejects its union null hypothesis, a
union of individual null hypotheses, at level α if and only if all individual null hypotheses are
rejected by level α tests (i.e., the p value is the maximum p value from individual tests). The
monographs by Robertson, Wright, and Dykstra (1988) and Silvapulle and Sen (2004) give a
broad overview of inequality-constrained inference.

This article discusses inference under linear inequality and equality constraints in normal
distribution situations, both concerning the expectation vector in a homogeneous multivariate
normal population and the parameters in normal linear models. Like in the linear model,
estimation is based on projection and is applicable even without the normality assumption.
For testing, however, a normality assumption is required. Nevertheless, for linear models,
normality of the random error is not necessary; it is also sufficient to request multivariate
normality of the coefficient estimators, which holds asymptotically in large samples. Even
non-linear models can be treated based on the asymptotic normal distribution of the estimated
coefficients (cf. e.g., chapter 4 of Silvapulle and Sen 2004).

Important theoretical foundations are polyhedral cones and translated versions thereof, prob-
abilities that a multivariate normal random vector lies in a polyhedral cone – or the non-
negative orthant –, and projections onto polyhedral cones. These are discussed in Section 2,
along with the normal distribution probabilities that projections onto cones lie in linear spaces
of certain dimensions and distributions of quadratic forms involving inequality-constrained
estimates. Section 3 discusses the various test problems and likelihood ratio tests for them,
emphasizing their different nature that has already been mentioned in the brief literature
review above. Section 4 transfers inequality-restricted estimation and testing to the normal
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linear model. Here, decomposition of R2 into contributions by individual regressors is also
treated, in a spirit similar to Chevan and Sutherland (1991). Functionality in R package
ic.infer is introduced in Section 5 using two examples: Robertson et al. (1988) data on grade
point averages of Iowa university first-years are analysed by two-way analysis of variance,
and female body fat values are analysed by multiple regression, based on a small dataset
published by Kutner, Nachtsheim, and Neter (2004). Apart from pointing out the possibili-
ties of ic.infer, Section 5 also gives an idea about the computational burden that comes with
calculation of R2 decomposition and weights for hypothesis tests. The final section discusses
plans for extending the package.

Throughout this article, all inequality relations between vectors are understood component
wise.

2. Cones, cone probabilities, and projections onto cones

This section introduces polyhedral cones, probabilities for polyhedral cones under multivariate
normality, and projections onto cones. Probabilities that projections onto cones lie in linear
spaces of certain dimensions and distributions of quadratic forms are also discussed. The idea
is to give the reader a basic understanding of the principles behind inequality-constrained
estimation and testing for the situations covered in R package ic.infer. Readers interested in
more detail are referred to Silvapulle and Sen (2004) or other cited literature.

2.1. Polyhedral cones

Any set of the form

CR = {y ∈ Rp : Ry ≥ 0} (1)

with a row-regular m × p matrix R is called a polyhedral cone. The linear space, for which
all restrictions Ry ≥ 0 are fulfilled with equality (nomenclature: are “active”), is called the
vertex of the cone. The margins, for which some of the inequalities are active while others are
fulfilled with inequality are called “faces” of the cone. The vertex is the lowest-dimensional
face, and the interior of the cone can be seen as the highest-dimensional face. Even when
adding additional restrictions that are always requested to hold with equality, the resulting
set

CR1,R2 = {y ∈ Rp : R1y ≥ 0, R2y = 0}

is still a polyhedral cone, however with the highest-dimensional face having a dimension lower
than p. It is a defining property of cones that y ∈ C implies λy ∈ C for any λ > 0.

If the “0” on the right-hand side of the relations defining the cone is replaced by some possibly
non-zero m× 1 vector r, (1) becomes

CR,r = {y ∈ Rp : Ry ≥ r},

and CR1,R2,r1,r2 is analogously defined. These latter sets are translated cones, i.e., their vertex
no longer is or includes the origin of p-dimensional space. Most estimation results hold for
restrictions to cones and translated cones, while some testing results are not easily transferred
from cones to translated cone restrictions, at least not in the current implementation of
ic.infer. Most results in this article are presented for cones only (i.e., r = 0).
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If a positive definite matrix Σ is given, the “polar” or “dual” cone of CR is defined as the set
Co,ΣR = {y : −Σ−1y ∈ CR} = C−RΣ−1 . The top row of Figure 1 shows the positive orthant
(cone CI) with its polar cone for two different covariance matrices Σ in bivariate space.

CI
o,ΣΣ

CI

CI
o,ΣΣ

CI

A−−1CI
o,ΣΣ

A−−1 CI

A−−1CI
o,ΣΣ

A−−1 CI

Figure 1: Positive orthant with its polar cone, σ11 = 1, σ22 = 2. Left: σ12 = 1/
√

2, Right:
σ12 = −1/

√
2. Top: original scale. Bottom: transformed to identity covariance matrix

.

2.2. Multivariate normal cone probabilities

The non-negative orthant is the special polyhedral cone CI with the identity matrix I. Let
y ∼ N(0,Σ) for a p-dimensional positive definite covariance matrix Σ. Then, there is a
regular matrix A with AA> = Σ. We will denote the probability P(y ∈ CI) as p(Σ). Then
p(Σ) = P(y ∈ CI) = P(A−1y ∈ CA) for the normal random vector A−1y with covariance
matrix I. For low-dimensional random vectors, the latter probability can geometrically be
obtained as the proportion of the unit sphere that is part of the cone CA. The bottom row of
Figure 1 illustrates the probabilities associated with the positive orthant for the two examples
from the top row of the figure (CA = A−1CI): The probability for the non-negative orthant is
1/3 for σ12 = 1/

√
2 and 1/6 for σ12 = −1/

√
2 (the probabilities for the respective polar cones
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are vice versa). Calculation of rectangle probabilities such as p(Σ) is implemented in ic.infer
through access to package mvtnorm that uses Monte Carlo methods for this calculation.

For a row-regular matrix R, with Σ and A as defined above, P(y ∈ CR) = P(A−1y ∈ CRA) =
P(RAA−1y ∈ CI) = P(ỹ ∈ CI) for ỹ ∼ N(0, RΣR>). Thus, the probability P(y ∈ CR) can be
obtained as the orthant probability p(RΣR>) (and thus again be calculated using mvtnorm).
The probability for the polar of CI , C

o,Σ
I , can be obtained by choosing R = −Σ−1 and is thus

p(Σ−1); analogously, the probability for the polar cone Co,ΣR is p((RΣR>)−1).

If the probabilities for translated cones are considered, things become notationally more com-
plicated, but the probabilities remain unchanged when considering appropriately translated
distributions.

The orthant probabilities together with the results of the following section on projections onto
polyhedral cones yield all necessary ingredients for deriving null distributions of test statistics
for test problems involving inequality constraints.

2.3. Projections onto cones

The projection of a p × 1 vector y onto the polyhedral cone CR along the positive definite
p× p-matrix Σ is defined as the vector µ̂∗ that mimimizes the quadratic form

(y − µ)>Σ−1(y − µ) (2)

w.r.t. µ ∈ CR. If y ∈ CR, µ̂∗ = y, if y ∈ Co,ΣR , µ̂∗ = y − ΣRT (RΣR>)−1Ry, which is the
projection of y along Σ onto the (p − m)-dimensional vertex of cone CR. (In particular, if
m = p, µ̂∗ = 0 for y ∈ Co,ΣR .) Otherwise, µ̂∗ lies in one of the faces of CR with intermediate
dimension and is the projection onto the smallest linear space that contains this face. µ̂∗ lies
in a particular face of the cone CR, if y lies in a particular cone. This can be illustrated by
looking at Figure 1: The hatched regions in the top row are the cones of y-values that project
onto one-dimensional faces of the non-negative orthant. Projection of any y-vector from these
regions onto the non-negative orthant moves the y-vector parallel to the hatch-lines onto the
margin of the non-negative orthant.

We have already seen that µ̂∗ ∈ CR if and only if y ∈ CR, and that Rµ̂∗ = 0 if and only if
y ∈ Co,ΣR . Cones that lead to µ̂∗ with intermediate dimensions are now investigated. Suppose
the row-regular m × p matrix R is composed of the matrices R1 (the first m1 rows) and R2

(the remaining m2 rows). The projection of y onto the linear space defined by R2µ = 0 is
known to be µ̃ = y − ΣRT2 (R2ΣR>2 )−1R2y, so that

y − µ̃ = ΣRT2 (R2ΣR>2 )−1R2y. (3)

It is known from optimization theory that µ̃ minimizes (2), if and only if the component wise
minimum of Rµ̃ and −(RΣR>)−1(Ry−Rµ̃) is a vector of zeroes. Straightforward calculations
show that the first m1 elements of −(RΣR>)−1(Ry − Rµ̃) are 0 and the last m2 elements
of Rµ̃ are 0. Hence, µ̃ is the projection, if and only if R1µ̃ ≥ 0 and the last m2 elements of
−(RΣR>)−1(Ry −Rµ̃) are non-negative. Inserting (3) into the latter formula yields the last
m2 elements as −(R2ΣR>2 )−1R2y. Thus, µ̃ is the projection of y onto CR if and only if

R1µ̃ ≥ 0 and − (R2ΣR>2 )−1R2y ≥ 0. (4)

This is an important intermediate result for deriving the null distributions of quadratic forms.
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2.4. Distribution of minimized quadratic forms

Under y ∼ N(µ,Σ), the size of (2) is independent of which cone y is an element of, i.e., which
face µ̂∗ belongs to: (y − µ)>Σ−1(y − µ) ∼ χ2(p). For the rest of this subsection, it will be
assumed that the true expectation vector µ lies in the vertex of cone CR. (This setup is
the least favourable configuration for those test statistics which depend on quadratic forms,
cf. (8) and (9) below.) Given that µ̂∗ lies in a particular i-dimensional face of the cone, it
can be written as the projection of y onto the adequate i-dimensional linear space. This
projection is normally distributed, and the fact whether or not it fulfills the conditions (4),
i.e., is the minimizer of (2), is again independent of the size of its quadratic forms because
of the assumption that µ is in the vertex of CR. Thus, whenever µ̂∗ lies in a particular
i-dimensional face of CR,

(y − µ)>Σ−1(y − µ) = (y − µ̂∗)>Σ−1(y − µ̂∗) + (µ̂∗ − µ)>Σ−1(µ̂∗ − µ),

where the first summand is distributed as χ2(p − i) and the second as χ2(i). (χ2(0) is the
one-point distribution on “0”.)

If y ∈ CR, i = p. This happens with probability p(RΣR>). On the other hand, if y ∈ Co,ΣR , i =
p −m, which happens with probability p((RΣR>)−1). For determining the probabilities of
faces of intermediate dimensions, the probability of condition (4) needs to be calculated. Since
the two vectors involved in (4) are independent, the probability that µ̂∗ lies in a particular
face of the form R1µ̂

∗ > 0, R2µ̂
∗ = 0 is given as the product of the probabilities for the two

conditions, i.e.,
P(R1µ̃ ≥ 0)P(−(R2ΣR>2 )−1R2y ≥ 0). (5)

The second factor in the product (5) is a cone probability and can be calculated as the orthant
probability p((R2ΣR>2 )−1). The first factor is obtainable as the orthant probability p(V1.2)
based on the matrix

V1.2 = R1ΣR>1 −R1ΣR>2 (R2ΣR>2 )−1R2ΣR>1 , (6)

which is the covariance matrix of R1µ̃ and coincides with the conditional covariance matrix
COV(R1Y |R2Y ). (Note that V1.2 is also the inverse of the upper left block of the appropriately
partitioned matrix (RΣ−1R>)−1.) Thus, with rows of R arranged in appropriate order and
m2 chosen as large as possible, the probability that µ̂∗ lies in the face R1µ̂

∗ > 0 and R2µ̂
∗ = 0

is given as
p(V1.2)p((R2ΣR>2 )−1).

Analogously to Kudô (1963), the probability that µ̂∗ lies in any face of a specified dimension
i is then obtained as the sum of all probabilities for individual faces of that dimension, i.e., it
is

wi−(p−m)(m,RΣR>) =
∑

J :‖J‖=p−i

p((RJΣR>J )−1)p(VJc.J) (7)

with

� i ∈ {p−m, . . . , p},
� J ⊂ {1, ...,m},
� RJ the (p− i)×p sub matrix of R with rows indexed by elements of J (matrix for active

restrictions in current face),
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� Jc the complement of J in {1, ...,m},
� VJc.J constructed analogously to Equation (6),

� and wj(p,Σ) the conventional notation for the probability that the projection along Σ
of a p-variate random vector y ∼ N(0,Σ) onto the non-negative orthant is of dimension
j (e.g. Shapiro 1988; Silvapulle and Sen 2004).

Remember that the quadratic forms (y− µ̂∗)>Σ−1(y− µ̂∗) and (µ̂∗−µ)>Σ−1(µ̂∗−µ) follow a
χ2 distribution with p− i or i degrees of freedom, respectively, for µ̂∗ in a given i-dimensional
face of the restriction cone independent of the event which face µ̂∗ belongs to. Thus, it is now
verified that the overall distribution of these quadratic forms is a mixture of χ2 distributions
with different degrees of freedom, and mixing probabilities are obtained according to (7).
Analogously, with µ̂= denoting the equality-constrained estimate (Rµ̂= = 0), the χ2(p −m)
quadratic form (y − µ̂=)>Σ−1(y − µ̂=) can be decomposed as

(y − µ̂=)>Σ−1(y − µ̂=) = (y − µ̂∗)>Σ−1(y − µ̂∗) + (µ̂∗ − µ̂=)>Σ−1(µ̂∗ − µ̂=).

The summands are distributed as χ2(p − i) and χ2(i − p + m) respectively for µ̂∗ in an i-
dimensional face of CR, and the overall distributions of the summands are again mixtures of
χ2 distributions with weights according to (7).

3. Hypothesis tests and linear inequality constraints

In the following, all theoretical discussions assume a normal distribution, initially y ∼ N(µ,Σ)
with known Σ, then relaxed to Σ = σ2Σ0 with known Σ0 and finally a normal linear model with
unknown positive variance parameter. As mentioned in the introduction, it is possible to cover
more general situations for large samples, where coefficient estimates often approximately
follow a multivariate normal distribution.

3.1. Three test problems

As has been mentioned in the introduction, there are three basic test problems that can be
considered in connection with an inequality constraint (¬ denotes “not”):

H0A : Rµ = r vs H1A : Rµ ≥ r, (TP1)

H0B : Rµ ≥ r vs H1B : ¬Rµ ≥ r, (TP2)

H0C : ¬Rµ > r vs H1C : Rµ > r. (TP3)

In all three test problems, R is a row-regular m×p matrix, r an m×1 vector, and inequalities
are to be understood component wise. Likelihood ratio tests for these three test problems (cf.
Shapiro 1988; Sasabuchi 1980) are based on

LR =
maxµ∈H0(f(y;µ))

maxµ∈H0∪H1(f(y;µ))
,

where f() denotes the appropriate probability density function.
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3.2. Likelihood ratio tests for known Σ

For known Σ, the resulting test statistics simplify to

T1 = (µ̂∗ − µ̂=)>Σ−1(µ̂∗ − µ̂=), (8)

T2 = (y − µ̂∗)>Σ−1(y − µ̂∗), (9)

and

T3 = min
j=1,...,m

(Ry − r)j√
(RΣR>)j,j

, (10)

where µ̂∗ is the inequality-constrained estimate and µ̂= is the equality-constrained estimate.

The critical value for T3 is easily obtained as the (1− α) quantile from the standard normal
distribution, and the p value is accordingly the maximum of the one-sided p values of tests for
individual restrictions. It is known that the least favourable configuration for the likelihood
ratio tests of TP1 and TP2 is given as Rµ = r. According to Section 2.4, the null distributions
of T1 and T2 are mixtures of χ2 distributions under this least favorable configuration, and
p values can be easily calculated as a weighted sum of χ2-p values, once the mixing weights
are known (cf. Equation (7)).

Figure 2 (page 9) shows the null hypothesis and rejection regions for two simple two-dimensional
examples (restriction with R = I2, r = 02, i.e., non-negative orthant) for the three test prob-
lems. Note that the shape of the critical region strongly depends on the correlation structure
between the components of y for TP1 and TP2, while it does not for TP3. In particular, note
that the null hypothesis of TP1 is equality only. Rejection of this null hypothesis does not
provide evidence for validity of the inequality restriction in any way, although formulation
of the test problem has mislead many researchers to interpret it in this way. The inequality
restriction comes in as a prior belief. The test thus concentrates its power as much as possible
in the area where the restriction holds; however, even situations with all constraints strictly
(and statistically significantly) violated can lead to rejection of H0A (cf. Silvapulle 1997, for
an example). This is also reflected by the rejection region for TP1 for positive correlation
(top left in Figure 2) that does extend into the negative orthant. Some authors (e.g., Cohen,
Kemperman, and Sackrowitz 2000) criticize the likelihood ratio principle for this behavior,
others, e.g., Perlman and Wu (2003) or Silvapulle (1997) defend the likelihood ratio principle
and correctly place the fault where it belongs: interpretation of test results in a restricted
parameter space must account for the a-priori nature of the restriction, and must realize
that the only guaranteed null hypothesis is the stated null hypothesis (i.e., equality in case of
TP1).

The power of the test for TP3 is generally poor, especially in case of a relatively large number
of restrictions. It can be far lower than the chosen significance level even on relevant parts of
the alternative hypothesis. Thus, the role of TP3 is rather to intellectually complete the set of
tests (and to prevent erroneous interpretation of significant results from testing TP1) than to
actually provide a useful test for applications. Of course, there are occasionally applications
where this test rejects its null hypothesis, for example when investigating the monotonicity of
diamond prices w.r.t. color and clarity in the diamond data published by Chu (2001). TP3 has
motivated researchers to develop tests that are uniformly more powerful than the likelihood
ratio test (e.g. Berger 1989; Liu and Berger 1995). Perlman and Wu (1999) passionately
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● ●

Figure 2: Restriction µ ≥ 0, σ11 = 1, σ22 = 2. Left: σ12 = 1/
√

2, Right: σ12 = −1/
√

2. Top:
Null space (grey dot) and rejection region (hatched) for TP1. Middle: Null space (grey) and
rejection region (hatched) for TP2. Bottom: Null space (grey) and rejection region (hatched)
for TP3.
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defend the likelihood ratio principle against these “Emperor’s new tests” – the author agrees
with their assessment, cf. also Grömping (1996).

3.3. Likelihood ratio tests for unknown σ2

The covariance matrix Σ has so far been assumed completely known. In this section, it is
given as Σ = σ2Σ0 with known Σ0 but unknown σ2 > 0. Furthermore, it is assumed that an
estimate s2 for σ2 is available that is distributed as σ2χ2(dferror) independently of y. This
is for example the case, if a researcher has access to a vector of estimated coefficients, the
estimated covariance matrix and the variance estimate from a normal linear model.

Then, the test statistic (10) for TP3 – with Σ replaced by s2Σ0 – has to be compared to
the (1− α) quantile of a t(dferror) distribution instead of the standard normal quantile, and
p values are again obtained as the maximum p value from m individual t-tests.

The test statistics (8) and (9) for test problems TP1 and TP2 have to be modified as follows:

Tunknown =
TΣ0

TΣ0 + dferrors2
, (11)

where TΣ0 denotes the statistic (8) or (9) based on the known matrix Σ0. Then, Tunknown is
under the least favourable configuration (equality for all restrictions) distributed as a mixture
of Beta distributions with the same mixing weights as in case of known σ2 (these can be
determined without knowledge or estimation of σ2, since constant multipliers do not affect
the probabilities). The first parameter for the Beta distributions is half the degrees of freedom
of the corresponding χ2 distribution for the known-Σ case, the second parameter is dferror/2.
Thus, p values for TP1 and TP2 can again be easily obtained, if mixing weights are available.

4. Estimation in the linear model

In this section, estimation of linear model coefficients in the multivariate normal situation
is discussed. Although normality is assumed throughout, since the estimates are derived as
maximum likelihood estimates, estimation is valid for more general situations. The most
simple form of the linear model is given as

y = Xβ + ε,

with ε assumed to be a vector of uncorrelated errors with homogeneous variances. The
ordinary least squares (OLS) method estimates β by unconstrained minimization of (y −
Xβ)>(y − Xβ), which yields the well-known formula β̂OLS = (X>X)−1X>y, and the fits
ŷ = Xβ̂OLS are the orthogonal projection of y on the space spanned by X. Under the
normality assumption, the linear model can be formulated as

y ∼ N(Xβ, σ2V0),

with X a known n× p matrix, β an unknown p× 1 vector, V0 a known positive definite n×n
matrix, σ2 > 0 either known or unknown. Then, the unconstrained estimate is β̂ = β̂GLS =
(X>V −1

0 X)−1X>V −1
0 y, and the vector of unconstrained fits ŷ is the projection of y along V0

(or, equivalently, σ2V0) onto the space defined by X, i.e., ŷ = Xβ̂ with β̂ the minimizer of
the quadratic form (y − Xβ)>V −1

0 (y − Xβ) w.r.t. β ∈ Rp. Although package ic.infer only
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covers diagonal V0 (i.e., heterogeneity of variances, cf. e.g., the grades example in Section 5.1),
general positive definite V0 are used here.

If linear inequality constraints of the form Rβ ≥ r are introduced into the linear model, where
R is a matrix with linearly independent rows so that the restrictions define a (translated)
cone in the parameter space Rp (cf. 2.1), the thus-constrained fit ŷ∗ = Xβ̂∗ is obtained by
minimizing (y − Xβ)>V −1

0 (y − Xβ) w.r.t. β ∈ CR,r. Its target space is also a (potentially
translated) convex polyhedral cone, and the fit is the projection onto that (translated) cone.
It is easily verified that the minimum of

(y −Xβ)>V −1
0 (y −Xβ)

is the sum
(y −Xβ̂)>V −1

0 (y −Xβ̂) + (β̂ − β̂∗)>X>V −1
0 X(β̂ − β̂∗),

i.e., the minimizing parameter vector can be simply obtained by projecting β̂ onto the (trans-
lated) cone CR,r along the matrix (X>V −1

0 X)−1. Hence, application of the results from

Sections 2 and 3 is straightforward, when replacing y with β̂, and µ, µ̂∗, and µ̂= with β, β̂∗,
and β̂=, respectively.

It is of course possible to obtain an R2 value for the constrained model in much the same way
as for the unconstrained model (if constraints restrict the intercept so that the residuals do
not sum to zero, implausible results can occur). R2 of the constrained model is never larger
than R2 of the unconstrained model, and a small reduction by introduction of constraints is
an informal indication that constraints are compatible with the data.

In unconstrained linear models, decomposition of R2 has been considered as a method for
assessing relative importance of regressors. This aproach has first been proposed by Lindeman,
Merenda, and Gold (1980) and has been suggested in more general contexts by Chevan and
Sutherland (1991). It has been reinvented many times, e.g., by Kruskal (1987) or as “Shapley
value regression”by Lipovetsky and Conklin (2001). It is implemented in R packages hier.part
(Walsh and Mac Nally 2008) and relaimpo (Grömping 2006), where these two packages have
quite different emphasis. The statistical properties of R2 decomposition in unrestricted linear
models have been investigated in Grömping (2007).

R2 decomposition based on the Shapley value can also be applied for constrained regression
models. However, there are two caveats: First, implementation for inequality-constrained
models is more computationally demanding than for the (already often challenging) uncon-
strained case, since individual estimation steps are more demanding (cf. Section 5.7). The
second and more important caveat refers to restrictions: Automatic consideration of sub
models requires automatic omission of columns from the restriction matrix R. Some types
of restrictions, e.g., non-negativity of all parameters, easily translate to sub models. Other
restrictions, however, e.g., the monotonicity restrictions for the parameters of a factor, would
lead to nonsensical results if some of the dummy variables for the factor were omitted for a
sub model. It is good practice to consider all dummy variables for a factor as an unseparable
entity, but there might also be other situations, for which automatic generation of restrictions
for sub models by deletion of columns in R leads to nonsensical results.
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5. Functionality in R package ic.infer

In this section, functionality in R package ic.infer is described. Functions ic.est (Section 5.3)
and orlm (Section 5.6) take care of inequality-constrained estimation of normal means or
linear model coefficients, respectively. Function ic.test (Section 5.4) implements tests of
various test problems (TP1 to TP3 and generalized versions of TP1 and TP2). Supplementary
functions ic.weights, pchibar and pbetabar (Section 5.5) are used within function ic.test

for evaluating the null distributions of test statistics. The summary method for orlm objects
(Section 5.6) uses function ic.test for implementation of overall tests of model parameters
and restrictions. Function or.relimp (Section 5.7) decomposes R2 in the restricted model
into contributions of the various regressors. Bootstrapping is implemented in package ic.infer
through access to package boot (Canty and Ripley 2009) and is explained in Section 4.

Notation for constraints in the package uses ui for the matrix R and ci for the vector r.

5.1. Example data

Two data examples are used in this section. The first example, taken from Table 1.3.1 in
Robertson et al. (1988), concerns first-year grade point averages from 2397 Iowa university
first-years (available as data frame grades in package ic.infer) as a function of two ordinal
variables with 9 categories each, High-School-Ranking percentiles and ACT Classification1.
Suppose that an admission policy is to be developed based on these figures. Of course, in
order to appear just, an admission policy should be monotone in the sense that admission of
a particular person implies that all persons who are better on one criterion and not worse
on the other are also admitted. Thus, the predicted function must be monotone in both
variables. Using this motivation, Robertson et al. (1988) demonstrate isotonic regression on
these data. In this article, a two-way analysis of variance without interaction is fit to the
data. The unrestricted linear model (cf. below) does contain reversals w.r.t. HSR, where
applicants with HSR 41% to 50% would be assessed better than those with HSR 51% to 60%,
and similarly applicants with HSR < 20% better than those with HSR 21% to 40%. Note
that estimates for the categories of HSR for which unrestricted estimates are reversed are
not significantly different from 0. The restricted analyses in Sections 5.3 and 5.6 will restrict
parameters for the factor HSR to be monotone. Note that this is an example of a model with
a known diagonal (but not identity) V0: assuming an unknown positive variance σ2 of the
grade points of each student, the variances of the grade means are proportional to the inverse
number of students in each class. This can be easily accomodated in function lm by using the
number of students n in the weights option (cf. the code below).

R> limo.grades <- lm(meanGPA ~ HSR + ACTC, grades, weights = n)

R> summary(limo.grades)

Call:

lm(formula = meanGPA ~ HSR + ACTC, data = grades, weights = n)

Residuals:

Min 1Q Median 3Q Max

-2.224 -0.494 -0.149 0.433 1.776

1ACT is an organization that offers – among other things – college entrance exams in the US; up to 1996,
ACT stood for “American College Testing”.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5009 0.2367 6.34 6.4e-08 ***

HSR21-30 -0.1251 0.2540 -0.49 0.62456

HSR31-40 -0.0272 0.2279 -0.12 0.90533

HSR41-50 0.1489 0.2131 0.70 0.48796

HSR51-60 0.0947 0.2077 0.46 0.65059

HSR61-70 0.3129 0.2055 1.52 0.13419

HSR71-80 0.4290 0.2044 2.10 0.04092 *

HSR81-90 0.5612 0.2045 2.74 0.00839 **

HSR>=91 0.9703 0.2043 4.75 1.8e-05 ***

ACTC13-15 0.2937 0.1625 1.81 0.07662 .

ACTC16-18 0.4565 0.1455 3.14 0.00286 **

ACTC19-21 0.5332 0.1402 3.80 0.00039 ***

ACTC22-24 0.6193 0.1391 4.45 4.7e-05 ***

ACTC25-27 0.6698 0.1396 4.80 1.5e-05 ***

ACTC28-30 0.8223 0.1454 5.66 7.5e-07 ***

ACTC31-33 0.9214 0.1846 4.99 7.7e-06 ***

ACTC34-36 1.0389 0.4959 2.09 0.04127 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.951 on 50 degrees of freedom

Multiple R-squared: 0.908, Adjusted R-squared: 0.878

F-statistic: 30.7 on 16 and 50 DF, p-value: <2e-16

The second example uses a data set from Kutner et al. (2004) (online also at http://www.

ats.ucla.edu/stat/sas/examples/alsm/alsmsasch7.htm) that contains observations on
20 females with body fat as the target variable and three explanatory variables all of which
can be expected to be associated with an increase in body fat:

� triceps skinfold thickness

� thigh circumference

� mid arm circumference.

These data are analysed as a regression model with all coefficients restricted to be non-
negative. This example is similar in spirit to the customer satisfaction applications that
instigated development of ic.infer, but much smaller, publicly available and included in the
package. It also permits to demonstrate application of the simple R2 decomposition function
that is offered within ic.infer. The unrestricted linear model estimates for two of the three
variables are negative, and in spite of high R2 and rejection of the overall null hypothesis, no
individual coefficient is statistically significant:

R> limo.bodyfat <- lm(BodyFat ~ ., bodyfat)

R> summary(limo.bodyfat)

Call:

lm(formula = BodyFat ~ ., data = bodyfat)

Residuals:

Min 1Q Median 3Q Max

-3.726 -1.611 0.392 1.466 4.128

Coefficients:

http://www.ats.ucla.edu/stat/sas/examples/alsm/alsmsasch7.htm
http://www.ats.ucla.edu/stat/sas/examples/alsm/alsmsasch7.htm
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.08 99.78 1.17 0.26

Triceps 4.33 3.02 1.44 0.17

Thigh -2.86 2.58 -1.11 0.28

Midarm -2.19 1.60 -1.37 0.19

Residual standard error: 2.48 on 16 degrees of freedom

Multiple R-squared: 0.801, Adjusted R-squared: 0.764

F-statistic: 21.5 on 3 and 16 DF, p-value: 7.34e-06

5.2. Utilities for monotonicity situations

One of the most important special cases of inequality-related setups is the investigation of
monotonic behavior of the expectation for a factor with ordered categories. In this subsection,
package ic.infer’s support for this situation is described.

Difference contrasts

The interpretation of coefficients for factors always depends on the factor coding. In R, default
coding for conventional factors (as opposed to ordered factors) is a reference coding with the
first factor level being the base category (called contr.treatment). For factors declared to be
ordered, the default contrasts are polynomial. Alternative contrast codings are, among others,
contr.SAS, contr.helmert and contr.sum. Among these, the polynomial and the Helmert
coding do not allow simple assessment of monotonicity based on the estimated coefficients,
while the others do.

There is one particular factor coding that is not routinely available in R but particularly suit-
able for assessing monotonicity for factors with ordered levels: each coefficient corresponds
to the difference in expectation to the next lower category, implying that monotonicity corre-
sponds to the same sign for all coefficients. The corresponding contrast function contr.diff

has been implemented in package ic.infer.

For illustration, the unconstrained linear model for the grades data is re-calculated with this
coding below. The contrast matrix shows that the expectation for the lowest level does not
contain any of the coefficients, the expectation for the second level contains the first coefficient,
the expectation for the third level the first two coefficients and so forth, until all the eight
coefficients are contained in the expectation model for the highest level. The coefficients thus
measure the average increase from each level to the next higher one.

R> grades.diff <- grades

R> contrasts(grades.diff$HSR) <- "contr.diff"

R> contrasts(grades.diff$ACTC) <- "contr.diff"

R> contrasts(grades.diff$HSR)

21-30-<=20 31-40-21-30 41-50-31-40 51-60-41-50 61-70-51-60 71-80-61-70

<=20 0 0 0 0 0 0

21-30 1 0 0 0 0 0

31-40 1 1 0 0 0 0

41-50 1 1 1 0 0 0

51-60 1 1 1 1 0 0

61-70 1 1 1 1 1 0

71-80 1 1 1 1 1 1

81-90 1 1 1 1 1 1
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>=91 1 1 1 1 1 1

81-90-71-80 >=91-81-90

<=20 0 0

21-30 0 0

31-40 0 0

41-50 0 0

51-60 0 0

61-70 0 0

71-80 0 0

81-90 1 0

>=91 1 1

R> limo.grades.diff <- lm(meanGPA ~ HSR + ACTC, grades.diff, weights = n)

R> summary(limo.grades.diff)

Call:

lm(formula = meanGPA ~ HSR + ACTC, data = grades.diff, weights = n)

Residuals:

Min 1Q Median 3Q Max

-2.224 -0.494 -0.149 0.433 1.776

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5009 0.2367 6.34 6.4e-08 ***

HSR21-30-<=20 -0.1251 0.2540 -0.49 0.6246

HSR31-40-21-30 0.0978 0.1942 0.50 0.6165

HSR41-50-31-40 0.1761 0.1363 1.29 0.2021

HSR51-60-41-50 -0.0542 0.0990 -0.55 0.5860

HSR61-70-51-60 0.2182 0.0814 2.68 0.0099 **

HSR71-80-61-70 0.1161 0.0719 1.62 0.1123

HSR81-90-71-80 0.1322 0.0655 2.02 0.0489 *

HSR>=91-81-90 0.4091 0.0593 6.90 8.5e-09 ***

ACTC13-15-1-12 0.2937 0.1625 1.81 0.0766 .

ACTC16-18-13-15 0.1628 0.1114 1.46 0.1503

ACTC19-21-16-18 0.0767 0.0759 1.01 0.3168

ACTC22-24-19-21 0.0861 0.0622 1.38 0.1727

ACTC25-27-22-24 0.0505 0.0570 0.89 0.3801

ACTC28-30-25-27 0.1524 0.0653 2.34 0.0236 *

ACTC31-33-28-30 0.0991 0.1329 0.75 0.4591

ACTC34-36-31-33 0.1174 0.4913 0.24 0.8121

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.951 on 50 degrees of freedom

Multiple R-squared: 0.908, Adjusted R-squared: 0.878

F-statistic: 30.7 on 16 and 50 DF, p-value: <2e-16

Utility function for creating a monotonicity restriction matrix

Generally, the restriction matrix ui has to be tailored to the situation at hand. Depending
on the coding of a factor, it can be quite tedious to define the appropriate ui for hypotheses
related to the relation of expectations between factor levels.

For the frequent situation, where monotonicity of factors with several ordered levels is of
interest, package ic.infer provides the convenience function make.mon.ui for creating the
appropriate restriction matrix ui. The function can be used whenever the current coding
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permits assessment of monotonicity in a simple way, i.e., for contrasts contr.treatment

(currently with first category as baseline only), contr.SAS, contr.diff and contr.sum).
The output below shows the matrix ui for two different factor codings: The matrix ui for
the treatment contrasts calculates the first coefficient (=difference of second category to the
first (=reference) category) and all differences between coefficients for next higher to next
lower level. The matrix ui for the difference contrasts simply calculates each coefficient. For
both codings, monotonicity constraints are of the form uiβ ≥ 0 (or −uiβ ≥ 0 for monotone
decrease).

R> ui.treat <- make.mon.ui(grades$HSR)

R> ui.treat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 0 0 0 0

[2,] -1 1 0 0 0 0 0 0

[3,] 0 -1 1 0 0 0 0 0

[4,] 0 0 -1 1 0 0 0 0

[5,] 0 0 0 -1 1 0 0 0

[6,] 0 0 0 0 -1 1 0 0

[7,] 0 0 0 0 0 -1 1 0

[8,] 0 0 0 0 0 0 -1 1

R> ui.diff <- make.mon.ui(grades.diff$HSR)

R> ui.diff

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0 0

[3,] 0 0 1 0 0 0 0 0

[4,] 0 0 0 1 0 0 0 0

[5,] 0 0 0 0 1 0 0 0

[6,] 0 0 0 0 0 1 0 0

[7,] 0 0 0 0 0 0 1 0

[8,] 0 0 0 0 0 0 0 1

Function make.mon.ui can also be used for creating the matrix ui for investigating the mono-
tonicity of a multivariate normal mean without using a linear model based on a factor. In
this case, the first argument to make.mon.ui is the dimension of the multivariate normal
distribution, and type = "mean" must be specified. The resulting matrix ui then calculates
differences of neighbouring means:

R> make.mon.ui(5, type = "mean")

[,1] [,2] [,3] [,4] [,5]

[1,] -1 1 0 0 0

[2,] 0 -1 1 0 0

[3,] 0 0 -1 1 0

[4,] 0 0 0 -1 1

5.3. Estimation

Function ic.est for inequality-constrained estimation of normal means uses the routine
solve.QP from R-package quadprog to determine the constrained estimate. It is possible
to declare the first few rows of the restrictions uiµ ≥ ci to be equality restrictions (via the



Ulrike Grömping 17

parameter meq). It has been pointed out above that estimation of β in the restricted lin-
ear model is equivalent to estimation of β based on the multivariate normal distribution of
the unrestricted estimate β̂. Thus, we can illustrate function ic.est using the estimates
from one of the linear models above. For example, one can estimate the coefficients of the
factor HSR with treatment contrasts under the restriction of non-decreasing behavior, i.e.,
β1 ≥ 0, β2 − β1 ≥ 0, . . . , β9 − β8 ≥ 0 (contrast matrix ui.treat defined in 5.2.2):

R> HSRmon <- ic.est(coef(limo.grades)[2:9], ui = ui.treat, Sigma = vcov(limo.grades)[2:9,

+ 2:9])

R> HSRmon

Constrained estimate:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.0000 0.0492 0.1918 0.1918 0.3892 0.5055 0.6377 1.0469

It is also possible to indicate that the first few restrictions (number given by option meq) are
equality restrictions. For example, the code below declares that the first three restrictions are
equality instead of inequality restrictions:

R> HSReq <- ic.est(coef(limo.grades)[2:9], ui = ui.treat, Sigma = vcov(limo.grades)[2:9,

+ 2:9], meq = 3)

R> HSReq

Constrained estimate:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

A summary-function on objects of class orest – as generated by function ic.est – gives
more detailed information, showing also the restrictions, which of them are active, and indi-
cating which estimates are subject to a restriction (regardless whether active or not). For the
monotonicity-restricted estimate, we get

R> summary(HSRmon)

Order-restricted estimated mean with restrictions of coefficients of

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

Inequality restrictions:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

1: A 1 0 0 0 0 0 0 0 %*%colnames >= 0

2: -1 1 0 0 0 0 0 0 %*%colnames >= 0

3: 0 -1 1 0 0 0 0 0 %*%colnames >= 0

4: A 0 0 -1 1 0 0 0 0 %*%colnames >= 0

5: 0 0 0 -1 1 0 0 0 %*%colnames >= 0

6: 0 0 0 0 -1 1 0 0 %*%colnames >= 0

7: 0 0 0 0 0 -1 1 0 %*%colnames >= 0

8: 0 0 0 0 0 0 -1 1 %*%colnames >= 0

Note: Restrictions marked with A are active.

Restricted estimate:

R HSR21-30 R HSR31-40 R HSR41-50 R HSR51-60 R HSR61-70 R HSR71-80 R HSR81-90 R HSR>=91

0.00000 0.04917 0.19181 0.19181 0.38920 0.50551 0.63772 1.04688

Note: Estimates marked with R are involved in restrictions.
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While it would be possible to determine the estimate even for linearly dependent rows of
the constraint matrix R, this is not permitted in package ic.infer – if the package encounters
linearly dependent rows in ui (the package notation for R), it aborts with an error message
that suggests a subset of independent rows of ui.

5.4. Hypothesis testing

Package ic.infer implements the likelihood ratio tests for test problems TP1, TP2, and TP3
in function ic.test. The principal argument to function ic.test is an object of class orest
as output by function ic.est; an object of class orlm output by function orlm can also be
processed, since it inherits from class orest. Among other things, the input object contains
information on the restrictions that were used for estimation. The type of test problem is
indicated to function ic.test via option TP. TP = 1, TP = 2, and TP = 3 refer to the test
problems introduced in Section 3.1. Three extensions of these problems are additionally
implemented:

� For TP = 1 and TP = 2, the first few restrictions can be declared equality instead of
inequality restrictions – this is implemented in function ic.test through access to the
meq-element of the input object. This modification requires different calculation of the
weights for the null distributions of the test statistics: these weights depend on the
conditional covariance matrix given the equality constraints are true, cf. Shapiro (1988,
formula (5.9)) and Section 5.5. The test statistics continue to be given by (8), (9) or
their modification for unkown σ2 (11), but with µ̂∗ observing equality- and inequality
restrictions.

� Additional equality restrictions can be included in the null hypothesis of TP1. For
these, the alternative hypothesis is not directional. This test problem is implemented in
the package as TP = 11, and the additional restrictions are handed to function ic.test

through arguments ui0.11 and ci0.11. TP = 11 is, for example, used in the summary
function for class orlm, when testing the null hypothesis that all coefficients except the
intercept are 0 in the presence of constraints Rβ ≥ 0 that do not affect all elements of β.
Again, the test statistic for this test problem is already given as (8) or its modification
(11) above by making µ̂= observe the additional equality restrictions as well. Here, the
weights are the same as without equality restrictions, but the degrees of freedom of the
distributions in the mixture need to be adjusted.

� Some equality restrictions can be maintained in the alternative hypothesis of TP2.
This is implemented as TP = 21 using option meq.alt, which indicates the number
of the first few equality-restrictions that are to be maintained under the alternative
hypothesis. meq.alt must not be larger than the meq-element of the input object of
function ic.test. Here, the test statistic (9) (or (11)) has to use the restricted estimated
under the maintained equality restrictions µ̂=,alt instead of y.

A few examples are shown below. First, the equality- and inequality-restricted estimate
HSReq of the HSR coefficients is subjected to a test of type TP1. We see that equality of all
restrictions is clearly rejected; note that option brief=FALSE requests detailed information
on constraints that is not shown per default.

R> summary(ic.test(HSReq), brief = FALSE)
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Order-related hypothesis test:

Type 1 Test:

H0: all restrictions active(=)

vs.

H1: at least one restriction strictly true (>)

Test statistic p-value

215 <0.0001

Restrictions on HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

1: A 1 0 0 0 0 0 0 0 %*%colnames == 0

2: A -1 1 0 0 0 0 0 0 %*%colnames == 0

3: A 0 -1 1 0 0 0 0 0 %*%colnames == 0

4: 0 0 -1 1 0 0 0 0 %*%colnames >= 0

5: 0 0 0 -1 1 0 0 0 %*%colnames >= 0

6: 0 0 0 0 -1 1 0 0 %*%colnames >= 0

7: 0 0 0 0 0 -1 1 0 %*%colnames >= 0

8: 0 0 0 0 0 0 -1 1 %*%colnames >= 0

Restricted estimate under H0:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0 0 0 0 0 0 0 0

Restricted estimate under union of H0 and H1 :

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

Now we test the null hypothesis that restrictions hold vs. the alternative that they are violated.
We see that this null hypothesis is not rejected, i.e., the data do not provide proof that these
restrictions are not all true.

R> summary(ic.test(HSReq, TP = 2))

Order-related hypothesis test:

Type 2 Test:

H0: all restrictions true(>=)

vs.

H1: at least one restriction violated (<)

Test statistic p-value

3.36 0.7948

Restricted estimate under H0:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

Unrestricted estimate:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

-0.1251 -0.0272 0.1489 0.0947 0.3129 0.4290 0.5612 0.9703

The next test operates on all coefficients of the analysis of variance model from Section 5.1.
This TP = 11-type test tests the null hypothesis that all coefficients except for the intercept
are zero vs. the alternative that the HSR coefficients follow the restriction outlined above,
i.e., coefficients in positions 2 to 9 of the coefficient vector (index = 2:9) follow the indicated
restrictions, while all other coefficients are free. Here, the null hypothesis is again clearly
rejected.



20 Inequality-Constrained Inference in R

R> HSReq.large <- ic.est(coef(limo.grades), ui = ui.treat, Sigma = vcov(limo.grades),

+ index = 2:9, meq = 3)

R> summary(ic.test(HSReq.large, TP = 11, ui0.11 = cbind(rep(0, 16), diag(1, 16))))

Order-related hypothesis test:

Type 11 Test:

H0: all original restrictions active plus additional equality restrictions

vs.

H1: original restrictions hold

Test statistic p-value

488 <0.0001

Restricted estimate under union of H0 and H1 :

(Intercept) HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80

1.552 0.000 0.000 0.000 0.038 0.256 0.372

HSR81-90 HSR>=91 ACTC13-15 ACTC16-18 ACTC19-21 ACTC22-24 ACTC25-27

0.505 0.914 0.300 0.467 0.535 0.624 0.676

ACTC28-30 ACTC31-33 ACTC34-36

0.827 0.927 1.044

Restricted estimate under H0:

(Intercept) HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80

2.63 0.00 0.00 0.00 0.00 0.00 0.00

HSR81-90 HSR>=91 ACTC13-15 ACTC16-18 ACTC19-21 ACTC22-24 ACTC25-27

0.00 0.00 0.00 0.00 0.00 0.00 0.00

ACTC28-30 ACTC31-33 ACTC34-36

0.00 0.00 0.00

The last example demonstrates TP = 21: the null hypothesis has three equality restrictions
(estimate object HSReq), and the first two of these are maintained for the alternative hypothe-
sis (meq.alt=2). Note that – as the alternative is unrestricted apart from the first two equality
restrictions – a reversal occurs in the estimate under the alternative hypothesis. Nevertheless,
like for TP = 2, the validity of the restrictions is not rejected.

R> summary(ic.test(HSReq, TP = 21, meq.alt = 2))

Order-related hypothesis test:

Type 21 Test:

H0: all restrictions true(>= or =)

vs.

H1: at least one restriction violated (<), some =-restrictions maintained

Test statistic p-value

3.03 0.6134

Restricted estimate under H0:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

Restricted estimate under H1:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.198 0.144 0.362 0.478 0.610 1.020
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5.5. Calculation of weights and p values for the test problems

Function ic.weights calculates the mixing weights for a given covariance matrix, using the
probabilities for certain faces of the cone as derived in Section 2.4. Since it is known that
even and odd weights sum to 0.5 each (cf. e.g., Silvapulle and Sen 2004, Proposition 3.6.1,
Number 3), the two most demanding weights (in terms of most summands in (7)) can always
be inferred as the difference of 0.5 to the sum of the other even or odd weights. Even ex-
ploiting this possibility, calculation of weights remains computer-intensive for large covariance
matrices; for example, it takes about 9 seconds CPU time for a matrix with dimension 10,
and already 1265 seconds (about 21 minutes) for a matrix with dimension 15.

Orthant probabilities that are needed for the weights according to (7), are calculated using
package mvtnorm by Monte-Carlo methods, i.e., the weights are subject to slight variation.
Because of numerical inaccuracies, it is even possible that calculated p values become slightly
negative. Printing and summary functions of package ic.infer report all p values below 0.0001
as “<0.0001”, since more accuracy should normally not be needed.

For the test problems implemented in function ic.test, choice of the covariance matrices
for obtaining the weights follows the formulae by Shapiro (1988), based on the meq-, the
ui-, and the Sigma-element of the input object: Whenever meq=0, the covariance matrix to
use is ui%*%Sigma%*%t(ui) (assuming that ui has p columns if the data are p-dimensional,
otherwise think of ui as suitably enlarged by zero columns (uiw in package code)). If meq>0,
the conditional covariance of the last m−meq rows given the first meq rows of ui%*%y must
be used instead for calculation of mixing weights (formula (5.9) in Shapiro 1988).

Degrees of freedom corresponding to the weights depend on the test problem at hand and
are determined in function ic.test, if not provided by the user. Functions pchibar and
pbetabar calculate p values from given vectors of weights and degrees of freedom. Function
pchibar has been taken from package ibdreg by Sinnwell and Schaid (2007), and function
pbetabar has been analogously defined.

5.6. Estimation in the linear model

Function orlm uses the other functions in package ic.infer for providing a convenient overall
analysis of order-restricted linear models. Starting from an unconstrained linear model object
(class lm) or a covariance matrix of response (first position) and all regressors, the function
determines the constrained estimate, R2 for the constrained model and – if requested – boot-
straps the estimates of coefficients (the latter is valid only in the implemented case of un-
correlated errors and of course only possible if the input is a linear model with embedded
data).

Postprocessing the output object

The output object of class orlm can be processed with several S3 methods provided in package
ic.infer: A plot method provides a residual plot, a print method gives a brief printout, and a
summary method gives a more extensive overview on the object, involving bootstrap confidence
intervals and overall model and restriction tests, if not suppressed; tests can be suppressed
because their calculation may take up substantial time in case of many restrictions because of
calculation of weights, cf. also the previous subsection. Furthermore, a coef method extracts
the coefficients from the object. In addition to these specially-defined methods, some general
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methods for model objects do also work: functions fitted and residuals provide fitted
values and residuals. Other methods for class lm (predict, effects, vcov) do not work
on orlm objects. Note that model diagnostics cannot be simply transferred to restricted
models, as the restricted estimation modifies the distributional properties of the residuals in
not easily foreseeable ways. The plot method only provides a simple plot of raw residuals vs.
fitted values, as it is not even possible to standardize the residuals. Further research might
improve the availability of diagnostics on the restricted model. As long as this has not been
conducted, model diagnostics, e.g., for normality, can be done on the unrestricted model,
which is of course still valid even though it does not exploit the prior knowledge about a
restriction.

Linear model analysis for the two example data sets

For the grades data, with two ordinal factors, restricting only HSR (because ACTC is auto-
matically in the correct order; indicated by index=2:9 for the position of HSR-coefficients
in the overall coefficient vector) function orlm works as follows (contrast matrix ui.treat
defined in 5.2.2):

R> orlimo.grades <- orlm(limo.grades, ui = ui.treat, index = 2:9)

R> summary(orlimo.grades, brief = TRUE)

Order-restricted linear model with restrictions of coefficients of

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

Coefficients from order-restricted model:

(Intercept) R HSR21-30 R HSR31-40 R HSR41-50 R HSR51-60 R HSR61-70 R HSR71-80

1.42444 0.00000 0.04917 0.19181 0.19181 0.38920 0.50551

R HSR81-90 R HSR>=91 ACTC13-15 ACTC16-18 ACTC19-21 ACTC22-24 ACTC25-27

0.63772 1.04688 0.29496 0.45714 0.53311 0.61918 0.66945

ACTC28-30 ACTC31-33 ACTC34-36

0.82222 0.92091 1.03868

Note: Coefficients marked with R are involved in restrictions.

Hypothesis tests ( 50 error degrees of freedom ):

Overall model test under the order restrictions:

Test statistic: 0.9075, p-value: <0.0001

Type 1 test: H0: all restrictions active(=)

vs. H1: at least one restriction strictly true (>)

Test statistic: 0.8132, p-value: <0.0001

Type 2 test: H0: all restrictions true

vs. H1: at least one restriction false

Test statistic: 0.01074, p-value: 0.9887

Type 3 test: H0: at least one restriction false or active (=)

vs. H1: all restrictions strictly true (>)

Test statistic: -0.5481, p-value: 0.7070

Type 3 test based on t-distribution (one-sided),

all other tests based on mixture of beta distributions

Option brief suppresses information on restrictions (that has been shown in Section 5.3).
For this example, R2 is only slightly reduced by introducing the restriction, and the estimates
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(not surprisingly) coincide with those from Section 5.3. The overall model test and the test
of TP1 clearly reject their respective null hypothesis, while the data are compatible with
validity of the restriction according to the test for TP2 but do not prove strict validity of the
inequality restriction (TP3).

The grades example has been about analysis of variance and has worked with aggregated
data, which makes bootstrapping useless. The rest of this section uses the body fat data
for illustrating functionality for order-restricted regression, including bootstrap confidence
intervals:

R> orlimo.bodyfat <- orlm(limo.bodyfat, ui = diag(1, 3), boot = TRUE)

R> summary(orlimo.bodyfat)

Order-restricted linear model with restrictions of coefficients of

Triceps Thigh Midarm

Inequality restrictions:

Triceps Thigh Midarm

1: 1 0 0 %*%colnames >= 0

2: 0 1 0 %*%colnames >= 0

3: A 0 0 1 %*%colnames >= 0

Note: Restrictions marked with A are active.

Restricted model: R2 reduced from 0.8014 to 0.778

Coefficients from order-restricted model

with 95 pct bootstrap confidence intervals( perc ):

Coeff. Lower Upper

(Intercept) -19.1742 -32.7604 -3.2911

R Triceps 0.2224 0.0000 0.9749

R Thigh 0.6594 0.0000 0.9479

R Midarm 0.0000 0.0000 0.3024

Note: Coefficients marked with R are involved in restrictions.

Hypothesis tests ( 16 error degrees of freedom ):

Overall model test under the order restrictions:

Test statistic: 0.7966, p-value: <0.0001

Type 1 test: H0: all restrictions active(=)

vs. H1: at least one restriction strictly true (>)

Test statistic: 0.7966, p-value: <0.0001

Type 2 test: H0: all restrictions true

vs. H1: at least one restriction false

Test statistic: 0.105, p-value: 0.4100

Type 3 test: H0: at least one restriction false or active (=)

vs. H1: all restrictions strictly true (>)

Test statistic: -1.370, p-value: 0.9052

Type 3 test based on t-distribution (one-sided),

all other tests based on mixture of beta distributions

Again, R2 is not dramatically reduced, the overall test – in this case identical to the test
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for TP1 – is clearly significant, while the other two tests do not reject their null hypothesis.
While the unrestricted model had two negative estimated coefficients, the restricted model
has one active restriction. The other previously negative coefficient has now been estimated
to be positive. Note that still none of the individual coefficients is significantly different from
0, since all bootstrap confidence intervals include this boundary value.

Bootstrapping regression models

Confidence intervals in ic.infer are obtained via the bootstrap. The implemented bootstrap is
valid for uncorrelated observations only, since observations are independently sampled. When
bootstrapping regression models, there are two principally different reasonable approaches (cf.
e.g. Davison and Hinkley 1997; Fox 2002): The regressors can be considered fixed in some
situations, e.g., for experimental data. In this case, only the error terms are random. Contrary,
in observational studies, like e.g., customer satisfaction surveys, it makes far more sense to
consider also the regressors as random, since the observations are a random sample from a
larger population. These two scenarii prompt two different approaches for bootstrapping:
For fixed regressors, bootstrapping is based on repeated sampling from the residuals of the
regression model, while for random regressors, the complete observation rows – consisting
of regressors and response – are resampled. ic.infer offers both possibilities, defaulting to
random regressors (fixed = FALSE). Bootstrapping in ic.infer is implemented in function
orlm based on the function boot from R package boot. Bootstrap confidence intervals are
then calculated by the summary method for the output object from function orlm, relying
on function boot.ci of package boot. Percentile intervals, BCa intervals, normal intervals
and basic intervals are supported (default: percentile intervals). For further information on
bootstrapping in general, cf. e.g., Davison and Hinkley (1997).

Overall tests

As mentioned above and shown in the example output, the summary method for objects of
class orlm calculates an overall model test, similar to the overall F test in the unconstrained
linear model, and several tests for or against the restrictions. These can be suppressed,
because their calculation can be very time-consuming in case of large sets of restrictions.

If they are not suppressed, function summary.orlm calculates an overall test that all param-
eters except the intercept are 0 (H0) vs. the restriction set (this is a test of type TP = 11 or
TP = 1, depending on whether or not the original restrictions refer to all parameters in the
model). In addition, all tests for the three test problems TP1 to TP3 are calculated. (Test
problem TP3 is only applicable if there are no equality restrictions (i.e., meq=0).) Note that
the time-consuming aspect is calculation of weights for the null distributions of test statistics.
These are calculated only once and are then handed to function ic.test for the further tests.
Nevertheless, calculation of weights for large problems takes a long time or is even impossible
because of storage space restrictions.

It would be desirable to have a function for sequential testing of sources, analogous to anova,
for order-restricted linear models. However, this would require the possibility to test a cone-
shaped null hypothesis vs. a larger cone-shaped alternative hypothesis, which is far from
trivial. So far, it has not been figured out how to implement such a test.
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5.7. R2 decomposition

It has been mentioned earlier that function or.relimp decomposes R2 into contributions of
individual regressors. The method is implemented by handing the 2p-vector of R2 values for
all sub-models to function Shapley.value from R package kappalab (Grabisch, Kojadinovic,
and Meyer 2009). The result is illustrated for the body fat example:

R> or.relimp(limo.bodyfat, ui = diag(1, 3))

Triceps Thigh Midarm

0.354115 0.416395 0.007542

Note that – in this example – although the coefficients are quite different from those of the
unrestricted model, the R2 decomposition is very similar (relaimpo must be loaded for the
following calculation):

R> calc.relimp(limo.bodyfat)$lmg

Triceps Thigh Midarm

0.37439 0.39914 0.02782

So far, such similarity has been observed for all examples for which the restrictions employed
were plausible and adequate.

It has been mentioned in Section 5.3 that automatic generation of restrictions for sub models
is naturally done by deleting the respective columns from the restriction matrix (R or ui,
respectively). It is emphasized here once more that this is not adequate for all conceivable
situations. It is in the responsibility of the user to ensure that restrictions for sub models are
sensible and meaningful.

Decomposition of R2 requires calculation of 2p constrained estimates. This involves signif-
icantly higher computational burden than for the unconstrained case: For example, calcu-
lations on a 2.4GHz Dual Core Windows XP machine in calc.relimp took 0.5 seconds for
10 regressors, about 17 seconds for 15 regressors and about 580 seconds for 20 regressors. For
the same scenarios, calculations in or.relimp with all non-intercept coefficients restricted to
be non-negative took 2.5 seconds for 10 regressors, about 109 seconds for 15 regressors, and
about 14800 seconds for 20 regressors. In case of fewer restrictions than regressors, comput-
ing time is somewhat reduced; for example, when restricting only 10 of the 15 coefficients
in the 15 regressor situation, or.relimp computing time was about 90 seconds. Given that
unconstrained models gave very similar R2 decompositions in all reasonable applications that
have so far been examined, decompositions from unconstrained models may very well be used
at least as first checks.

6. Final remarks

Inequality-constrained inference and its implementation in R package ic.infer have been ex-
plained and illustrated in this article. While ic.infer offers the most important possibilities for
normal means and linear models, some wishes remain to be fulfilled with future developments.
These will be discussed below.

Within the linear model context, it would be desirable to implement some factor-related
functionality for function orlm, supporting e.g., an overall test of significance for a factor as
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a whole or hypothesis tests corresponding to sequential analysis of variance (analogously to
function anova). It has been mentioned before that these topics may prove difficult because
they will often require testing a cone-shaped null hypothesis within a larger cone-shaped
alternative. Their feasibility will be investigated, and even if not all situations can be covered,
some may prove feasible (e.g., no restrictions on the factor, inequality restrictions on the factor
but on nothing else, ...).

For non-linear models with asymptotically normal parameter estimates, users can apply
inequality-restricted inference on the coefficients through functions ic.est or ic.test. A
more direct approach would be desirable. It is intended to extend coverage of the package to
(selected) non-normal situations with linear equality and inequality restrictions, for which it
is known that the asymptotic distribution of the likelihood ratio test statistic is also a mixture
of χ2 distributions (cf. section 4 of Silvapulle and Sen 2004). Of course, inference is local and
less robust, if we leave the linear model.

Calculation of weights is a computational road block in case of many restrictions. It will be
explored if direct calculation of weights using Monte-Carlo methods is more efficient than
using Equation (7) together with package mvtnorm.

Function or.relimp is currently restricted to linear models without factors. It would be pos-
sible to include factors by grouping their dummies, like in relaimpo. Also, it might be possible
to enable usage of or.relimp for larger problems than currently possible by a different pro-
gramming approach – however, as long as no reasonable examples have been encountered
for which constrained and unconstrained decompositions make a relevant difference, improve-
ments on or.relimp have low priority.
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