
Addendum to the paper

The mimR Package for Graphical Modelling in R

Søren Højsgaard∗

February 7, 2008

Contents

1 Introduction and background 2

2 Preliminaries 2
2.1 Availability, information and installation . . . . . . . . . . . . . . . . 2
2.2 Known problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Specifying and displaying models 3
3.1 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Continuous models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Models in mimR 5
4.1 Model formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Specification of special models . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Model summary and model properties . . . . . . . . . . . . . . . . . 6
4.4 Fitted values (parameter estimates) . . . . . . . . . . . . . . . . . . 7

5 Model editing 7

6 Testing for deletion of an edge 8

7 Model comparison 9

8 Model selection 10

9 Graphical meta data – gmData 11
9.1 Making a gmData object from a dataframe or a table . . . . . . . . 11
9.2 Creating a gmData object without data . . . . . . . . . . . . . . . . 12
9.3 Discrete data arranged as cumulated cell counts in dataframe . . . . 12

10 Models with ordinal variables 12

11 Model fitting 13
11.1 Direct maximum likelihood estimation . . . . . . . . . . . . . . . . . 13
11.2 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

∗Research Unit for Statistics and Decision Theory, Institute of Genetics and Biotechnology,
Faculty of Agricultural Sciences, Aarhus University, Research Center Foulum, Tjele DK–8830,
Denmark

1



12 Latent variables 14
12.1 Fitting a model with a discrete latent variable . . . . . . . . . . . . . 14
12.2 Controlling the EM algorithm . . . . . . . . . . . . . . . . . . . . . . 15
12.3 Fitting a model with a continuous latent variable . . . . . . . . . . . 16

13 Discussion 17

14 Acknowledgements 18

A Additional ways of getting data into mimR 18
A.1 Continuous data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2 Discrete data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B Low level access to MIM from R 19
B.1 Primitive use of MIM from R – the mim.cmd() function . . . . . . . . 19
B.2 Using MIM directly from mimR– the mcm() function . . . . . . . . . . 19

Introduction to the addendum1

The mimR package for graphical modelling in R was described by Højsgaard (2004). A2

major revision of the package has implied some changes in the functionality related3

to the description in Højsgaard (2004). Therefore, this addendum is the relevant4

document to use in connection with practical use of mimR.5

The major changes relative to Højsgaard (2004) are:6

� Models are fitted at the time of specification (unless one explicitly wants to7

avoid this).8

� Facilities for reading data in various formats are available.9

The addendum is organised differently from (Højsgaard 2004) but covers other-10

wise the same material.11

1 Introduction and background12

The mimR package is a package which provides facilities for graphical modelling in13

the statistical program R (R Development Core Team 2006). mimR is part of the14

gR–initiative (Lauritzen 2002) which aims to make graphical models available in R.15

The statistical background for mimR is (M)ixed (I)nteraction (M)odels which is a16

general class of statistical models for mixed, discrete and continuous variables, where17

focus is on modelling conditional independence restrictions. Statistical inference in18

mixed interaction models can be made with the program MIM, (Edwards 2000). The19

core of mimR is an interface from R to MIM.20

This paper does not describe the statistical theory; instead the reader is referred21

to Edwards (2000). For a comprehensive account of graphical models we refer to22

Lauritzen (1996). Other important references are Edwards (1990) and Lauritzen23

and Wermuth (1989).24
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2 Preliminaries25

2.1 Availability, information and installation26

The mimR package uses the MIM program as inference engine. MIM is only avail-27

able on Windows platforms and hence so is mimR. The MIM program itself (avail-28

able from http://www.hypergraph.dk) must be installed on the computer. The29

communication between R and MIM is based on the rcom package which is auto-30

matically installed when mimR is installed. The mimR package has a homepage,31

http://gbi.agrsci.dk/~shd/Public/mimR.32

In addition to the documentation in the mimR package, the MIM program itself33

contains a comprehensive help function which the user of mimR is encouraged to34

make use of. To access the help function in MIM either type helpmim() in R or35

switch to the MIM program window and press F1.36

2.2 Known problems37

If MIM is not already running then MIM is automatically started by mimR. In that case38

it sometimes (but not always) happens that a window pops up with a text like "Ac-39

cess violation at address 00541FDD in module ’mim3206.exe’. Read of ad-40

dress 00EAE238." We do not know why this happens, but the problem can be41

avoided by simply starting up MIM manually before invoking mimR.42

When a dataframe is sent to MIM this is done by writing a file in the working43

directory of the current R session (the directory you will see if typing getwd(). This44

file is afterwards read into MIM. (This turns out to be the fastest way of getting45

larger amounts of data from R to MIM). MIM can not read such files if the working46

directory contains a hyphen (”-”). For example, if the working directory is c:47

/my-working-dir/ then mimR will not work.48

2.3 Limitations49

The maximum number of variables in models in mimR is 52. This is because the50

internal representation of variables in MIM is as letters (MIM is case sensitive in this51

respect).52

3 Specifying and displaying models53

In this section we show how to specify and display models in mimR for data arranged54

in a dataframe (where each row represent a case) or in a table as cumulated counts55

(for discrete variables). It is also possible to work with data arranged in other forms.56

Details are given in Section 9.57

3.1 Discrete models58

The discrete models are hierarchical log–linear models for contingency tables. For59

example, the contingency table HairEyeColor (which comes with R) contains a cross60

classification of persons with respect to gender, hair colour and eye colour:61

> HairEyeColor
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, , Sex = Male

Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

, , Sex = Female

Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

The model with generating class "Eye:Hair+Sex" satisfies that (Eye,Hair) are62

independent of Sex and is specified with:63

> hec1 <- mim("Eye:Hair+Sex//", data = HairEyeColor)

> hec1

Formula: Eye:Hair + Sex//
-2logL: 3648.17 DF: 15

The model can be displayed graphically as in Figure 1 by:64

> plot(hec1)

Hair

Eye

Sex

Figure 1: A graphical (log–linear) model for discrete data.

3.2 Continuous models65

The following data set (taken from Mardia et al. (1979), see also Edwards (2000))66

contains the examination marks for 88 students in 5 different subjects. Data is con-67

tained the data set math. A stepwise backward model selection yields the“butterfly”68

model shown in Figure 2 see also Whittaker (1990), p. 4.69

This model can be specified as70

> data(math)

> math1 <- mim("//me:ve:al+al:an:st", data = math)

> math1

Formula: //al:an:st + al:me:ve
-2logL: 3391.021 DF: 4
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me

ve al

an

st

Figure 2: The selected graphical Gaussian “butterfly” model for the mathmarks
data.

3.3 Mixed models71

Mixed models, or conditional Gaussian models (CG–models), arise by combining72

log–linear models and graphical Gaussian models. The rats dataset is from a73

hypothetical drug trial, where the weight losses of male and female rats under three74

different drug treatments have been measured after one and two weeks. See Edwards75

(2000) for more details. The first rows of the data are:76

> data(rats)

> rats[1:5, ]

Sex Drug W1 W2
1 M D1 5 6
2 M D1 7 6
3 M D1 9 9
4 M D1 5 4
5 M D2 9 12

For example, the model in Figure 3 is obtained with77

> rats1 <- mim("Sex:Drug/Sex:Drug:W2 + Drug:W1/W1:W2", data = rats)

> rats1

Formula: Drug:Sex/Drug:Sex:W2 + Drug:W1/W1:W2
-2logL: 273.8901 DF: 18

Sex

Drug

W1

W2

Figure 3: The model with generating class ”Sex:Drug/Sex:Drug:W2 +
Drug:W1/W1:W2”
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4 Models in mimR78

Only undirected models are available in mimR. That is, models in which all variables79

are treated on equal footing as response variables. Models where a possible response80

structure has to be accounted for can not be dealt with in mimR.81

An undirected model is created using the mim function (which returns a mim82

object). Default is that the model is fitted to data, but fitting can be avoided83

by setting fit=FALSE. To explicitly fit a model, use the fit() function which is84

described in Section 11.85

4.1 Model formulae86

The general form of a model formula in mimR is

d1 + d2 + · · · + dr/l1 + l2 + · · · + ls/q1 + q2 + · · · + qt

where dj , lj and qj are the respectively discrete, linear and quadratic generators.87

For purely discrete models (log–linear models) only the djs are specified and for88

purely continuous models (covariance selection models) only the qjs are specified.89

A formula in mimR must be given as a string, i.e. in quotes ("..."). It is not90

possible to specify models using the conventional R syntax, i.e. with ~.... The91

engine for specifying and fitting models is the mim function.92

4.2 Specification of special models93

It is possible to specify certain specific models (possibly for only a subset of the94

variables) in short form. These are 1) the main effects model (as "."), 2) the95

saturated model (as "..") and 3) the homogeneous saturated model as (as "..h").96

For example:97

> mim(".", data = rats, marginal = c("Sex", "Drug", "W1"))

> mim("..", data = rats, marginal = c("Sex", "Drug", "W1"))

> mim("..h", data = rats, marginal = c("Sex", "Drug", "W1"))

4.3 Model summary and model properties98

A summary and a description of certain model properties of a mim model can be99

achieved using the summary() and properties() functions:100

> summary(rats1)

Formula: Sex:Drug/Sex:Drug:W2 + Drug:W1/W1:W2
Variables in model : Drug Sex W2 W1
deviance: 27.99224 DF: 18 likelihood: 273.8901

Some properties of the model can be obtained with:101

> properties(rats1)

Model properties:
Variables in model : Drug Sex W2 W1
Is graphical : TRUE Is decomposable: TRUE
Is mean linear : FALSE Is homogeneous : TRUE
Is delta-collapsible: TRUE

6



The model summary reads as follows: 1) The model is fitted to data. 2) The102

model is graphical (such that there is a 1–1 correspondence between the model and103

its interaction graph). 3) The model is decomposable meaning that the maximum104

likelihood estimate exists in closed form (i.e. no iteration is needed). 4) The model is105

mean linear meaning that the regressions of each continuous variable on the discrete106

variables all have the same structural form. 5) The model is homogeneous meaning107

that the variance of the continuous variables does not vary with the levels of the108

discrete variables. 6) Finally, the model is ∆–collapsible which means that the109

model can be collapsed onto the discrete variables.110

A more general function is modelInfo() which provides various model infor-111

mation as a list. The function can be given an additional argument to take out a112

specific slot in the list. For example, to take out the linear generators do:113

> modelInfo(rats1, "mimGamma")

[1] "W1" "W2"

The types of variables in the model are retrieved with114

> variableType(rats1)

[1] "mixed"

4.4 Fitted values (parameter estimates)115

The fitted values (parameters estimates) can be obtained using the fitted() func-116

tion. For discrete and conituous models, the output format of the output is obvious.117

For mixed models the output has the form:118

> fitted(rats1)

Drug Sex Freq W1 W2 W1:W1 W1:W2 W2:W1 W2:W2
1 1 1 4 7.670068 8.25 3.945137 3.182823 3.182823 4.75
2 2 1 4 7.667517 8.75 3.945137 3.182823 3.182823 4.75
3 3 1 4 13.577381 8.50 3.945137 3.182823 3.182823 4.75
4 1 2 4 6.329932 6.25 3.945137 3.182823 3.182823 4.75
5 2 2 4 7.332483 8.25 3.945137 3.182823 3.182823 4.75
6 3 2 4 15.922619 12.00 3.945137 3.182823 3.182823 4.75

The data frame contains for each configuration of the discrete variables 1) the119

number of cases with that configuration and 2) the estimated mean vector and120

covariance matrix.121

5 Model editing122

Models can be edited using the update function by which one can 1) delete edges,123

2) add edges, 3) homogeneously add edges, 4) delete terms (interactions) and 5)124

add terms. We refer to Edwards (2000) for the precise definitions of these terms.125

It should be noted that operations are conducted in the order specified above. For126

example:127
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> m1 <- mim(".", data = rats)

> m2 <- update(m1, addEdge = c("Sex:Drug", "Sex:W2"))

Some properties of this model are128

> properties(m2)

Model properties:
Variables in model : Drug Sex W1 W2
Is graphical : TRUE Is decomposable: TRUE
Is mean linear : TRUE Is homogeneous : FALSE
Is delta-collapsible: TRUE

The model specified this way is heterogeneous because the variance of W2 depends129

on Sex). To add homogeneous terms, the haddEdge keyword can be used as in:130

> m3 <- update(m1, addEdge = "Sex:Drug", haddEdge = "Drug:W1:W2")

> properties(m3)

Model properties:
Variables in model : Drug Sex W2 W1
Is graphical : TRUE Is decomposable: TRUE
Is mean linear : TRUE Is homogeneous : TRUE
Is delta-collapsible: TRUE

Note the difference between deleting edges and terms:131

> h1 <- mim("..", data = HairEyeColor)

> update(h1, deleteEdge = "Hair:Eye:Sex")

Formula: Sex + Hair + Eye//
-2logL: 3794.613 DF: 24

> update(h1, deleteTerm = "Hair:Eye:Sex")

Formula: Hair:Sex + Eye:Sex + Eye:Hair//
-2logL: 3635.075 DF: 9

Note that if the starting model is (un)fitted, then so are all subsequent models132

derived using the update function unless one specifies fit=FALSE. To explictly fit a133

model, use the fit() function, see Section 11.134

6 Testing for deletion of an edge135

Consider again the saturated model for the HairEyeColor data:136

> h1 <- mim("Hair:Eye:Sex//", data = HairEyeColor)

We can test for deletion of edges from the model using the testdelete() function137

(which takes all the arguments as the TESTDELETE function in MIM does):138
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> testdelete("Hair:Eye", h1)

test: Chi-squared method: asymptotic
stat: 156.6778899 df: 18 P: 0

> testdelete("Hair:Sex", h1)

test: Chi-squared method: asymptotic
stat: 18.3271496 df: 12 P: 0.1061122

The testdelete() function also applies in a natural way if the model is hierar-139

chical, for example with the all two–factor model:140

> h2 <- mim("Hair:Eye+Hair:Sex+Eye:Sex//", data = HairEyeColor)

> testdelete("Hair:Eye", h2)

test: Chi-squared method: asymptotic
stat: 149.9166395 df: 9 P: 0

> testdelete("Hair:Sex", h2)

test: Chi-squared method: asymptotic
stat: 11.5658992 df: 3 P: 0.0090283

Rather than applying the asymptotic likelihood ratio test we may calculate141

Monte Carlo p–values with:142

> testdelete("Hair:Sex", h2, arg = "m")

test: Chi-squared method: asymptotic
stat: 11.5658992 df: 3 P: 0.0090283

Additional examples on the use of testdelete() are given in Section 10.143

7 Model comparison144

Consider the models145

> h1 <- mim("Hair:Eye:Sex//", data = HairEyeColor)

> h2 <- mim("Hair:Eye+Sex//", data = HairEyeColor)

Model h2 can be tested under h1 with the modelTest function:146

> modelTest(h2, h1)

Test of H0 : Eye:Hair:Sex//
Against : Eye:Hair + Sex//

test: Chi-squared method: asymptotic
stat: 19.856561 df: 15 P: 0.1775045
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8 Model selection147

The stepwise() function performs stepwise model selection. This function takes148

as additional arguments all arguments that the STEPWISE command in MIM does.149

The stepwise() function returns a new mim object.150

We consider the pig carcass data carcass and start with the independence151

model:152

> data(carcass)

> mainCarc <- mim(".", data = carcass)

A forward stepwise selection using significance testing as selection criterion with153

0.001 as critical level is obtained with:154

> carcForw <- stepwise(mainCarc, arg = "f", critlevel = 0.001)

The resulting model155

> carcForw

Formula: //LMP:F11:F12:F13 + LMP:M11:F13:M13 + M11:M12:M13
-2logL: 11419.96 DF: 8

is shown in Figure 4.156

LMP

F11

M11

F12

M12

F13

M13

Figure 4: The covariance selection model obtained after a forward selection for the
carcass data.

Alternatively we can make a backward stepwise selection using BIC as selection157

criterion, make an unrestricted search (as opposed to searching among decomposable158

models, which is the default) and make a non–coherent search (which means that159

the same edge can be tested several times during the models search):160

> satCarc <- mim("..", data = carcass)

> carcBack <- stepwise(satCarc, arg = "snu", critlevel = 0.001)

The resulting model is:161

> carcBack

Formula: //LMP:F11:F12:F13 + LMP:M11:F13 + F11:F12:M12:M13 + M11:M12:M13 + F11:F12:F13:M13 + M11:F13:M13
-2logL: 11375.99 DF: 5
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9 Graphical meta data – gmData162

The internal representation of data in mimR is by gmData which is short for“graphical163

meta data”. A gmData object contains information about variables, their labels,164

their levels (for discrete variables) etc. A gmData object will typically also contain165

data, but need not do so. The idea behind separating the specification of the166

variables from data is that some properties of a model, for example decomposability167

and collapsibility, can be investigated without any reference to data.168

Data represented as a dataframe or table (as in Section 3) are automatically169

converted to gmData in the mim function. Therefore we can (as we have done above)170

simply specify data to the mim function directly as a dataframe or a table.171

Data in certain other can also be used in mimR. However, for such data, one needs172

to create a gmData object. The most typical cases are described below; additional173

options are given in Section A.174

The generic function for creating gmData objects is the as.gmData function.175

9.1 Making a gmData object from a dataframe or a table176

To create a gmData object with from a dataframe do:177

> gmdRats <- as.gmData(rats)

> gmdRats

varNames shortNames varTypes nLevels
Sex Sex S Discrete 2
Drug Drug D Discrete 3
W1 W1 a Continuous NA
W2 W2 b Continuous NA
To see the values of the factors use the 'valueLabels' function
To see the data use the 'observations' function

To each variable, there is associated a letter. This letter is used in connection178

with the internal representation of models and variables in MIM and the user should179

not be concerned with this. The procedure is the same for data arranged in a180

table. Observations in their original form can be extracted with the observations181

function. To extract the first 5 rows of data do:182

> observations(gmdRats)[1:5, ]

Sex Drug W1 W2
1 M D1 5 6
2 M D1 7 6
3 M D1 9 9
4 M D1 5 4
5 M D2 9 12

To see the labels of the discrete variables, do:183

> valueLabels(gmdRats)

$Sex
[1] "F" "M"

$Drug
[1] "D1" "D2" "D3"

11



9.2 Creating a gmData object without data184

A gmData object (without data) can be created by the gmData() function:185

> newgmData(c("Sex", "Drug", "W1", "W2"), varTypes = c("con", "con",

"dis", "dis"), valueLabels = list(Sex = c("M", "F"), Drug = c("D1",

"D2", "D3")))

If no vallabels are given, default values are imposed. With such a specification,186

one can afterwards specify models and have mimR to find important properties of187

these models, e.g. whether a given model is decomposable.188

9.3 Discrete data arranged as cumulated cell counts in dataframe189

Sometimes discrete data are arranged as cumulated cell counts, for example190

> library(MASS)

> housing[1:5, ]

Sat Infl Type Cont Freq
1 Low Low Tower Low 21
2 Medium Low Tower Low 21
3 High Low Tower Low 28
4 Low Medium Tower Low 34
5 Medium Medium Tower Low 22

Here Freq contains the counts. To use these data in mimR, first turn the dataframe191

into a table, and then turn the table into a gmData object, i.e.192

> housingTab <- xtabs(Freq ~ Sat + Infl + Type + Cont, data = housing)

> ht <- as.gmData(housingTab)

> ht

10 Models with ordinal variables193

Consider the housing data (represented as the gmData object ht in Section 9). The194

variables Sat and Infl are ordinal. This is declared as:195

> ordinal(ht) <- c("Sat", "Infl")

> ht

varNames shortNames varTypes nLevels
Sat Sat S Ordinal 3
Infl Infl I Ordinal 3
Type Type T Discrete 4
Cont Cont C Discrete 2
To see the values of the factors use the 'valueLabels' function
To see the data use the 'observations' function

Declaring variables to be ordinal has an impact on the tests for edge removal/addition196

if the option w is given. For example we can test the significance of all edges in the197

saturated model with:198

> msat <- mim("Sat:Infl:Cont:Type//", data = ht)

> stepwise(msat, arg = "ow")
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Formula: Cont:Infl:Sat:Type//
-2logL: 13544.49 DF: 0

Compare this with the results when factors are not declared as being ordinal:199

> ht2 <- ht

> nominal(ht2) <- c("Sat", "Infl")

> msat2 <- mim("Sat:Infl:Cont:Type//", data = ht2)

> stepwise(msat2, arg = "ow")

Formula: Cont:Infl:Sat:Type//
-2logL: 13544.49 DF: 0

When one or more factors are declared as ordinal, different tests are available200

for testing for edge deletion:201

> testdelete("Sat:Infl", msat)

test: Chi-squared method: asymptotic
stat: 135.6897821 df: 32 P: 0

> testdelete("Sat:Infl", msat, arg = "k")

test: Kruskal-Wallis method: asymptotic
stat: 112.9188485 df: 16 P: 0

11 Model fitting202

11.1 Direct maximum likelihood estimation203

The function for fitting models via direct maximum likelihood estimation is fit:204

> m1 <- mim("..", data = rats, marginal = c("Sex", "Drug", "W1"),

fit = FALSE)

> fit(m1)

Formula: Drug:Sex/Drug:Sex:W1/Drug:Sex:W1
-2logL: 178.8729 DF: 0

11.2 EM algorithm205

For data given as a dataframe, the EM algorithm (Dempster et al. 1977) is available206

to handle incomplete observations. For example207

> r2 <- rats

> r2[1:2, 3] <- r2[3:4, 4] <- NA

> r2[1:5, ]
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Sex Drug W1 W2
1 M D1 NA 6
2 M D1 NA 6
3 M D1 9 NA
4 M D1 5 NA
5 M D2 9 12

The EM algorithm is switched on by fit="e":208

> mim("..", data = r2, fit = "e")

Formula: Drug:Sex/Drug:Sex:W1 + Drug:Sex:W2/Drug:Sex:W1:W2
-2logL: 169.8458 DF: 0

If the argument fit="e" is not given, then fit will try to use the EM algorithm209

if direct maximum likelihood estimation fails:210

> m2 <- mim("..", data = r2)

Seems that there are incomplete observations - trying EMfit

The EM algorithm starts by substititing random starting values for missing data.211

12 Latent variables212

12.1 Fitting a model with a discrete latent variable213

First we consider a latent variable model: We suppose that there is a latent binary214

variable A such that the manifest variables are all conditionally independent given215

A.216

First we add a binary factor A (with missing values) to the math dataset:217

> data(math)

> math$A <- factor(NA, levels = 1:2)

> gmdMath <- as.gmData(math)

Next, we make explicit in the gmData object that A is indeed a latent variable using218

the latent() function (in Section 12.2 it is explained why it must be specified219

explicitely that A is a latent variable):220

> latent(gmdMath) <- "A"

> gmdMath

varNames shortNames varTypes nLevels
me me m Continuous NA
ve ve v Continuous NA
al al a Continuous NA
an an b Continuous NA
st st s Continuous NA
A A A Discrete 2
Latent variables: A
To see the values of the factors use the 'valueLabels' function
To see the data use the 'observations' function

The model can be specified as221

14



> m1 <- mim("A/st:A+an:A+al:A+ve:A+me:A/st:A+an:A+al:A+ve:A+me:A",

data = gmdMath)

Model has latent variable - trying EM algorithm

The model is shown in Figure 5.222

me

ve al

an

st
A

Figure 5: Latent variable model for math data.

Predicted values for the latent variable under the model can be imputed in MIM223

using224

> imputeMissing()

To get the data (including the imputed values) from MIM to R do:225

> d.imp <- retrieveData()

> d.imp[1:5, ]

me ve al an st A
1 77 82 67 67 81 1
2 63 78 80 70 81 1
3 75 73 71 66 81 1
4 55 72 63 70 68 1
5 63 63 65 70 63 1

and so we see that the first 5 cases are assignes A to have level 1.226

Next, we plot the predicted value of A against the observation number:227

> plot(as.numeric(d.imp$A))

The plot is shown in Figure 6. The grouping of the values of A suggests that228

data have been processed somehow prior to presentation. (Edwards 2000), p. 181,229

conclude: “Certainly they (the data) have been mistreated in some way, doubtless230

by a statistician.”231

12.2 Controlling the EM algorithm232

The EM algorithm needs a set of initial values for the unobserved values to start233

from when calculating the parameter estimates in the first iteration. The final234

estimate of the EM algorithm may depend on the initial values and that (especially235

in the case of latent variables) the likelihood may have multiple maxima. Default236
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Figure 6: An index plot of the discrete latent variable A.

is that random starting values are imputed and that was actually the case above,237

where the factor A was given NA values.238

An alternative is to specify starting values for the latent variables in the dataframe,239

e.g. as240

> data(math)

> math$A <- factor(1:2, levels = 1:2)

> latent(gmdMath) <- "A"

> m1 <- mim("A/st:A+an:A+al:A+ve:A+me:A/st:A+an:A+al:A+ve:A+me:A",

data = gmdMath, fit = "es")

> m1

Formula: A/A:st + A:an + A:al + A:ve + A:me/A:ve + A:st + A:me + A:an + A:al
Latent variables: A
-2logL: 3454.935 DF: 20

The specification fit=’es’ means that the model should be fitted with the EM241

algorithm and that the given values of the latent variables should be used as starting242

values for the EM algorithm. Setting fit=’er’ means that random starting values243

will be used for the EM algorithm.244

For this reason latent variables must be declared explicitely in a gmData object.245

By this approach the sensitivity of the EM algorithm on starting values can be246

investigated.247

12.3 Fitting a model with a continuous latent variable248

To illustrate controlling of the EM algorithm, we make an alternative analysis,249

where A is regarded as a continuous variable. To speed up the convergence of the250

EM algorithm, we do a factor analysis to get good starting values:251

> data(math)

> fa <- factanal(math, factors = 1, scores = "regression")

> math2 <- math

> math2$A <- fa$scores

Then we create a gmData object with this new augmented data set and declares252

that A is to be regarded as a latent variable:253
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> gmdMath <- as.gmData(math2)

> latent(gmdMath) <- "A"

> m1 <- mim("//st:A+an:A+al:A+ve:A+me:A", data = gmdMath)

Model has latent variable - trying EM algorithm

As before we impute the missing values, retrieve the data to R and plot the254

imputed values for the latent variable:255

> imputeMissing()

> d.imp <- retrieveData()

> plot(d.imp$A)

The plot of the imputed values for the latent variables are shown in Figure 7256

and this also suggests that the data do not emerge in random order.257
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Figure 7: An index plot of the continuous latent variable A.

Indeed if we plot the mean grade for each student against the imputed values of258

the latent variables as259

> plot(apply(math, 1, mean), d.imp$A)

we get Figure 8, which gives a remarkably good match. This suggests that the260

claimed “mistreatment” of the data consisted in sorting them according to the av-261

erage grade.262

13 Discussion263

In this manual we have illustrated some aspects of the mimR package for graphical264

modelling in R. It is the hope that mimR will be obsolete in a not too distant future265

– not because of lack of relevance of being able to work with graphical models in R.266

Rather, it is the hope that a more proper package with with at least the functionality267

of mimR will be created. That is one of the aims of the gR–project, which has lead to268

the minimal package gRbase, (Dethlefsen and Højsgaard 2005), which is available269

on CRAN. The fucntionality of gRbase is however very limited and as such mimR is270

a relevant package to use for graphical modelling in R.271
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A Additional ways of getting data into mimR276

A.1 Continuous data277

For continuous data, the covariance matrix together with the number of observations278

(and possibly a mean vector) can be given. For example for the math data we can279

do:280

> S <- cov(math)

> x <- empCov(S, 88)

> as.gmData(x)

varNames shortNames varTypes nLevels
me me m Continuous NA
ve ve v Continuous NA
al al a Continuous NA
an an b Continuous NA
st st s Continuous NA
To see the values of the factors use the 'valueLabels' function
To see the data use the 'observations' function

It is wise to check that data have been entered correctly by:281

> toMIM(x)

> mim.cmd("print s")

A.2 Discrete data282

Schoener (1968) describes data concerning the perching behaviour of two species of283

lizards, see also Edwards (2000). Data is a three–way contingency. Data, repre-284

sented as a list of counts, can be turned into a gmData object with:285
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> x <- cellCounts(c("species", "diameter", "height"), valueLabels = list(species = c("anoli",

"disticus"), diameter = c("<=4", ">4"), height = c(">4.75",

"<=4.75")), observations = c(32, 86, 11, 35, 61, 73, 41, 71))

> as.gmData(x)

varNames shortNames varTypes nLevels
species species s Discrete 2
diameter diameter d Discrete 2
height height h Discrete 2
To see the values of the factors use the 'valueLabels' function
To see the data use the 'observations' function

The order of the cells are (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), . . . , (2, 2, 1), (2, 2, 2),286

i.e. the last index varies fastest.287

B Low level access to MIM from R288

B.1 Primitive use of MIM from R – the mim.cmd() function289

The core of mimR is the mim.cmd function. The arguments to mim.cmd are simply290

MIM commands (given as strings). For example:291

>mim.cmd("fact a2 b2; statread ab; 25 2 17 8 !")

>mim.cmd("mod a,b; fit; print; print f")

The mim.cmd function returns the result of the commands submitted to MIM.292

The result of the last call of mim.cmd above is:293

Deviance: 5.3111 DF: 1

The current model is: a,b.

Fitted counts, means and covariances.

a b Count

1 1 21.808

1 2 5.192

2 1 20.192

2 2 4.808

B.2 Using MIM directly from mimR– the mcm() function294

The mcm function (short for “MIM command mode”) provides a direct interface to295

MIM, i.e. the possibility to write MIM commands directly. The mcm function returns no296

value to R, and is intended only as an easy way to submit MIM commands without the297

overhead of wrapping them into the mim.cmd function (or submitting the commands298

directly to MIM). Hence, using mcm, the session above would be:299

> mcm()

Enter MIM commands here. Type quit to return to R

MIM->fact a2 b2; statread ab

MIM->25 2 17 8 !

Reading completed.

MIM->mod a,b; fit

Deviance: 5.3111 DF: 1

MIM->print; print f
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The current model is: a,b.

Fitted counts, means and covariances.

a b Count

1 1 21.808

1 2 5.192

2 1 20.192

2 2 4.808

MIM->quit

>

To return to R from the mcm function type ’quit’, ’exit’, ’end’, ’q’ or ’e’ (i.e. the300

commands one would use to terminate MIM). These commands, however, do not301

terminate MIM – they only return control to R.302
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