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1 Introduction

The R-package ‘monoProc’ is an implementation of the monotonization pro-
cedure introduced by Dette, Pilz, and Neumeyer (2005) and Dette, Scheder
(2005). The goal of this software package is to provide a smooth monotoniz-
ing procedure which can be used for any smooth regression estimate with
one or two independent variables. This goal is not easily to reach, but so far
there are four classes of regression estimates which can be directly mono-
tonized by applying ‘monoproc’. Besides that, a somehow default-method
to monotonize is available where the input is a ‘list’. In the second section,
the monotonizing procedure is briefly introduced within a nonparametric
setting. The third section deals with some changes to S4-classes. The usage
of the package ‘monoProc’ and the class ‘monoproc’ are presented in the
fourth and fifth section, and last but not least some issues and problems of
this implementation are discussed.
‘monoProc’ can be obtained via the WWW at http://homepage.ruhr-uni-
bochum.de/Regine.Scheder/work.html.

2 The monotonizing procedure

The general setting of the R-package ‘monoProc’ can be described as the
problem of estimating a regression function under monotonicty constraints
in a nonparametric regression model, that is

Z = m(T ) + σ(T )ε,

where m is a smooth monotone function, σ a smooth variance function
without further constraints, ε denotes a random error, and T is the observed
value of independent variables [more than one variable is possible]. The
monotonizing procedure applies an unconstrained nonparametric estimate
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of the regression function as preliminary estimate m̂, e.g. the Nadaraya and
Watson estimate or local polynomial estimates. In the following, the two
steps of the monotonizing procedure are described.

• Step 1 (isotonization)
Define

m̂−1
I (z) =

1
Nhd

N∑
i=1

∫ z

−∞
Kd

(
m̂( i

N )− u
hd

)
du, (1)

where hd is a bandwidth with hd → 0 for a positive two times con-
tinuously differentiable, symmetric kernel Kd with compact support
on [-1,1]. If N is sufficiently large, then m̂−1

I (z) is strictly monotone
increasing and a good approximation for

1
hd

∫ 1

0

∫ z

−∞
Kd

(
m̂(x)− u

hd

)
dudx.

This last expression is a smooth version of∫ 1

0
I{m̂(x) ≤ z}dx

which is the fundamental motivation of this procedure, since this is
for a monotone function m̂ the inverse, i.e. m̂−1. To obtain a strictly
monotone decreasing estimate, we define instead of (1)

m̂−1
A (z) =

1
Nhd

N∑
i=1

∫ ∞
z

Kd

(
m̂( i

N )− u
hd

)
du. (2)

• Step 2 (inversion)
The inverse of m̂−1

I (z) and m̂−1
A (z), respectively, is calculated. This

function is either strictly increasing or strictly decreasing.

It is worth mentioning that this procedure is not restricted to a nonpara-
metric setting and can be applied in the same way in a parametric setup.
Furthermore, this procedure can be used for any smooth function. An ex-
tension to multivariate regression setting is possible too.

3 S4-Classes for ‘ksmooth’ and ‘locpoly’

To simplify the use of the function ‘monoproc’, two functions for nonpara-
metric regression estimation are changed to functions with S4-Class values.
Basically, both function, ‘ksmooth’ from the ‘stats’ package and ‘locpoly’
from ‘KernSmooth’ package, can be used in their original form, since their



values are of class ‘list’. The new function ‘ksmooth’ has as value an object
of class ‘ksmooth’ containing three components the x- and the y-values of the
smoothed fit and the call of this object. The function and the class ‘locpoly’
are constructed correspondingly. In ‘monoProc 1.0-5’, the match.call func-
tion uses the original functions as argument that the variables can be ac-
cessed by their name. This is a first step to change these important standard
functions into the S4-class system. But this means also that the existence of
these two functions in the package ‘monoProc’ are considered as temporar-
ily to allow things like changing the gridsize in ‘monoproc’ without fitting
explicitly the unconstrained estimator again.

4 How to use ‘monoProc’

Some important details about the use of this R-package are introduced in
this section. So far, the ‘monoProc’-Package contains the monotonizing
function ‘monoproc’, a cross-validation function ‘cv’ (implementation only
for monotonized ‘locfit’-objects), several S4-classes, and two intrinsic func-
tions ‘mono.1d’ and ‘mono.2d’, basically the default functions, which are
called within ‘monoproc’.
First of all, the value of the function ‘monoproc’ is an object of class ‘mono-
proc’ with some further specification depending on the original regression
fit and the dimensionality of the problem. It is distinguished between an
one-dimensional and a two-dimensional regression problem (i.e. the dimen-
sion of the independent variable). For an one-dimensional problem, the
function ‘monoproc’ gives an object of class ‘monoproc.1d’ back and in the
two-dimensional case an object of class ‘monoproc.2d’. These two classes
extend the class ‘monoproc’ and are implemented to provide different ‘plot’
and ‘summary’ methods. The classes ‘monoproclocfit.1d’ and ‘monoprocloc-
fit.2d’ are ‘monoproc’-objects which are monotonized ‘locfit’-objects. This
two additional classes are brought in because there is a cross validation
function available for these two classes. The ‘locfit’ package provides a func-
tion to calculate the cross validation scores which is also used implicitly to
evaluate the cross validation function for the monotone fit. In general, the
intention is to have this cross validation function ‘cv’ for all monotone fits,
but, currently, this is only existing for ‘monoproclocfit.1d’ and ‘monopro-
clocfit.2d’, respectively.
The basic formals of ’monoproc’ are ’fit’, ’bandwidth’, ’xx’, and ’dir’ which
define the signature of ’monoproc’. Some of them can be missing, e.g. ’dir’
refers to a twodimensional problem and is therefore only needed in these
cases (otherwise an error occurs). The variable ’xx’ determines where the
function ’monoproc’ is evaluated, if missing the independent variables of
’fit’ are used instead. There are three more variables, ’mono1’, ’mono2’, and
’gridsize’. Their default values are ”increasing” for ’mono1’ and ’mono2’,



and 40 for the gridsize (but for lists the length of the response is used).
In order to illustrate the usage of ‘monoProc’, some detailed examples are
discussed. The cars data in the datasets package is often used a standard
example for regression estimates. Therefore, we will apply the monotoniz-
ing procedure to this data set with several preliminary regression estimates.
The aim is to demonstrate the features of ‘monoProc’ not to find the best
regression fit for the cars data.

> library(monoProc)

> data(cars)

> speed <- cars$speed

> dist <- cars$dist

As a first fit for the cars data the Nadaraya-Watson estimate is calculated
with the R-function ‘ksmooth’ and then ‘monoproc’ is applied. There exists
another function in R which fits a monotone regression function, but this
function computes a piecewise constant regression fit. These two monotone
functions are compared with each other in Figure 1.

> fit1 <- ksmooth(speed, dist, "normal", bandwidth = 2.5)

> fit2 <- monoproc(fit1, bandwidth = 0.7)

> fit3 <- isoreg(speed, dist)
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Figure 1: A comparison with the R-function isoreg.

The function ‘loess’ from the ‘stats’-package can be used as well as a pre-
liminary estimate in ‘monoproc’. To change the evaluated points in ‘mono-
proc’, use the variable ‘xx’. In this example, the use of ‘monoproc’ does
not make sense since the loess fit is already monotone but the ‘goodness’ of



the monotone approximation with a bandwidth 0.4 and a gridsize of 30 is
demonstrated.

> cars.lo <- loess(dist ~ speed, cars, degree = 2,

+ control = loess.control(surface = "direct"))

> predict <- predict(cars.lo, data.frame(speed = seq(5,

+ 25, 1)))

> monofit <- monoproc(cars.lo, bandwidth = 0.4, xx = seq(5,

+ 25, 1), mono1 = "increasing", gridsize = 30)
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Figure 2: Plot of a loess object and a its corresponding monoproc fit.

Although ‘monoproc’ is not explicitly implemented for a parametric re-
gression function, by transforming a polynomial regression fit into a ‘list’-
object, ‘monoproc’ can be used. It is recommended to use a equidistant
design for the x-variables. In the following, it is shown how this works ex-
emplified again through the cars data. First of all a polynomial regression
of degree 4 is fitted, and a ‘list’ is created by using the function ‘predict’
with the equidistant vector d. The length of the vector d corresponds in this
case to the gridsize N .

> d <- seq(0, 25, len = 200)

> pr <- lm(dist ~ poly(speed, 4))

> prlist <- list(speed = d, dist = predict(pr, data.frame(speed = d)))

> mpr <- monoproc(prlist, bandwidth = 0.05, mono1 = "increasing")

In the next example, the usage in a two-dimensional regression problem
is presented. The Fat data set in the package ‘UsingR’ contains two body fat
measures obtained by underwater weighing and several body measurements
(weight, height, and body circumfence measurements). Two outliers in this
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Figure 3: monoproc in a parametric setting.

data set are removed for this analysis. Motivated by the Body Mass Index,
we consider the simple regression model

Y = m(X1, X2) + ε,

where

Y = body.fat.siri (%),
X1 = weight (lbs),
X2 = height (inch),

and m is a strictly monotone increasing in X1 and strictly monotone de-
creasing in X2. But first a local polynomial estimate without constraints is
fitted using ‘locfit.raw’ from the ‘locfit’-package.

> library(UsingR)

> library(locfit)

> data(fat)

> fat <- fat[-39, ]

> fat <- fat[-41, ]

> attach(fat)

> fit <- locfit.raw(cbind(weight, height), body.fat.siri,

+ alpha = 0.3, deg = 1, kern = "epan")

> fitmono <- monoproc(fit, bandwidth = 1, mono1 = "increasing",

+ mono2 = "decreasing", dir = "xy", gridsize = 30)

With the variable ‘dir’, the direction, the order of the monotonization, and
the variables themselves (by choosing ”x” or ”y” only the first or rather the



second variable is monotonized) are determined. The gridsize refers to N in
(1) and (2), respectively, that means for the actual calculation of m̂I , where
both variables are montonized, N2 points are used for the evaluation. It is
therefore not recommended to use values for the gridsize bigger than 50.
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Figure 4: Bodyfat example: perspective and contour plots. Upper panel:
the unconstrained regression estimate. Lower panel: the monotone estimate.

To compare the unconstrained and the monotized fit with each other, a
cross validation function ‘cv’ for monotonized ‘locfit’-objects is implemented.
One-leave-out Cross Valdiation is used, i.e.

CV =
1
n

n∑
i=1

(Yi − m̂I,i(Xi))2

where m̂I,i(Xi) corresponds to the estimated value for Yi after monotoniza-
tion where the observation (Xi, Yi) is left out. The value of the function



‘cv’ is a matrix containing the values m̂I,i(Xi) [the monotone estimate] in
the first column and m̂(Xi) [the unconstrained estimate] in the second col-
umn. So applied to the Bodyfat-example, we obtain for the unconstrained
estimator

> t <- cv(fitmono)

> sum((t[, 2] - body.fat.siri)^2)/250

[1] 31.45823

and for the monotone estimator

> sum((t[, 1] - body.fat.siri)^2)/250

[1] 31.6438

The Cross Validation function can also be used to choose the bandwidth of
the monotonizing procedure.

The ‘monoproc’-method for ‘list’-objects is a kind of default-method.
This method gives the flexibility to apply ‘monoproc’ to regular functions.
In the following, the function

f(x, y) =
1
2

(y +
sin(6πy)

3π
)(1 + (2x− 1)3)

is used as an example. This function is strictly monotone increasing in x
but not in y. To monotonize this function with respect to y, a ‘list’-object is
created. In order to monotonize this function in y, the variable ‘dir’ is set to
”y” and ‘mono2’ to ”increasing”. It is to remark that the x- and y-variable
in list do not have to be of the same length, but z has to correspond to the
values of x and y.

> x <- seq(1:50)/51

> y <- seq(1:70)/71

> z <- matrix(0, nrow = 50, ncol = 70)

> for (i in 1:70) {

+ for (j in 1:50) {

+ z[j, i] <- 0.5 * (y[i] + 1/(3 * pi) * sin(6 *

+ pi * y[i])) * (1 + (2 * x[j] - 1)^3)

+ }

+ }

> list <- list(x = x, y = y, z = z)

> mono <- monoproc(list, bandwidth = 9e-04, dir = "y",

+ mono2 = "increasing")

In Figure 6, two-dimensional plots are presented to show how the mono-
tonizing procedure works. The commands for Figure 6 might be interesting
to see how the fitted values can be accessed. Therefore all commands for
the given figures can be found in the Appendix.
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Figure 5: Monotonizing with respect to a single variable in a two-dimensional
problem.

5 The class ‘monoproc’

To allow users more flexibility in building new methods for the class ‘mono-
proc’, we will discuss briefly some features of this class. First of all, the
dependency between the ‘monoproc’-classes can be illustrated by the follow-
ing graph.

⇒ monoproc.1d
monoproc

⇒ monoproc.2d

> slotNames("monoproc")

[1] "fit" "fitold" "gridsize" "bandwidth" "kernel"
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Figure 6: The function f and its monotonization at fixed x = 3
51 (left) and

at fixed y = 3
101 (right).

[6] "mono" "name" "call"

> slotNames("monoproc.1d")

[1] "fit" "fitold" "gridsize" "bandwidth" "kernel"
[6] "mono" "name" "call"

> slotNames("monoproc.2d")

[1] "dir" "fit" "fitold" "gridsize" "bandwidth"
[6] "kernel" "mono" "name" "call"

The classes ‘monoproc’ and ‘monoproc.1d’ are basically the same. In the
class ‘monoproc.2d’, the slot ‘dir’ is attached. The names for the slots are
chosen self-explanatory and the slot ‘call’ can be easily used for further
manipulations.

6 Problems to solve in the future

At the moment, especially the Cross-Validation function ‘cv’ might be com-
putationally not efficient since for a two-dimensional problem this function
calls another R function in which, furthermore, a C program is called. But
the general issue of this Package or of the function ‘monoproc’ is related to
the fact that it should be able to be used with any smooth function coming
from anywhere (i.e. ‘locfit’, ‘ksmooth’, or ‘locpoly’). This is a real prob-
lem or challenge since all this ‘objects’ have very different properties, e.g.
the slots for the fitted values have different name or are only available after



calling another function to evaluate or to predict. This makes the func-
tion ‘monoproc’ a bit messy. For this reason, the functions ‘mono.1d’ and
‘mono.2d’ are used to do the actual monotonization. Both functions have
basically a list containing the independent variables (maximal two indepen-
dent variables) and the response (same length as the variables) as argument.
The length of the elements of this list determines the integral approximation
described in section 2 where N corresponds to the length of the response.
With this functions and also with the method ‘monoproc’ for ‘list’, it is eas-
ily possible to extend this monotonizing procedure to other objects. Further
work might be therefore focused on the extension of ‘monoproc’ to other
classes as arguments. Another emphasis is to make the cross validation
function ‘cv’ available for all ‘monoproc’-objects.
In ’monoProc 1.0-5’, the signature of the function ’monoproc’ contains the
variables ’fit’, ’bandwidth’, ’xx’, and ’dir’. This allows to match the method
’monoproc’ in a more direct way (avoids some if-statements). Missing values
for the bandwidth of the ’monoproc’ function are not accepted. In this case,
’monoproc’ gives the message:

> monoproc(fit)

the bandwidth for the monotonizing has to be specified!

Acknowledgements The author would like to thank Duncan Temple
Lang for helpful comments and suggestions for the implementation of this
package.

References

H. Dette, K.F. Pilz, N. Neumeyer (2005). A simple nonparametric esti-
mator of a monotone regression function. To appear in: Bernoulli.

H. Dette, R. Scheder (2005). Strictly monotone and smooth nonpara-
metric regression for two or more variables. Technical report, Department
of Mathematics.

http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm

Appendix

This appendix gives the commands for the figures in this paper.

Figure 1

> plot(fit3, plot.type = "single", main = "monotone regression",

+ xlab = "speed", ylab = "distance", par.fit = list(col = "black",



+ cex = 1.5, pch = 13, lwd = 1.5, lty = 3))

> lines(fit1, lty = 1, lwd = 1.5)

> lines(fit2, lty = 2, lwd = 1.5)

> legend(5, 100, c("isoreg", "ksmooth", "monoproc"),

+ col = c(1, 1, 1), lty = c(3, 1, 2))

Figure 2

> plot(cars.lo, xlab = "speed", ylab = "dist")

> lines(seq(5, 25, 1), predict)

> lines(monofit, lty = 2)

> legend(5, 100, c("loess", "monoproc"), lty = c(1,

+ 2))

Figure 3

> plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

+ las = 1, xlim = c(0, 25))

> lines(d, predict(pr, data.frame(speed = d)))

> lines(mpr, lty = 2)

> legend(5, 110, c("polynomial regression", "monotonized polynom"),

+ lty = c(1, 2))

Figure 4

> plot(fit, type = "persp", theta = 300, phi = 30,

+ col = "lightblue", cex = 1.3, main = "unconstrained Bodyfat estimate")

> plot(fit, main = "contour plot of the unconstrained estimate")

> plot(fitmono, theta = 300, phi = 30, col = "lightblue",

+ cex = 1.3, main = "monotone Bodyfat estimate")

> plot(fitmono, type = "contour", main = "contour plot of the monotone estimate")

Figure 5

> persp(x, y, z, phi = 30, theta = 250, col = "lightblue",

+ main = "f(x,y)")

> plot(mono, phi = 30, theta = 250, col = "lightblue",

+ main = "monotone f(x,y)")

> contour(x, y, z, main = "contour plot f(x,y)")

> plot(mono, type = "contour", main = "contour plot monotone f(x,y)")

Figure 6

> plot(y, z[3, ], type = "l", main = "fixed x=3/51")

> lines(mono@fit@y, mono@fit@z[3, ], lty = 2)

> legend(0.2, 0.14, c("f(x,y)", "monotonized f(x,y)"),

+ lty = c(1, 2))

> plot(x, z[, 3], type = "l", main = "fixed y=3/101")



> lines(mono@fit@x, mono@fit@z[, 3], lty = 2)

> legend(0.2, 0.1, c("f(x,y)", "monotonized f(x,y)"),

+ lty = c(1, 2))


