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The software we used for Math 135 in 2010-2011 included operators such as D
and antiD that took functions as arguments and returned functions as values, a
built-in plotting program for functions of one variable, curve, and a home-made
function, contour.plot, for plotting functions of two variables. This worked
reasonably well, but there were some shortcomings:

• An inconsistency in syntax between curve and the other functions D, an-
tiD, and contour.plot. Whereas curve can take an expression as the
function to be plotted, the other functions cannot. Students (and instruc-
tors!) found it convenient to be able to define functions with expressions.

• The argument always used in curve is x, which undermines our desire to
give students a more general view of functions than “something that takes
x.”

• Although partial differentiation is part of the course, there was no way to
take a partial derivative in the software.

• Parameters were often stored in the global environment. Changing them
involved a separate assignment statement; the values could not be seen
directly in the statement at hand.

• No connection to lattice. Randy Pruim wrote an fplot that works with
lattice, but doesn’t evaluate expressions like curve.

In an attempt to address these issues, I have drafted a new set of operators
to replace D, antiD, curve, and contour.plot. I have provisionally (and awk-
wardly) called these new functions newD, newAntiD, and plotFun — they would
likely be renamed D, antiD, and plt.

The goal of this note is to introduce these new operators and give us a chance
to discuss the syntax being used. I’ve tried to make this syntax relatively flexible
and consistent with the overall modeling paradigm within R. Some changes are
possible, but limited by the language and by my limited understanding of the
language.

The new software is contained in a file plt.R which you can source into your
R session:
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> source("plt.R")

1 Basic Syntax

The software is built around the idea of a formula of this form:

Mathematical expression ~ variables to work with.

For example

A*sin(2*pi*t/P)*exp(-k*t) ~ t&k

Any symbolic quantities — A, t, P, and k in the above — can be left as free
variables or assigned values through the usual argument assignment mechanism.
For some purposes, e.g., plotting out a function or finding zeros, it’s essential
that all free variables be given numerical values. For other purposes, e.g., in-
tegration or differentiation, the variables can be left free or can optionally be
assigned default values.

For instance, here’s the command to plot out the expression specified above
as a function of variables t and k:

> plotFun(A*sin(2*pi*t/P)*exp(-k*t) ~ t&k, A=3, P=5, k=range(0.1,0.5), t=range(0,10) )

By design, pi can never be used as a free variable: it’s always taken as a
number.

DETAIL: Don’t name a free variable with a starting period (.), e.g. .a.
Other than that, all legitimate variable names should work. If you run into
problems, let me know. Sometimes there is a conflict between free variables and
variables used in the software — these are bugs.

2 Plotting Software

The plotting software is designed to allow expressions involving any variables to
be used and designated as the axes. The same software handles both functions
of one and two variables. For example, here is a plot involving two variables, A
and t. The variable t is identified as the independent variable by putting it to
the right of the ~. Later in the statement, the independent variable is given a
range of values and parameter A is given a specific numerical value.

> plotFun( A*sin(2*pi*t/10) ~ t, t=range(0,20), A=5)

2



0 5 10 15 20

−
4

0
4

t

A
si

n(
2π

t
10

)

Failure to set A results in an error message: object ’A’ not found.
By specifying two independent variables, and giving them a range, a contour

or surface plot will be made. (This function could be extended to serve as a
panel function in the lattice graphics.)

> plotFun( A*sin(2*pi*t/10) ~ t&A, t=range(0,20), A=range(1,5))
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Using the surface=TRUE optional argument will cause a surface plot to be
generated. In RStudio, this comes with a slider to rotate the plot.

> plotFun( A*sin(2*pi*t/10) ~ t&A, t=range(0,20), A=range(1,5),surface=TRUE)
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FOR THE FUTURE: I can imagine extending this to allow a range of one
extra variable to be specified, with the result being a series of plots.

The value returned (invisibly) from plotFun is a function based on the ex-
pression given in the first argument. Each of the variables in the expression will
be assigned a default value based on assignments in the call to plotFun. You
can either use these default values, or change them. For example:

> f = plotFun( A*exp(-k*t) ~ t, A=5, k=.1, t=range(0,10),lwd=2)

> plotFun( f(t=t,k=.15) ~ t, col="red",add=TRUE)

> plotFun( f(t=t,A=3) ~ t, col="blue", lwd=3,add=TRUE)

> plotFun( f(t=t,k=.15,A=3.5) ~ t, add=TRUE, t=range(.5,2.5), col="green", lwd=5)
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Notice that, since add=TRUE was used in the middle two calls to plotFun,
the limits have been inferred from the existing plot. In the fourth call, limits
have been set explicitly and the add argument set so that overplotting is done.

If the additional plot is outside of the current y-axis range, a warning message
is given.

Example: Constraint Functions Inequality constraints can be plotted out
by using a logical expression. Equality constraints are problematic, since they
are typically a set of measure 0. But equality constraints can be plotted out as
inequality constraints, then considering only the border.

> plotFun( x^.5 * y^.5 ~ x&y, x=range(0,5), y=range(0,5), npts=100)

> plotFun( (x + y < 4) ~ x&y, add=TRUE,col="red", lwd=5,npts=100,filled=TRUE)
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The bright area shows regions where the constraint is satisfied. It’s effec-
tive to set transparency=0 when using an inequality to represent an equality
constraint.

Backward Compatibility The plotFun function tries to behave in a way
that’s compatible with curve or fplot: you can plot numerical constants, func-
tion objects, and strings that name functions.

> plotFun(sin, xlim=c(0,10))

> plotFun(.5, add=TRUE,col="red")

> plotFun("cos",add=TRUE, col="blue", lwd=3)
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Of these, only the numerical constant is something to be encouraged, but
the other forms might be employed by those used to curve.

TO DO: Add a “label” argument along with a “where” argument that takes
a value of the independent variable. It will put the label on the function at the
point specified by “where”.

TO DO: Produce a lattice version.

3 Finding Zeros

The findZeros operator takes a function of one variable, perhaps produced by
an expression as in plotFun, and finds the roots of that function over some
specified interval. If a plot is showing and the interval isn’t explicitly stated,
findZeros will look for the interval and solution variable in the plot.

> plotFun(A*exp(-k*t)*sin(2*pi*t/10) ~ t, A=10, k=.1,t=c(0,100))

> z = findZeros(A*exp(-k*t)*sin(2*pi*t/10) ~ t, A=10, k=.1)

> z

[1] 0.000000 4.999984 10.000000 15.000000 20.000000

[6] 25.000000 30.000000 35.000000 40.000000 45.000000

[11] 50.000000 55.000001 60.000001 65.000001 70.000001

[16] 75.000000 80.000000 85.000000 90.000000 94.999990

> # add them to the plot

> points(z,0+0*z,pch=20,col="red")

> # find the places where the function crosses 2

> z2 = findZeros(A*exp(-k*t)*sin(2*pi*t/10) - 2 ~ t, A=10, k=.1)

> points(z2,2+0*z2, pch=20, col="black")
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The findZeros operator breaks up the interval into a “large” number of
segments, and searches each segment for a zero. You can control the number of
segments by setting the optional argument npts, which by default is 1000. It
will make a reasonable attempt even when the interval requested is very large
by using logarithmic spacing in the direction of very large endpoints.

> plotFun( dnorm(x, mean=3, sd=2)~x, xlim=c(-10,10))

> findZeros( dnorm(x, mean=3, sd=2)-.1~x, x=c(-10,10))

[1] 0.6496804 5.3503241

> findZeros( dnorm(x, mean=3, sd=2)-.1~x, x=c(-Inf,Inf))

[1] 0.6496804 5.3503241
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The goal is not to find every zero (although that would be nice!), but all the
zeros that might be detectable in a plot. So, if the function stays on each side
of zero for adjacent intervals that are bigger than about 1/npts of the range,
the intervening zero should be detected. You can fool findZeros by giving it a
search range which is much larget than the interval over which the sign changes.

This interval is small enough to detect the crossing above the threshold of
0.1

> plotFun(dnorm(x, mean=3000, sd=2) ~ x, x=range(0,4000))

> abline(.1,0,col="red")

> findZeros( dnorm(x, mean=3000, sd=2)-0.1 ~ x, x=range(0,4000))

[1] 2997.65 3002.35

8



0 1000 2000 3000 4000

0.
00

0.
10

0.
20

x

dn
or

m
(x

, 3
00

0,
 2

)

But the following interval is just a bit too big and the spike visible in the
graph was too narrow to be detected:

> findZeros( dnorm(x, mean=3000, sd=0.2)- 0.1 ~ x, x=range(0,10000))

NULL

TO DO: It would be nice to extend findZeros to take functions of multiple
(2 would do) variables.

4 Differentiation

The new operator, like the old one, returns a function. But unlike the old
operator, the function returned by the new operator can have multiple variables
as inputs. The variable with respect to which differentiation is to take place is
explicitly identified with the ~ syntax.

> dfdt = newD( A*exp(-k*t)*sin(2*pi*t) ~ t )

Since there is no formal argument list, the order of arguments is somewhat
arbitrary. It can be seen with the args command

> args(dfdt)

function (t = NA, A = NA, k = NA)

NULL

In evaluating the function, the “named arguments” technique should be used
to avoid dependence on the order of the arguments in the function:
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> dfdt(t=10,k=.2,A=3)

[1] 2.550959

This can be relaxed somewhat in plotting the function:

> plotFun(dfdt(t,A=3,k=.2)~ t, t=range(0,10))
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Of course, you might wish to plot the function against another variable, e.g.
k:

> plotFun(dfdt(t=4,A=3,k=k)~ k, k=range(0,.5),main="Plotted against k")
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Or, even to make a plot of the function against two variables:
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> plotFun(dfdt(t=t,A=3,k=k)~t & k, t=range(0,6),k=range(0,.5))
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Derivatives can, like any other function, be differentiated. With the new
system, we can take partial derivatives including mixed partials.

Here’s a demonstration that the mixed partials are equal.

> f = function(t,A,k){A*exp(-k*t)*sin(2*pi*t)}

> dfdt = newD(f(t,A,k) ~ t)

> args(dfdt)

function (t = NA, A = NA, k = NA)

NULL

> dfdk = newD(f(t,A,k)~ k)

> args(dfdk)

function (k = NA, t = NA, A = NA)

NULL

> dfdtk = newD(dfdt(t=t,A=A,k=k)~ k)

> dfdkt = newD(dfdk(t=t,A=A,k=k)~t )

> dfdkt(t=1,A=3,k=.1)

[1] -17.05646

> dfdtk(t=1,A=3,k=.1)

[1] -17.05646

Notice that the assignment form for arguments is being used. This is important
because the order of arguments in dfdt and dfdk is different.

The new function can be used in the same way as the old D, if desired:
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> f1 = newD(sin)

> f1(0)

[1] 1

> f2 = newD(f1)

> f3 = newD(f2)

> f4 = newD(f3)

> plotFun(f1(x)~x, x=range(0,10))

> plotFun(f2(x)~x, col="blue", lwd=2, add=TRUE)

> plotFun(f3(x)~x, add=TRUE, col="red", lwd=2)
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The choice of finite-
difference h = 0.0001 is set to make things work reasonably for sin-like functions
up to the third derivative. (A larger h is needed for higher-order functions.)

TO DO: Define higher-order derivatives with a notation like ~x + y or ~x+x
or perhaps ~ x then y.

TO DO: Possible capstone/honors project: implement the calculation via
automatic differentiation.

5 Anti-Differentiation

The new newAntiD operator lets you specify which variable is to be used as the
variable of integration. It returns a function with two arguments to replace the
variable of integration: from and two. (Any other variables in to the original
function remain as variables to the function that is returned by newAntiD.) The
default value of from is 0, but it’s easy to change this.

> mylog = newAntiD(1/x ~ x, from=1)

> mylog( to = 1)
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[1] 0

> mylog( to = exp(3))

[1] 3

> mylog( to = 10)

[1] 2.302585

> log(10)

[1] 2.302585

> mylog( from=10, to=1)

[1] -2.302585

Here’s an example involving a “symbolic” variable, A, which can be held
unset until the time that the integral needs to be evaluated, e.g., when plotting
it.

> myf = newAntiD( A*exp(-.1*t)*cos(2*pi*t/P) ~ t)

> args(myf)

function (to, from = input0, A = NA, P = NA)

NULL

> plotFun(myf(to=x,A=3,P=10)~x, x=range(0,40), ylim=c(-5,5))

> myf2 = newD(myf(from=0,to=x,A=3,P=10)~x)

> args(myf2)

function (x = NA)

NULL

> plotFun(myf2(x)~x, col="red",lwd=3,add=TRUE)

> myf3 = newD(myf(from=x,to=0,A=3,P=10)~x)

> args(myf3)

function (x = NA)

NULL

> plotFun(myf3(x)~x, col="green",lwd=3,add=TRUE)
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Notice that set-
ting numerical values for the free variables removes them from the argument list
of the resulting function. That is, myf2 does not have A and P as arguments.

You can also leave the parameters free in the differentiation operation, eval-
uating them only when needed. This is done with the following assignment
syntax

> myf2B = newD(myf(to=x,A=A,P=P) ~ x)

> args(myf2B)

function (x = NA, A = NA, P = NA)

NULL

> myf2B( x=1,A=3,P=10 )

[1] 2.196025

> myf2( x=1 )

[1] 2.196025

The point of the A=A is to make sure that assignment is being done to the right
variable. In this case, we’re making a new free variable A, and assigning it’s
value to the argument A in myf. You could, of course, choose to use other free
variable names, for instance Ralph and Fido, like this:

> myf2B = newD(myf(to=x,A=Ralph,P=Fido) ~ x)

> args(myf2B)

function (x = NA, Ralph = NA, Fido = NA)

NULL
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> myf2B( x=1, Ralph=3, Fido=10 )

[1] 2.196025

You still need to do assignment to A and P, since those are the arguments to
myf2B, but the new function doesn’t have to keep those names.

To assign default values to the parameters, give additional arguments setting
the parameters, e.g.

> myf2C = newD(myf(to=x,A=A,P=P) ~ x, A=3, P=10)

> myf2C( x=1 )

[1] 2.196025

Unfortunately, default parameters cannot be picked up automatically when
you create a new function. I suspect it would be meaningless to do so, since
the expression defining the new function might involve multiple functions with
different values of the default parameters.

Example of free variables in an integral:

> F = newAntiD( dnorm(x, mean=m, sd=s) ~ x )

> plotFun(F(from=-Inf,to=x,m=5,s=2.5)~x, x=range(-5,10))

> plotFun(F(from=-Inf,to=x,m=0,s=1)~x, col="red",add=TRUE)
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6 Using these new functions in the course

The plotFun works much like the existing curve. Indeed, it can be used with
much the same syntax, just setting an xlim= argument and saying which variable
to use to plot, even when that’s obvious from context.
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> plotFun( sin(x^1.5)~x, xlim=range(0,10))
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By combining the contour and surface plots of two variables under the same
scheme, I think that plotting overall will be just as easy or easier to do.

For the newD and newAntiD, there are both advantages and disadvantages
over the old functions. We will have to establish what features of the new
functions to introduce in order to gain from the advantages without suffering
excessively from the disadvantages.

I have tried to define the newD and newAntiD functions in a way that they
can be used more or less as substitutes for the existing D and antiD.

If we are to use them in a more general way, including “symbolic” (that is to
say, “unbound”) variables, we will have to be careful to introduce the “named
argument” syntax from the beginning and encourage students to examine the
arguments of the functions they create. This might be for the good, since it
may encourage students to focus more explicitly on the question, “What is f a
function of?”

7 Test Examples

1. f(x, k,A) = A exp−kx gives df
dx = −Ak exp−kx and

∫ t

0
f(x, k,A)dx =

−A
k (exp−kt− 1)

> f = plotFun( A*exp(-k*x)~x, A=3, k=.1, x=range(0,5))

> fprime = newD(f(x) ~ x)

> F = newAntiD(f(x) ~ x)

> fprime2 = function(x,A,k){-A*k*exp(-k*x)}

> F2 = function(t,A,k){-(A/k)*(exp(-k*t)-1)}

> F(1:5) - F2(1:5,3,.1)
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[1] -1.332268e-15 -8.881784e-16 8.881784e-16 0.000000e+00

[5] 1.776357e-15

> fprime(1:5) - fprime2(1:5,3,.1)

[1] 1.357254e-06 1.228095e-06 1.111223e-06 1.005476e-06

[5] 9.097943e-07

> fprime = newD(f(x,k=.5,A=10)~x)

> fprime(x=1:5) - fprime2(x=1:5,k=.5,A=10)

[1] 7.581507e-05 4.598416e-05 2.789081e-05 1.691663e-05

[5] 1.026045e-05

You can even pass variables that remain unevaluated until you evaluate
the integral itself. In order to avoid trouble with the order of arguments,
it’s best to use the named form of assignment.

> F = newAntiD(A*exp(-k*x)~x)

> F(from=0,to=1:5,k=.5,A=10) - F2(t=1:5,k=.5,A=10)

[1] 8.881784e-16 1.776357e-15 1.776357e-15 3.552714e-15

[5] 3.552714e-15

When you plot a function that comes from plotFun, you can redefine the
values of parameters by including them as free variables in the function
being given to newAntiD. Again, you want to be careful to get the order
right.

> args(f)

function (x = NA, A = 3, k = 0.1)

NULL

If you don’t want to worry about the order, used named assignment to
the variables, like this:

> F = newAntiD(f(x,k=k,A=A)~x)

> F(from=0,to=1:5,k=.5,A=10) - F2(t=1:5,k=.5,A=10)

[1] 8.881784e-16 1.776357e-15 1.776357e-15 3.552714e-15

[5] 3.552714e-15

2. Finding zeros

> f = plotFun(A*exp(-k*t)*cos(2*pi*(t-t0)/P) ~ t,t=range(0,20),A=5,t0=2.5,k=.1,P=5)

> foo = findZeros(f(t)~t)

> f(t=foo)
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[1] 5.505894e-05 -3.793452e-05 2.122519e-05 -6.440590e-06

[5] 4.565796e-06 -9.375027e-06 1.043940e-05 -9.440236e-06

> points(foo,0+0*foo)
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Change the period of the function so that the zeros will be spaced by 1

> findZeros(f(t,P=2)~t)

[1] 1.000001 2.000003 3.000004 4.000005 5.000006

[6] 6.000007 7.000008 8.000009 9.000010 10.000010

[11] 11.000010 12.000010 13.000010 14.000010 15.000009

[16] 16.000008 17.000006 18.000005 19.000002

Find the places where the function equals t/5 − 4

> plotFun( f(t) ~ t, t=range(0,25))

> goo = findZeros(f(t) - (t/5 - 4) ~t)

> points( goo, goo/5 - 4, pch=20,col="red")

> abline(-4,1/5)
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Find the places where two such functions intersect.

> plotFun( f(t) ~ t, t=range(0,25))

> f2 = plotFun( f(t,P=2.5,A=4) ~ t, add=TRUE, col="green")

> foo = findZeros(f(t)-f2(t)~t)

> points(foo,f(foo),pch=20)
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Using different default parameters with the same function:

> delta = plotFun( f(t) - f(t,P=2.5,A=4) ~ t,t=range(0,30))

> foo = findZeros(delta(t)~t)

> points(foo,0+0*foo, pch=20)
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3. Showing that the derivative undoes the anti-derivative. Note the use of
the named assignment to argument to=t.

> plotFun( delta(t) ~ t, t = range(0,20),lwd=6)

> g = newAntiD(delta(t) ~ t)

> h = newD(g(to=t)~t)

> x = seq(0,100,by=10)

> delta(x) - h(x)

[1] -4.505512e-05 -1.657485e-05 -6.097515e-06 -2.243106e-06

[5] -8.251680e-07 -3.035362e-07 -1.116404e-07 -4.104577e-08

[9] -1.507563e-08 -5.521573e-09 -2.006930e-09

> plotFun(h(t)~t, lwd=3, add=TRUE, col="orange")
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4. Find the maximum likelihood estimator of the standard deviation of two
points, 1 and 3, if we assume that they were drawn from a population with
mean 4:

> f = plotFun( dnorm(1,mean=m,sd=s)*dnorm(3,mean=m,sd=s) ~ s, s=range(.1,10), m=4)
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Now let the mean be a free variable and maximize over both the mean
and standard deviation:

> f = plotFun( dnorm(1,mean=m,sd=s)*dnorm(3,mean=m,sd=s) ~ s&m, s=range(.1,4), m=range(0,6))
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0
2

4
6

s

m

 0.005 

 0.01 

 0.015 

 0.02 

 0.025 

 0.03 

 0.04 

ERRORS: Fill these in as I find them, remove as I fix them.

• ...
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