
User’s Guide to lqa

Jan Ulbricht

April 17, 2010

1 Introduction

Ulbricht (2010b) has introduced the quite generic LQA algorithm to estimate Generalized
Linear Models (GLMs) based on penalized likelihood inference. Here we do not want to
repeat details on how to specify or estimate GLMs. For a nice overview on these topics
see, for example, McCullagh and Nelder (1989), Fahrmeir and Tutz (2001) or Fahrmeir
et al. (2009). Instead we provide you in a nutshell with the basic aspects of the LQA
algorithm.

Consider the vector b = (β0,β
>)> of unknown parameters in the predictor of a GLM.

The term β0 denotes the intercept and β contains the coefficients of the p regressors. We
want to solve the penalized regression problem

min
b
−`(b) + Pλ(β), (1)

where `(b) is the log-likelihood of the underlying GLM and the penalty term has structure

Pλ(β) =
J∑
j=1

pλ,j(|a>j β|), (2)

with known vectors of constants aj. The subscript λ illustrates the dependency on a
vector of tuning parameters. We assume the following properties to hold for all J penalty
terms

(i) pλ,j : IR≥0 → IR≥0 with pλ,j(0) = 0,

(ii) pλ,j is continuous and monotone in |a>j β|,

(iii) pλ,j is continuously differentiable for all a>j β 6= 0, so that dpλ,j(|a>j β|)/d|a>j β| ≥ 0
for all a>j β > 0.

The first two assumptions are necessary to make sure that Pλ is indeed a penalty. By
construction the penalty is symmetric in a>j β around the origin.

The algebraic form of (2) covers a wider range of penalties, such as polytopes and
quadratic penalties. If the penalty region is a polytope, then all penalty functions pλ,j

2

must be linear. Note that the sum of all J penalty functions determines the penalty term.
The penalty level λ must not be identical for all J functions but to keep the notation
simple we omit a further subindex j. Furthermore, the penalty function type must not
be identical for all j. The number J of penalty functions is not necessarily equal to p the
number of dimensions. For example, the fused lasso penalty (Tibshirani et al., 2005)

P fl
λ (β) = λ1

p∑
j=1

|βj|+ λ2

p∑
k=2

|βk − βk−1|

can be written as

P fl
λ (β) =

2p−1∑
j=1

pλ,j(|a>j β|), (3)

where
pλ,j(·) = λ1|a>j β|, j = 1, . . . , p

and aj = (0, . . . , 0, 1, 0, . . . , 0)> with a one at the j-th position, and

pλ,j(·) = λ2|a>j β|, j = p+ 1, . . . , 2p− 1

where aj = (0, . . . , 0,−1, 1, 0, . . . , 0)> with a one at the (j − p + 1)-th position and a
minus one at the (j − p)-th position. The parameters λ1 and λ2 correspond to s1 and s2
in the constrained regression problem formulation, see Tibshirani et al. (2005).

Ulbricht (2010b) has shown that if the penalty term has structure (2) then the penalized
regression problem (1) can be solved by a Newton-type algorithm based on local quadratic
approximations of the penalty term. That is, the unknown coefficients b can be estimated
iteratively with the estimation equation

b(k+1) = b(k) − γ
(
F(b(k)) + A∗λ

)−1 {−s(b(k)) + A∗λb(k)}, (4)

where s(b) and F(b) denote score vector and Fisher information matrix of the underlying
log-likelihood, respectively, and

A∗λ =

[
0 0>p
0p Aλ

]
,

where 0p is the p-dimensional null vector. The (approximated) penalty matrix Aλ is
defined as

Aλ =
J∑
j=1

p′λ,j(|a>j β(k)|)√(
a>j β(k)

)2
+ c

aja
>
j , (5)

where p′λ,j(|a>j β(k)|) = dpλ,j(|a>j β|)/d|a>j β| denotes the first derivative with p′λ,j(0) ≡ 0,
and c > 0 is a small positive real number. In the lqa package we will use c = 1e−6 as
default value. To our experience, this value works quite well.

The Newton update (4) is repeated until convergence. We apply the rule

‖b(k+1) − b(k)‖
‖b(k)‖

≤ ε, ε > 0

3

to terminate the algorithm. Under this criterion, the algorithm is stopped if the relative
distance moved during the k-th iteration is less or equal to ε. We use an additional step
length parameter 0 < γ ≤ 1 to enhance convergence of the algorithm. This parameter
is usually treated as fixed constant. In our experience a value γ < 1 becomes especially
appropriate if the penalty term includes an Lι-norm with ι ‘large’, e.g. ι ≥ 10. Examples
where this can happen are the bridge (Frank and Friedman, 1993) or the OSCAR (Bondell
and Reich, 2008) penalty.

In this article we will describe the R (R Development Core Team, 2009) add-on package
lqa. The lqa package has been originally designed to apply the LQA algorithm (see
Ulbricht, 2010b, for details) to compute the constrained MLEs of GLMs with specific
penalties. In the further development the package has been extended to deal also with
boosting algorithms such as componentwise boosting, GBlockBoost and ForwardBoost
(Ulbricht, 2010b) which in turn are primarily intended to be used with quadratic penal-
ties. The LQA algorithm can be viewed as an extension of the P-IRLS algorithm (see,
e.g., Wood, 2006), so that the latter is also (indirectly) included.

As we will see later on we use a hierarchical structure of R functions for the package
that provides preparation methods (standardization, extraction of formula components
etc.), the computation of important statistics (degrees of freedom, AIC, penalized Fisher
information matrix etc.) and generic functions (summary, plot etc.). A convenient way
to specify the details of the penalty terms is crucial for the computational application of
the LQA algorithm and the boosting methods mentioned above. Therefore we start with
the introduction of the penalty class in the next section. The basic structure of the lqa
package will be explained in Section 3, some examples for applications are illustrated in
Section 4.

2 The penalty class

Since the lqa package focuses on shrinkage and boosting methods there will always be a
penalty included in the objective function or plays a role during the inference procedure.
Furthermore, we need to compute different terms corresponding to a specified penalty,
such as the penalty level, or the coefficients or its gradients for the LQA algorithm. A
concrete penalty consists of the penalty family and chosen tuning parameters. It will
be reasonable to specify a penalty family and the tuning parameters separately. This is
especially necessary for cross-validation procedures and plotting of coefficient build-ups.
So the R source code for specifying e.g. the ridge penalty with tuning parameter λ = 0.7
should look like this

R> penalty <- ridge (lambda = 0.7)

The entities R operates on are technically known as objects. Hence we require a useful
R object to represent penalties. Many programming languages, including R and S, use
concepts from object-oriented programming (OOP). As given in Leisch (2008), the two
main of those concepts as used in R are

4

• classes to define how objects of a certain type look like, and

• methods to define special functions operating on objects of a certain class.

For dealing with several penalties, also user-defined ones, we introduce a class of R objects
called penalty. There are two approaches in R for dealing with classes, that is the ‘older’
S3 approach and the S4 approach as introduced in Chambers (1998). Most classes in R
are based on the classical S3 concept. The more advanced S4 concept requires some more
code but delivers more flawless definitions. However, both concepts have pros and cons.
Some more details and examples are e.g. given in Venables and Ripley (2000).

In S4 classes the structure of an object is clearly specified in the term of slots. This leads
to a huge amount of formality and precision. The structure of an S3 object can only
be defined implicitly using the function structure(). As a direct consequence, checks
on data structures or arguments can be swapped out to the initialization (or prototype)
function. This possibility is only of limited merit when dealing with penalties due to a
huge amount of heterogeneity among different penalties. Reasons for it are e.g. a different
number of tuning parameters, or that the computation of the penalty matrix can depend
on the regressor matrix X as for the correlation-based penalty (Tutz and Ulbricht, 2009)
or just on dimension p and information whether or not there is an intercept included in
the model (ridge penalty in linear models). Consequently, checks on correct specification
must also be customized and hence included in the several penalty objects.

Method Type Input arguments Output
penalty character a character containing

the penalty name
lambda numeric vector a numeric vector contain-

ing the tuning parame-
ters

getpenmat() function beta = NULL, ... p×p penalty matrix eval-
uated at beta if neces-
sary

first.derivative() function beta = NULL, ... J dimensional vector
containing p′λ,1, . . . , p

′
λ,J

a.coefs() function beta = NULL, ... p × J matrix contain-
ing the coefficients
a1, . . . , aJ .

Table 1: Methods operating on objects of class penalty. The dot operator ... allows
for some further arguments.

Furthermore, the clear specification of S4 classes is another drawback concerning our
applications. When dealing with quadratic penalties

Pλ(β) =
1

2
β>Mλβ, (6)

5

where Mλ is a positive definite matrix, we would just need the class charac-
ter penalty$penalty (to indicate the name of the penalty) and the function
penalty$getpenmat(). The latter returns the evaluated (p × p)-dimensional penalty
matrix Mλ based on the argument beta if necessary. Contrary, polytopes as penalties
might require some more advanced functions such as penalty$first.derivative() or
penalty$a.coefs() (see Table 1 below) to evaluate the penalty for a given β vector of
coefficients. If a user wants to implement a new quadratic penalty then these further
functions are actually not needed. However, when using S4 methods this would result in
an error message or alternatively we would need two classes (quad.penalty and penalty)
instead of just one where quad.penalty is a subclass of penalty. For these reasons, we
use the S3 methods concept and put up with the in some way less comfortable implemen-
tation of new penalty instances. The penalties already implemented as penalty objects
are listed in Table 2.

In the following we describe what kinds of methods are required for specific penalty
families. The five basic methods for penalty objects are summarized in Table 1. The
methods penalty and lambda are mandatory. They are necessary to identify the penalty
family and, respectively, the tuning parameter vector in the R functions of lqa. But as
we will see later on, they just appear as list elements in the structure() environment.
The function getpenmat() and the functions first.derivative() and a.coefs() are
mutually exclusive. Whether we need the first one or the last two depends on the nature
of the penalty. Hence we have to distinguish two cases (see also Table 2):

(i) The use of a function getpenmat() is more efficient (in a numerical sense) if

• the penalty matrix Aλ as given in (5) is a diagonal matrix, e.g. if J = p and
aj, j = 1, . . . , J just contains one non-zero element, or

• the penalty is quadratic.

Then the (approximate) penalty matrix Aλ can be computed directly. Most imple-
mented penalties are of those types, e.g. ridge, lasso, SCAD and correlation-based
penalty.

(ii) The combination of the functions first.derivative() and a.coefs() is necessary
in all other cases. The fused lasso penalty is an example for it.

We illustrate the basic structure of penalty objects with the lasso and the fused.lasso
object. For the lasso penalty (Tibshirani, 1996)

P l
λ(β) =

p∑
j=1

pλ,j(|a>j β|),

with aj = (0, . . . , 0, 1, 0, . . . , 0)>, where the one is at the j-th position, and pλ,j(|ξj|) =
λ|ξj|, ξj = a>j β it is straightforward to show that the approximate penalty matrix is

Al
λ = λ diag

{
1{β1 6=0}(β

2
1 + c)−1/2, . . . , 1{βp 6=0}(β

2
p + c)−1/2

}
(7)

6

Name Description getpenmat() first.derivative()

+ a.coefs()

ridge ridge penalty x

penalreg correlation-
based penalty

x

lasso lasso penalty x

adaptive.lasso adaptive lasso x

fused.lasso fused lasso x

oscar oscar x

scad scad x

weighted.fusion weighted fusion x

bridge bridge x

enet Elastic net x

genet Generalized
elastic net

x

icb Improved
correlation-
based penalty

x

licb L1-norm
improved
correlation-
based penalty

x

ao Approximated
octagon penalty

x

Table 2: Implemented penalties of class penalty. Whether they consist of getpenmat()
or of first.derivative() and a.coefs() is tagged with an ‘x’.

for some small c > 0, where 1{βj 6=0} = 1 if βj 6= 0 and 1{βj 6=0} = 0 otherwise. Thus we
might use the getpenmat() function.

The source code of the complete implementation of the lasso penalty is given in the
following:

R> lasso <- function (lambda = NULL, ...) {

+ lambda.check (lambda)

+

+ ## Check on dimensionality of lambda

+ if (length (lambda) != 1)

+ stop ("lambda must be a scalar \n")

+

7

+ names (lambda) <- "lambda"

+

+ getpenmat <- function (beta = NULL, c1 = lqa.control()$c1, ...) {

+ if (is.null (beta))

+ stop ("’beta’ must be the current coefficient vector \n")

+

+ if (c1 < 0)

+ stop ("’c1’ must be non-negative \n")

+

+ penmat <- lambda * diag (1 / (sqrt (beta^2 + c1)))

+ * as.integer (beta != 0)

+ penmat }

+

+ structure (list (penalty = "lasso", lambda = lambda, getpenmat =

+ getpenmat), class = "penalty")}

Here you see the basic structure of a penalty object that might be kept all the time.
If you want to implement a new penalty object then you should respect the following
annotations. The object is initialized by calling the function of its name with lambda

as argument. If your tuning parameter is a vector, then lambda must be a vector, too.
You could provide some additional arguments if necessary, such as control parameters
for numerical precision. The lqa control parameters such as the return of a call to the
function lqa.control() are not meant by this. They are incorporated, if necessary, in
the particular penalty methods such as the c1 argument that corresponds with c in (7),
in the getpenmat() function. If your penalty depends on the regressor matrix or its
correlation matrix, as e.g. the correlation-based penalty, then it is more reasonable to
use the corresponding argument, e.g. the x argument, just in the particular functions,
such as getpenmat(). This assures to relate to the right subset of regressors when
indicated. Otherwise x would be initialized as a global argument of your penalty and
hence can cause trouble if you want to apply methods with explicit variable selection
such as componentwise boosting.

But now we come back to the basic structure. In a first step, you should call
lambda.check(). The internal function lambda.check() just checks the lambda ar-
gument on existence (!is.null()) and element-wise nonnegativity. In a second step you
should check the right dimensionality of the lambda argument. Afterwards you might
name the elements of lambda. This helps to identify the tuning parameters of different
methods when you want to compare their performances. In a next step, the getpenmat()
method is implemented. To compute (7) we need the arguments beta that indicates the
(current) β vector and c1 that corresponds to c. According to the approximation (5)
and the arguments made about this we must make sure that

p′λ,j(0) ≡ 0.

Therefore we use as.integer (beta != 0) as a multiplier in the computation of penmat
which is in fact the R representation of the indicator function. Finally, the object is

8

initialized using the function structure(), where all its elements are listed. Note that
the membership of the class penalty must also be given here.

For the fused lasso penalty, things are a little bit more complicated. Since aj, j =
p + 1, . . . , 2p − 1 consists of two non-zero elements we cannot apply getpenmat(). The
first derivatives of the penalty terms are

p′λ,j(|ξj|) =

{
λ11{ξj 6=0}, j = 1, . . . , p,

λ21{ξj 6=0}, j = p+ 1, . . . , 2p− 1.

This will be returned by the first.derivative() function, see below. A summarized
version of the coefficients is

a1 a2 . . . ap ap+1 ap+2 . . . a2p−1

1 0 . . . 0 −1 0 . . . 0

.

0 1 . . . 0 1 −1 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . −1

0 0 . . . 1 0 0 . . . 1

This (p× (2p− 1))-dimensional matrix will be returned by a.coefs(). So the complete
source code of the fused.lasso object is:

R> fused.lasso <- function (lambda = NULL, ...){

+ lambda.check (lambda)

+ if (length (lambda) != 2)

+ stop ("The fused.lasso penalty must consist on two parameters! \n")

+ names (lambda) <- c ("lambda1", "lambda2")

+

+ first.derivative <- function (beta = NULL, ...){

+ if (is.null (beta))

+ stop ("’beta’ must be the current coefficient vector \n")

+ p <- length (beta)

+ if (p < 2)

+ stop ("There must be at least two regressors! \n")

+ vec1 <- c (rep (lambda[1], p), rep (lambda[2], p - 1))

+ return (vec1 * as.integer (drop (t (a.coefs (beta)) %*% beta) != 0))}

+

+ a.coefs <- function (beta = NULL, ...){

+ if (is.null (beta))

+ stop ("’beta’ must be the current coefficient vector \n")

+ p <- length (beta)

9

+ if (p < 2)

+ stop ("There must be at least two regressors! \n")

+ if (p > 2){

+ h1 <- cbind (-diag (p-1), 0)

+ h2 <- cbind (0, diag (p-1))

+ mat1 <- h1 + h2

+ mat2 <- diag (p)

+ a.coefs.mat <- cbind (mat2, t (mat1))}

+ else

+ a.coefs.mat <- cbind (diag (2), c(-1,1))

+ return (a.coefs.mat)}

+

+ structure (list (penalty = "fused.lasso", lambda = lambda,

+ first.derivative = first.derivative, a.coefs = a.coefs),

+ class = "penalty")}

Note that the fused lasso penalty only works by definition for at least two regressors.
Actually we do not need the beta argument in the first.derivative() and a.coefs()

functions directly. We only use it to determine the dimension parameter p.

We conclude this section with two remarks on penalty objects. Note that the penalty
objects only consider the p regressors. Their methods do not take into consideration
whether or not there is an intercept included in the model. An adjustment of the (ap-
proximated) penalty matrix Aλ to

A∗λ =

[
0 0>

0 Aλ

]

will be done automatically by the function get.Amat() from the lqa package. This
function is the conjunction between penalty objects and the algorithms that require Aλ.

From a numerical point of view a direct computation of the approximated penalty matrix
via

Aλ =
J∑
j=1

p′λ,j(|a>j β|)√(
a>j β

)2
+ c

aja
>
j (8)

is often not efficient. As we have seen above, in some cases we can compute Aλ directly
using the getpenmat() function. If we apply formula (8) directly, we would need to
compute J outer products based on the aj, that is we had to store J matrices each of
dimension p × p. If the coefficients aj are sparse as for the fused lasso penalty, those
matrices would contain just a few non-zero components (to be concrete: e.g. four non-
zero elements for the fused lasso penalty) no matter how much regressors are in the
model. With increasing p this becomes more inefficient, yet cumbersome. A numerically
more efficient method would extract the non-zero elements of each aj, compute the outer
products of those subvectors and record the resulting submatrices at the corresponding
positions of a (p × p)-dimensional working penalty matrix. If some positions overlap

10

between the J penalty terms then the recording is additive. Consequently, the required
memory will be reduced and the speed of computation increases. This improving principle
is used by the get.Amat() function.

3 Basic structure of the lqa package

In this section we describe the basic structure of the lqa package. As illustrated in Table
3, there is an elemental hierarchy of four methods (or classes of methods). As for the
implementation of the penalties and their related methods we use the R concept of S3
classes. At the lowest level there is the generic function lqa(). Its task is to determine
the class of its arguments and to use this information to select an appropriate method.
Therefore they are also called dispatching methods. The function calls of the methods
on the next two levels are

S3 method for class ’formula’:

lqa(formula, data = list (), weights = rep (1, nobs), subset,

na.action, start = NULL, etastart, mustart, offset, ...)

at level II and

Default S3 method:

lqa(x, y, family = gaussian (), penalty = NULL, method = "lqa.update2",

weights = rep (1, nobs), start = NULL,

etastart = NULL, mustart = NULL, offset = rep (0, nobs),

control = lqa.control (), intercept = TRUE,

standardize = TRUE, ...)

at level III.

As you can see, the S3 method for class formula requires less arguments than the default
S3 methods at the next level. This is due to the extraction and ‘translation’ of information
from the formula environment in the lqa.formula() function before lqa.default() is
called. As a conclusion, for a user it is more comfortable to enter at the lowest possible
level. Nevertheless, the big advantage from using S3 methods is that the user simply
calls lqa with either one of the possible representations as the argument. The internal
dispatching method will find the class of the object and apply the right method. Note
that just looking at the syntax of the function call for the class formula is misleading
for applications. As the function lqa.formula() is primarily meant to provide the data
included in the formula environment, there are no input arguments necessary concerning
the penalty or the fitting method. But those are to be specified for higher level methods.
Therefore please use the examples at the next section as a guide to your applications to
the lqa() function.

As you can see in Table 3 there are two main functions involved in the parameter estima-
tion. The first is the default function (lqa.default()). This function can be interpreted

11

Level Method Tasks

I lqa()
• dispatching

II lqa.formula()
• extract the data from the formula environment
• call the default method

III lqa.default()
• check for the exponential family and link func-

tion in the family argument
• check the penalty argument
• check for existence of the fitting method
• check for model consistency (e.g. a column of

ones must be included in the x argument if an
intercept is present in the model)
• standardizes the data
• call the fitting method
• transform the estimated coefficients back
• compute important statistics (deviance, AIC,

BIC, residuals, estimated predictors η̂ and re-
sponses µ̂, etc.)

IV fitting method
• computation of estimates

Table 3: Implemented basic methods and their tasks in the lqa package.

as a principal or advisor of the estimation process. Its task is to check whether the in-
put arguments are in order or not and to standardize the data if required. Afterwards
it calls the fitting method and transforms the returned estimated coefficients back to
the original scales of the regressors. Finally it computes some important statistics such
as the deviance, the information criteria AIC and BIC, the estimated predictors η̂ and
responses µ̂. At last the default function assigns the object to be returned to the lqa

class. Furthermore it inherits the affiliation to the glm and lm classes. Thereby we could
use generic functions of those classes such as coef() to extract the estimated coefficients
from an lqa object.

The other function or more precicely the other set of functions mainly involved in pa-
rameter estimation are the fitting methods. They can be interpreted as the workhorses
or the agents of the package. Their task is to compute the estimates and some other
statistics such as the trace of the hat matrix, see below. Up to now the following fitting
methods are implemented:

• lqa.update2 to compute the LQA algorithm. The ‘2’ at the end of its name has

12

just some historical reasons.

• ForwardBoost to compute the ForwardBoost algorithm,

• GBlockBoost to compute the GBlockBoost algorithm,

• GBlockBoost combined with the argument componentwise = TRUE computes com-
ponentwise boosting.

If you want to implement your own fitting method then you should remind of the following
aspects. The basic call of a fitting method with name method.name will be

method.name (x, y, family = NULL, penalty = NULL, intercept = TRUE,

control, ...)

where the input arguments are

x the standardized design matrix. This will usually include a
column of ones if an intercept should be included in the model.

y the vector of observed response values.

family a description of the error distribution and link function to be used
in the model. This can be a character string naming a family
function, a family function or the result of a call to a family
function.

penalty a description of the penalty to be used in the fitting procedure.

intercept a logical object whether the model should include an intercept
(this is recommended) or not. The default value is TRUE.

control a list of parameters for controlling the fitting process.

... further arguments.

The fitting methods have access to the environment of lqa.default(). So in principle,
you can pass additional arguments from all lower level lqa function calls.

To be in line with the other functions in the package the fitting method should always
return a list that contains at least the following arguments

coefficients the vector of the standardized estimated coefficients.

tr.H the trace of the hat matrix.

Amat the penalty matrix from the last iteration.

converged a logical variable. This should be TRUE if the algorithm indeed
converged.

stop.at the number of iterations until convergence.

m.stop the number of iterations until AIC reaches its minimum.

The last argument m.stop is only necessary for fitting algorithms where the iteration of
optimal stopping is less than the number of iterations until convergence. This is especially
related to boosting methods.

13

The R package mboost (Hothorn et al., 2009) provides a framework for the application
of functional gradient descent algorithms (boosting) for the optimization of general loss
functions. The package is especially designed to utilize componentwise least squares as
base learners. An alternative to directly implement ForwardBoost and GBlockBoost
in the scope of the lqa package has been to incorporate the infrastructure of mboost
through a kind of interface. In this case ForwardBoost and GBlockBoost must have been
implemented as new mboost functions such as the already existing ones gamboost() or
glmboost(). See Hothorn et al. (2009) for details. Furthermore, in order to fulfill the
requirements of the output arguments of fitting methods for lqa (as described above) we
would need to write another function in this case, that e.g. computes the trace of the
hat matrix. Since we could also use some source code from the P-IRLS algorithm for
the implementation of the boosting methods, it was obvious not to take mboost into
consideration here.

In principle, the lqa package can be used to boost penalized GLMs based on the LQA
algorithm. However, in such a case it is not advisable to use just one iteration of P-IRLS
since the approximated penalty matrix Aλ will then strongly depend on the control
parameter c. Consequently, the boosting methods must be adjusted then. We will not
follow this idea but leave it for further investigations.

4 Some Applications of the lqa package

There are three main important functions in the lqa package. The function lqa() can
be used to fit a penalized GLM for an already specified tuning parameter. The function
cv.lqa() finds an optimal tuning parameter in up to three dimensions. The plot.lqa()
function can be applied to visualize the solution path via coefficient build-ups. For lqa

and cv.lqa objects, as returned by the corresponding functions, there exist summary()

functions that give a short and compact overview on the computed results. But now we
are going into details on how to apply these functions.

4.1 Using the lqa() function

When the tuning parameter is already specified, we can use the function lqa() to fit a
penalized GLM by the LQA algorithm or some boosting algorithms with variable selection
schemes. The main working function lqa.update2 computes the LQA updates using a
Cholesky decomposition of X>WX+A∗λ. With n observations and p̃ = p+1 coefficients,
including p regressors and one intercept, the Cholesky decomposition requires p̃3 +np̃2/2
operations. The Cholesky decomposition is usually fast, depending on the relative size
of n and p̃, but it can be less numerically stable (Lawson and Hanson, 1974).

Due to the arguments of lqa.formula() and lqa.default(), the syntax of a call to lqa

should look like this

R> obj <- lqa (formula, family, penalty, data, method, standardize, ...)

4.1 Using the lqa() function 14

with input parameters

formula a symbolic description of the model to be fit. A typical formula
has the form response ∼ terms, where response is the
(numeric) response vector and terms is a series of terms which
specifies a linear predictor for response. Per default an intercept
is included in the model. If it should be removed then use
formulae of the form response ∼ 0 + terms or response ∼
terms - 1.

family a description of the error distribution and link function to be used
in the model. This can be a character string naming a family
function, a family function or the result of a call to a family
function. (See the R-function family() for details of family
functions.)

penalty a description of the penalty to be used in the fitting procedure.
This must be an object of the class penalty.

data an optional data frame containing the variables in the model. If
not found in data, the variables are taken from
environment(formula), typically the environment from which
the function lqa is called.

method a character indicating the fitting method. The default value
method = "lqa.update2" applies the LQA algorithm.

standardize a Boolean variable, whether the regressors should be standardized
(this is recommended) or not. The default value is standardize

= TRUE.

... further arguments passed to or from other methods.

This call returns an object obj of the class lqa which moreover inherits the class attributes
glm and lm. As a consequence, we could apply to obj the typical methods as for instances
of the class lm. Some of them are modified in order to meet the special needs of lqa
instances, see below.

For illustration, consider the following small example. We simulate a GLM

µi = h(ηi), i = 1, . . . , n,

with n = 100 observations and p = 5 covariates, where the predictor ηi = β0 + x>i β
consists of the true parameters β0 = 0 and

β = (1, 2, 0, 0,−1)>.

The original design matrix (not regarding the intercept) consists of five univariate stan-
dard normally distributed covariates x(1), . . . ,x(5). In order to get a stochastic depen-
dency structure, we replace x(2) and x(3) by x(1) where some additional noise is applied to
obtain correlations near one but not exactly equal to one. As a result, we get a simulation

4.2 Basic principles of using the cv.lqa() function 15

setting with multicollinearity where the application of shrinkage methods indeed makes
sense.

Now we specify the response. The GLM will be a logit model, that is yi ∼ B(1, pi) and
E(yi|xi) = pi = h(ηi) with h(ηi) = 1/(1 + exp{−ηi}). We will denote the corresponding
simulated response vector as y. The R code for this data generation is given below, where
we fixed the seed of the random number generator for illustration purpose.

R> n <- 100

R> p <- 5

R>

R> set.seed (1234)

R> x <- matrix (rnorm (n * p), ncol = p)

R> x[,2] <- x[,1] + rnorm (n, sd = 0.01)

R> x[,3] <- x[,1] + rnorm (n, sd = 0.1)

R> beta <- c (1, 2, 0, 0, -1)

R> prob1 <- 1 / (1 + exp (drop (-x %*% beta)))

R> y <- sapply (prob1, function (prob1) {rbinom (1, 1, prob1)})

We want to fit a logistic regression model with lqa, using the lasso penalty with tuning
parameter λ = 1.5 and fitting method lqa.update2. Since the latter is the default value
of method we do not need to state it explicitly. This results in

R> lqa.obj <- lqa (y ~ x, family = binomial (), penalty = lasso (0.9))

R> lqa.obj

Call: lqa.formula(formula = y ~ x, family = binomial(),

penalty = lasso(0.9))

Coefficients:

(Intercept) x1 x2 x3 x4 x5

-7.940e-01 9.202e-02 1.208e+00 7.612e-03 8.299e-07 -5.213e-03

Degrees of Freedom: 99 Total (i.e. Null); 98.3658 Residual

Null Deviance: 123.8

Residual Deviance: 71.8 AIC: 75.07

Some additional information can be gained by the call summary (lqa.obj).

4.2 Basic principles of using the cv.lqa() function

Normally we do not know the optimal tuning parameter a priori. It is more common to
apply model selection via a set of tuning parameter candidates. This will be done by
cross validation. In the lqa package the function cv.lqa() is designed for this purpose.
The usage of it is

4.2 Basic principles of using the cv.lqa() function 16

cv.lqa(y.train, x.train, intercept = TRUE, y.vali = NULL,

x.vali = NULL, lambda.candidates, family, penalty.family,

standardize = TRUE, n.fold, cv.folds,

loss.func = aic.loss, control = lqa.control(), ...)

with input parameters

y.train the vector of response training data.

x.train the design matrix of training data. If intercept = TRUE then it
does not matter whether a column of ones is already included in
x.train or not. The function adjusts it if necessary.

intercept logical. If intercept = TRUE then an intercept is included in the
model (this is recommended).

y.vali an additional vector of response validation data. If given the
validation data are used for evaluating the loss function.

x.vali an additional design matrix of validation data. If given the
validation data are used for evaluating the loss function. If
intercept = TRUE then it does not matter whether a column of
ones is already included in x.train or not. The function adjusts
it if necessary.

lambda.candidates a list containing the tuning parameter candidates. The number of
list elements must be correspond to the dimension of the tuning
parameter. See details below.

family identifies the exponential family of the response and the link
function of the model. See the description of the R function
family() for further details.

penalty.family a function or character argument identifying the penalty family.
See details below.

standardize logical. If standardize = TRUE the data are standardized (this is
recommended).

n.fold number of folds in cross-validation. This can be omitted if a
validation set is used.

cv.folds optional list containing the observation indices used in the
particular cross-validation folds. This can be omitted if a
validation set is used.

loss.func a character indicating the loss function to be used in evaluating
the model performance for the tuning parameter candidates. If
loss.func = NULL the aic.loss() function will be used. See
details below.

control a list of parameters for controlling the fitting process. See the
documentation of lqa.control() for details.

4.2 Basic principles of using the cv.lqa() function 17

... Further arguments.

This function can be used for evaluating model performance for different tuning param-
eter candidates. If you just give training data a cross validation will be applied. If
you additionally provide validation data then those data will be used for measuring the
performance and the training data are completely used for model fitting.

You must specify a penalty family. This can be done by giving its name as a character (e.g.
penalty.family = "lasso") or as a function call (e.g. penalty.family = lasso).

The tuning parameter candidates are given in the argument lambda.candidates. Usually
one should a priori generate a sequence of equidistant points and then use this as exponent
to Euler’s number, such as

R> lambdaseq <- exp (seq (-4, 4, length = 11))

R> lambdaseq

[1] 0.0183156 0.0407622 0.0907179 0.2018965 0.4493289 1.0000000

[7] 2.2255409 4.9530324 11.0231763 24.5325302 54.5981500

Note that lambda.candidates must be a list in order to cope with different numbers of
candidates, e.g.

lambda.candidates = list (lambdaseq).

For evaluation you must specify a loss function. The default value is aic.loss() e.g.
the AIC will be used to find an optimal tuning parameter. Other already implemented
loss functions are bic.loss(), gcv.loss(), squared.loss() (quadratic loss function),
dev.loss() (deviance as loss function). In the following, we explain the basic principles
of the application of loss functions in the lqa package.

Before we start we introduce some notation to describe the cross-validation procedure
in general. Let K denote the number of cross-validation folds and κ : {1, . . . , n} →
{1, . . . , K} is an indexing function that indicates the partition to which the i-th obser-
vation (i = 1, . . . , n) is allocated. In the function cv.lqa() the number of folds K is

maintained in the argument n.fold. Let b̂−kλ = (β̂−kλ , (β̂
−k
λ)>)>, k ∈ {1, . . . , K} denote

the estimate during the cross-validation for a given value of tuning parameter λ. The in-
dex −k indicates that b̂−kλ has been estimated based on the cross-validation index subset
{i ∈ {1, . . . , n} : κ(i) 6= k}, that is all of the training data except the subset that belongs

to the k-th partition. Let µ̂λi = h(β̂−kλ + x>i β̂
−k
λ) denote the estimated response of the

i-th observation. For the deviance we write

Devkλ = 2
∑

i:κ(i)=k

{
`i(b̂max))− `i(b̂−kλ)

}
, k = 1, . . . , K

and denote H−kλ as the hat matrix corresponding to b̂−kλ . This deviance and the hat
matrix are important ingredients for most of the loss functions used to evaluate the model

4.2 Basic principles of using the cv.lqa() function 18

with tuning parameter λ. Using a loss function L(yi, µ̂
λ
i) the cross-validation function is

CV(λ) =
1

K

K∑
k=1

∑
i:κ(i)=k

L(yi, µ̂
λ
i).

This definition varies from the typical ones such as (7.49) in Hastie et al. (2009), p. 242.
But from a computational point of view it is more well-arranged. This will become clear,
hopefully, in the examples below. The loss functions already implemented in the lqa
package are summarized in Table 4.

Criterion Formula Function name

AIC AIC(λ) = Devkλ +2 tr(H−kλ) aic.loss()

BIC BIC(λ) = Devkλ + log(n) tr(H−kλ) bic.loss()

GCV GCV(λ) = nDevkλ /{n− tr(H−kλ)}2 gcv.loss()

squared loss SL(λ) =
∑n

i=1(yi − µ̂λi)2 squared.loss()

deviance loss DL(λ) = Devkλ dev.loss()

Table 4: Implemented loss functions.

Note, if loss.func = gcv.loss is chosen then this does not match with given validation
data. This is due to the construction of the GCV as an approximation to leave-one-out
cross-validation. If there are nonetheless given some validation data then cv.lqa() will
replace them by the training data arguments y.train and x.train.

However, the estimate b̂−kλ and the hat matrix H−kλ are part of the output of lqa(). But
to compute terms like Devkλ and µ̂λi the lqa package provides the function predict.lqa().
This function is primarily used internally, but you can use it directly as well. See the lqa
manual (Ulbricht, 2010a) for documentation of it.

The function predict.lqa() returns an object pred.obj of the class pred.lqa. This
object is the input argument for all loss functions in lqa. Therefore it is worth to look
at it a little bit more closer. The object pred.obj contains the following elements

deviance the deviance based on the new observations. This element
provides Devkλ.

tr.H the trace of the hat matrix of the design matrix used to fit the
model, e.g. H−kλ . This is just an extraction from the lqa.obj

object that is used as input argument in predict.lqa().

n.newobs the number of new observations.

eta.new the estimated new predictors.

mu.new the estimated new responses, e.g. a vector containing µ̂λi .

lqa.obj the lqa.obj argument of the predict.lqa() function. This is the
return object of the lqa function, so that you can in principle
access all of its elements.

new.y the vector of new observations.

4.3 Examples for using the cv.lqa() function 19

Consequently you can use all of those arguments in your loss function. Exemplarily, we
show the source code of the gcv.loss function:

R> gcv.loss <- function (pred.obj) {

+ dev <- pred.obj$deviance

+ tr.H <- pred.obj$tr.H

+ nobs <- pred.obj$n.newobs

+ nobs * dev / ((nobs - tr.H)^2)}

The output of a loss function must be a non-negative scalar.

4.3 Examples for using the cv.lqa() function

We want to continue the example from Section 4.1. We still want to apply the lasso
penalty but are now looking for an optimal tuning parameter. Since we did not have
simulated a validation data set we use a five-fold cross-validation based on the deviance.
Consequently, optimality of λ means minimizing the cross-validation score. To keep the
output small we restrict to only five tuning parameter candidates. Then the function call
and its result are:

R> cv.obj <- cv.lqa (y, x, family = binomial (), penalty.family = lasso,

lambda.candidates = list (c (0.001, 0.05, 1, 5, 10)), n.fold = 5,

loss.func = "dev.loss")

R> cv.obj

cv.lqa(y.train = y, x.train = x, lambda.candidates = list(c(0.001,

0.05, 0.5, 1, 5)), family = binomial(), penalty.family = lasso,

n.fold = 5, loss.func = "dev.loss")

loss function: dev.loss

validation data set used: FALSE

number of folds = 5

loss matrix:

fold 1 fold 2 fold 3 fold 4 fold 5 mean

lambda1 = 0.001 20.37285 29.55333 9.305895 8.726739 18.32540 17.25684

lambda1 = 0.05 18.41687 27.10695 7.914941 9.013015 16.03634 15.69762

lambda1 = 0.5 17.75243 19.67935 8.849785 13.260267 15.62594 15.03356

lambda1 = 1 19.31417 17.05229 10.995958 17.149802 17.19262 16.34097

lambda1 = 5 26.12830 20.94446 23.028678 30.310342 26.12799 25.30795

lambda.opt = 0.5

Call: lqa.default(x = x.train, y = y.train, family = family, penalty =

4.3 Examples for using the cv.lqa() function 20

penalty, control = control, intercept = intercept, standardize =

standardize)

Coefficients:

[1] -8.560e-01 2.812e-01 1.404e+00 5.820e-02 -1.355e-07 -2.474e-01

Degrees of Freedom: 99 Total (i.e. Null); 97.8255 Residual

Null Deviance: 123.8

Residual Deviance: 62.05 AIC: 66.4

The print() function for cv.obj shows the function call first. Afterwards information
on the applied loss function, the existence of a validation data set, and the number of
cross-validation folds are given. Thereafter the loss matrix is printed where each row
corresponds to one tuning parameter candidate and the first columns correspond to the
n.fold folds. The last column shows the values of CV(λ). As you can see, in our example
λ = 0.5 delivers the smallest value and hence is regarded as optimal tuning parameter.
Note that the difference to CV(0.05) is only small. Afterwards the so called best.obj,
that is the GLM with the chosen penalty family and the optimal tuning parameter,
is printed. This includes its (unstandardized) estimated coefficients and some model
summary statistics.

The cv.lqa() function can deal with cross-validation for up to three-dimensional tuning
parameters. In this case printing of the loss matrix (which then in fact is a loss array)
becomes quite striking for the user. Therefore a mean array is provided in those cases
which just gives the CV scores and hence lowers the dimension of the loss array about
one. To illustrate this we want to do cross-validation for our simulated data and now
apply the fused lasso penalty. For λ2 we consider just three candidates. The function
call is

R> cv.obj2 <- cv.lqa (y, x, family = binomial (), penalty.family =

+ fused.lasso, lambda.candidates = list (c (0.001, 0.05, 0.5, 1, 5),

+ c (0.001, 0.01, 0.5)), n.fold = 5, loss.func = "dev.loss")

R> cv.obj2

We just extract the mean array and the optimal tuning parameter in the following.

mean array:

lambda2 = 0.001 lambda2 = 0.01 lambda2 = 0.5

lambda1 = 0.001 14.01300 13.55434 13.21141

lambda1 = 0.05 13.14641 12.93533 13.24855

lambda1 = 0.5 13.58486 13.53301 14.41157

lambda1 = 1 15.48474 15.47385 16.22203

lambda1 = 5 24.94260 24.94256 24.94281

lambda.opt = 0.05 0.01

4.4 Examples for using the plot.lqa() function 21

The mean array displays the values of CV(λ) for all tuning parameter candidates combi-
nations. As you can see CV(λ1 = 0.05, λ2 = 0.01) delivers the minimum. By the way, at
this position it should become clear why it is necessary to name your tuning parameters
in objects of the penalty class. Otherwise the labeling of rows and columns in the mean
array could be misleading.

4.4 Examples for using the plot.lqa() function

In many situations it is preferable to look at the coefficient build-ups of a penalization
method. For those cases you can use the plot.lqa() function. Its usage is

plot.lqa(y, x, family, penalty.family, intercept = TRUE,

standardize = TRUE, lambdaseq = NULL, offset.values = NULL,

show.standardized = FALSE, add.MLE = TRUE,

control = lqa.control(), ...)

where the input parameters are

y the vector of observed responses.

x the design matrix. If intercept = TRUE then it does not matter
whether a column of ones is already included in x.train or not.
The function adjusts it if necessary.

family identifies the exponential family of the response and the link
function of the model. See the description of the R function
family for further details.

penalty.family a function or character argument identifying the penalty family.

intercept logical. If intercept = TRUE then an intercept is included in the
model (this is recommended).

standardize logical. If standardize = TRUE the data are standardized (this is
recommended).

lambdaseq a sequence of tuning parameter candidates for the dimension you
want to plot.

offset.values a vector of the same dimension as your tuning parameter. At the
position of the dimension you want to plot there must be entry
NA. The other positions should be filled with given (and fixed)
tuning parameter values, as e.g. returned optimized values from
cv.lqa(). See examples below.

show.standardized logical. If show.standardize = TRUE the standardized
coefficients are plotted, otherwise the unstandardized coefficients
are plotted.

add.MLE logical. If add.MLE = TRUE the unrestricted MLE is also plotted.
Note this only works for n > p settings. Otherwise this argument
is set to FALSE automatically.

REFERENCES 22

control list of control parameters as returned by lqa.control(). See the
lqa manual (Ulbricht, 2010a) for details.

... further arguments

This function plots the coefficient build-ups for a given dimension of your tuning param-
eter(s). The argument lambdaseq can be omitted. In this case a default sequence

R> lambdaseq <- exp (seq (-10, 6, length = 60))

is used. If your penalty consists of more than one tuning parameter you must identify
the relevant dimension to plot using offset.values where you state the fixed values for
the other tuning parameters.

We want to plot the coefficient build-up for our simulated example with fused lasso
penalty. Using the results from the last section, we set λ2 = 0.01. For this value held
fixed the coefficients cannot converge to the MLE when λ1 ↓ 0. Therefore we use add.MLE
= FALSE. The resulting function call is

R> plot.lqa (y, x, family = binomial (), penalty.family = fused.lasso,

+ offset.values = c (NA, 0.01), add.MLE = FALSE)

The corresponding plot is given in Figure 1. Note that the grouping effect does not
cover x3. This is due to the small weight λ2 = 0.01 on the second penalty term that is
responsible for the fusion of correlated regressors. Note that the grouping effect among
x1 and x2 is kept all the time. Furthermore, the relevance of the regressors is recognized
as x4 is selected to join the active set at last.

References

Bondell, H. D. and B. J. Reich (2008). Simultaneous regression shrinkage, variable selec-
tion and clustering of predictors with oscar. Biometrics 64, 115–123.

Chambers, J. (1998). Programming with Data. A Guide to the S Language. New York:
Springer.

Fahrmeir, L., T. Kneib, and S. Lang (2009). Regression - Modelle, Methoden und An-
wendungen (2nd ed.). Berlin: Springer.

Fahrmeir, L. and G. Tutz (2001). Multivariate Statistical Modelling based on Generalized
Linear Models (2nd ed.). New York: Springer.

Frank, I. E. and J. H. Friedman (1993). A statistical view of some chemometrics regression
tools (with discussion). Technometrics 35, 109–148.

Hastie, T., R. Tibshirani, and J. H. Friedman (2009). The Elements of Statistical Learning
(2nd ed.). New York: Springer.

REFERENCES 23

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

lqa coefficient built−up (fused.lasso)

|beta|/max|beta|

(u
ns

ta
nd

ar
di

ze
d)

 c
oe

ffi
ci

en
ts

x5

x4

x3

x2x1

Figure 1: The resulting plot as returned from the function plot.lqa() when it is applied
to the simulated example and λ2 = 0.01 is held fixed.

Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner (2009). mboost: Model-
Based Boosting. R package version 1.0-7.

Lawson, C. and R. Hanson (1974). Solving Least Squares Problems. Englewood Cliffs,
NJ: Prentice-Hall.

Leisch, F. (2008). Creating R packages: A tutorial. In P. Brito (Ed.), Compstat 2008—
Proceedings in Computational Statistics. Physica Verlag, Heidelberg, Germany.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (2nd ed.). New York:
Chapman & Hall.

R Development Core Team (2009). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-
07-0.

REFERENCES 24

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society B 58, 267–288.

Tibshirani, R., M. Saunders, S. Rosset, J. Zhu, and K. Knight (2005). Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society B 67, 91–108.

Tutz, G. and J. Ulbricht (2009). Penalized regression with correlation based penalty.
Statistics and Computing 19, 239–253.

Ulbricht, J. (2010a). lqa: Local Quadratic Approximation. R package version 1.0-2.

Ulbricht, J. (2010b). Variable Selection in Generalized Linear Models. Ph. D. thesis,
LMU Munich.

Venables, W. and B. Ripley (2000). S Programming. New York: Springer.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Boca Raton:
Chapman & Hall/CRC.

