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1 Introduction

We will discuss power and sample size estimation for randomized placebo controlled
studies in which the primary inference is based on the interaction of treatment and
time in a linear mixed effects model (Laird and Ware 1982). We will demonstrate
how the sample size formulas of Liu and Liang (1997) for marginal or generalized
estimating equation (GEE) models (Zeger and Liang 1986) can be adapted for
mixed effects models. Finally, using mixed effects model estimates based on data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we will give exam-
ples of sample size calculations for models with and without baseline covariates
which may help explain heterogeneity in cognitive decline and improve power.

2 Power calculations

2.1 Exchangeable correlation and random intercept mod-
els

Suppose we wish to estimate the required sample size for inference regarding the
interaction of treatment and time in a longitudinal, placebo controlled study. Such
calculations are relatively straightforward when the inference is based on a GEE
model in which the correlation structure is assumed to be “exchangeable.” An
exchangeable correlation structure specifies that all observations from within the
same cluster, or repeated measures on the same subject, are equally correlated.
This is exactly equivalent to a random effects model which includes a random
intercept for each cluster of correlated observations. Sample sizes for study designs
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using these models can be calculated using a simple formula such as that in Diggle
et al. 2002, page 29. The formula requires the number visits, the interval between
visits, the estimated model variance (σ2), the within subject correlation (ρ), and
of course the usual sample size calculation inputs (power, significance level, and
effect size).

To translate the formula of Diggle et al. 2002 to the random effects setting, let
us first consider the details of the assumed error structure of the GEE framework.
The GEE model assumes that the response for subject i at time tij, denoted Yij,
is the group mean, dependent on time and treatment, plus an error term εij. Or,
borrowing notation from Diggle et al. 2002, for group A:

Yij = β0A + β1Atij + εij, i = 1, . . . ,m; j = 1, . . . , n.

and similarly for Group B. The null hypothesis is H0 : d = β1A − β1B = 0. Under
an exchangeable correlation structure var(Yij) = var(εij) = σ2 and corr(Yij, Yik) =
corr(εij, εik) = ρ, for all subjects, i, and time points j, k.

In the mixed effects framework we can assume a random intercept model which
is equivalent to the GEE model with exchangeable correlation structure. In this
case we believe εij = αi + ε∗ij, where αi is the random intercept term shared
by all observations and ε∗ij are independent and identically distributed (iid) error
terms. We see that var(Yij) = var(εij) = var(αi) + var(ε∗ij) and corr(Yij, Yik) =
E[(αi + ε∗ij)(αi + ε∗ik)]/σ

2 = var(αi)/σ
2. The variance of the random intercept,

var(αi), and the residual variance, var(εij), are easily obtainable from the output
of mixed effects fitting software so that one might fit a random effects model to
pilot data to educate a power calculation using the GEE formula of Diggle et al.
2002. Assuming equal numbers in the placebo and active groups, a common visit
schedule for all subjects (tij = tkj for all i, j, k), and a random intercept model;
the number of subjects per group is:

m =
2(zα + zQ)2(var(αi) + var(ε∗ij))

2(1− var(αi)/σ
2)

ns2xd
2

where zp is the pth standard normal quantile, Q is 1−P , P is the specified power,
and s2x = n−1

∑
j(tj − x̄)2.

2.2 General correlation and random slope models

The random intercept model is not equipped to handle variations in the rate of
change from subject to subject. In many diseases, such as Alzheimer’s disease,
the rate of improvement or decline will vary greatly within the treatment group,
regardless of treatment. This variation can be modeled with a random slope term.
That is, we assume:

Yij = β0A + β1Atij + α0i + α1itij + ε∗ij,
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where we use ε∗ij again to denote iid error and reserve εij for possibly correlated
error. If we derive the correlation structure of εij = α0i + α1itij + ε∗ij, which is
necessary in order to use GEE-based sample size formulas, we find that we no
longer have an exchangeable correlation structure. In fact var(Yij) = var(εij) =
var(α0i)+ t2ijvar(α1i)+2tijcov(α0i, α1i)+var(ε∗ij) and cov(Yij, Yik) = cov(εij, εik) =
var(α0i) + tijtikvar(α1i) + (tij + tik)cov(α0i, α1i). For the common visit schedule
case, the covariance matrix for the vector of correlated errors, εi = (εi1, . . . , εin)′,
is of the form:

Σ = [(var(α0) + tjtkvar(α1) + (tj + tk)cov(α0, α1))]jk + diag(var(ε∗j))

Armed with this specification of the covariance matrix one can use the sample size
formula of Liu and Liang (1997) for linear GEE models (page 941). (Warning: The
formula given on the bottom page 29 of Diggle et al. 2002 for general correlation
matrices, R, is wrong).

The formula for linear models provided by Liu and Liang (1997) is useful for
testing H0 : ψ = 0 for any linear model of the form:

Yij = x′ijψ + z′ijλ+ εij

where εi ∼ N(0, σ2R) and the covariates for individual i, xi = (x′i1, . . . ,x
′
i1)
′
n×p

and zi = (z′i1, . . . , z
′
i1)
′
n×q, arise from a known discrete distribution. For our placebo

controlled longitudinal study, the fully specified model is of the form:

Yij = β0 + β1{Groupi = A}+ β2tij + β3tij{Groupi = A}.

That is, the parameter of interest for the interaction of treatment and time is
ψ = β3 and nuisance parameter is λ = (β0, β1, β2)

′. The covariates are distributed
as xi = (t1, . . . , tn)′ and zj = [10xi]n×3 with probability 1/2 (active group); and
xi = 0 and zj = [10xi]n×3 with probability 1/2 (placebo group).

The Liu and Liang’s formula for linear models can be coded In R as:

library(longpower)

liu.liang.linear.power

function (d, u, v, sigma2 = 1, R, alpha = 0.05, power = 0.8,

Pi = rep(1/length(u), length(u)), alternative = c("two.sided",

"one.sided"))

{

alternative = match.arg(alternative)

alpha = ifelse(alternative == "two.sided", alpha/2, alpha)

Ipl = 0
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for (i in 1:length(u)) Ipl = Ipl + Pi[i] * t(u[[i]]) %*%

solve(R) %*% v[[i]]

Ipl = Ipl/sigma2

Ill = 0

for (i in 1:length(u)) Ill = Ill + Pi[i] * t(v[[i]]) %*%

solve(R) %*% v[[i]]

Ill = Ill/sigma2

Sigma1 = 0

for (i in 1:length(u)) Sigma1 = Sigma1 + Pi[i] * (t(u[[i]]) -

Ipl %*% solve(Ill) %*% t(v[[i]])) %*% solve(R) %*% (u[[i]] -

v[[i]] %*% solve(Ill) %*% t(Ipl))

Sigma1 = Sigma1/sigma2

ceiling((qnorm(1 - alpha) + qnorm(power))^2/(d %*% Sigma1 %*%

d)[1, 1])

}

<environment: namespace:longpower>

The parameters include d, the effect size (possibly vector); u, the list of covari-
ate vectors or matrices associated with the parameter of interest; v, the respec-
tive list of covariate vectors or matrices associated with the nuisance parameter;
sigma2, the error variance; R, the correlation structure; and Pi the proportion of
covariates of each type (u, v, and Pi are expected to be the same length and sorted
with respect to each other).

For example, we can reproduce the table exchangeable correlations on page 29
of Diggle et al for the case of t = (0, 2, 5)′, α = 0.05, power=0.80, and d = 0.5 as
follows:

sigma2 = 100 sigma2 = 200 sigma2 = 300

rho = 0.2 312 625 937

rho = 0.5 195 390 586

rho = 0.8 78 156 234

As a second example, consider an Alzheimer’s disease trial in which assessments
are taken every three months for 18 months (7 visits). We assume an smallest
detectable effect size of 1.5 points on the cognitive portion of the Alzheimer’s Dis-
ease Assessment Scale (ADAS-Cog). This is a 70 point scale with great variability
among sick individuals. We assume the random intercept to have a variance of
55, the random slope to have a variance of 24, and a residual variance of 10. The
correlation between random slope term and random intercept term is 0.8. We can
estimate the necessary sample size by first generating the correlation structure.
Since ε = var(Yij) is not constant over time in this model, we fix sigma2=1 and
set R equal to the covariance matrix for εi:
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[1] 252

So the study would require about 208 subjects per arm to achieve 80% power, with
a two-tailed α = 0.05.

The simple formula provided in Diggel et al. 2002 suggests the required number
of subjects can be found by 2(zα + 2Q)ξ/d2, where

ξWRONG =
(

0 1
)( 1 . . . 1

t1 . . . tn

)
R−1

 1 t1
...

...
1 tn

( 0
1

)
.

Executing this for our Alzheimer’s example, we get:

[1] 0.359

which is clearly wrong. In fact, there is a typo in Diggle, et al (2002). The correct
formula for ξ is:

ξ =
(

0 1
)( 1 · · · 1

t1 · · · t2

)
(σ2R)−1

 1 t1
...

...
1 tm



−1(

0
1

)
. (1)

Applying the correct formula, we get
Similary, using Liu and Liang 1997, we attempt to derive the correct closed

form formula for this specific linear model. The required sample size per group is
given as

m = ν/(ψ′1Σ̃1ψ1)

where

Σ̃1 = σ−2
m∑
l=1

πl(u
′
l − IψλI−λλ1v

′
l)R
−1(u′l − vlI

−
λλ1I

′
ψλ),

Iψλ = σ−2
m∑
i=1

πlu
′
lR
−1vl,

and

Iλλ = σ−2
m∑
i=1

πlv
′
lR
−1vl.

Again, in our case the probability of each of the two covariate values is π1 = π2 =
1/2; and u1 = (t1, . . . , tn)′, v1 = [10xi]n×3, u2 = 0, and v2 = [10xi]n×3. We have
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Iψλ = σ−2/2u′1R
−1v1

Iλλ = σ−2/2[v′1R
−1v1 + v′2R

−1v2] = 1/2X]

IψλI
−1
λλ = u′1R

−1v1X
−1

I−1λλ I
′
ψλ = X−1v′1R

−1u1

Σ̃1 = σ−2/2[(u1 − u′1R
−1v1X

−1v′1)R
−1(u1 − v1X

−1v′1R
−1u1)

+u′1R
−1v1X

−1v′2R
−1v2X

−1v1R
−1u1

= σ−2/2[u1R
−1u− u′1R

−1v1X
−1v′1R

−1u1]

Applying this to our working example:

[,1]

[1,] 207

3 First order approximations

4 Power calculations with baseline covariates

5 Examples
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