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Abstract

For some time, propensity score based methods have been frequently applied in the
analysis of data from observational studies. The propensity score is the conditional
probability of a certain treatment (exposure) given patient’s covariates. Propensity
score based methods are used to eliminate imbalances in baseline covariate distribu-
tions between treatment (exposure) groups and permit to estimate marginal effects.

The package nonrandom is a tool for a comprehensive data analysis using strati-
fication and matching by the propensity score. Several functions are implemented,
starting from the selection of the propensity score model up to estimating propen-
sity score based treatment (exposure) effects. Before estimating the propensity score,
function relative.effect() permits to investigate the extent to which a covariate
is confounding the treatment (exposure) effect on outcome. This measure may sup-
port the decision which covariates should be involved to estimate the propensity score.
The function pscore() estimates the propensity score by fitting a logisitc model. The
function pscore.plot() visualize the distribution of the estimated propensity score in
treatment (exposure) groups. Stratification and matching by the propensity score are
implemented in functions ps.makestrata() and ps.match(), respectively. To check
covariate balance between treatment or exposure groups, the function ps.balance()

applies statistical tests and standardized differences, respectively, to detect covariate
differences in groups. In addition, functions dist.plot() and stdf.plot() provides
a graphical balance check. Finally, propensity score based estimators for the treat-
ment (exposure) effect can be determined by functionn ps.estimate(). It also offers a
comparison to regression based estimates alternatively used.

All functions can be applied separately as well as combined. Additionally, it is
possible to apply all functions repeatedly to decide which analysis strategy is the most
suitable one. Print and summary functions are available for the most implemented
functions. There are two data examples to illustrate the application of nonrandom. In
the first data example, quality of life is investigated in breast cancer patients in an
observational treatment study of the German Breast Cancer Study Group (GBSG).
The second data example deals with lower respiratory tract infections (LRTI) in in-
fants and children in the observational study Pri.DE (Pediatric Respiratory Infection,
Deutschland) in Germany.
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1 Introduction

For some time, propensity score (PS) based methods have been frequently applied in the

analysis of data from observational studies. The PS is defined as conditional probability
of receiving a certain treatment1 given covariates (1). In general, the PS is unknown
and has to be appropriately estimated, e.g., by fitting a regression model. The selection

of an adequate PS model is often the first obstacle. Lunt et al.˜proposed a measure
estimating the extent to which a covariate is confounding the treatment effect on outcome
(2). Covariates with a large extent are potential candidates for the inclusion in the PS

model. This proposal is implemented in the nonrandom-package.

In observational studies, covariate distributions differ generally between treatment groups

and PS methods aim to eliminate such imbalances. There are four PS based methods:
stratification, matching, covariate adjustment and inverse probability weighting by PS.
The first both methods are commonly used and intend to create data situations as in

randomized controlled trials (RCTs) within which a direct comparison of treatment groups
is meaningful. Covariate adjustment by PS is also a favourite approach since it is easily

used as traditional regression modeling including PS in the regression model in addition
to treatment. The fourth approach, namely the inverse probability weighting by PS, is
rather rarely used (3; 4). The PS is here used to weight each individual and it is often

applied as weighted regression (5). Stratification and matching by PS are more popular
methods since they are easy to understand. However, matching by PS is applied at most
in medical research (6; 7).

Stratification by PS is used to stratify individuals with similar or even equal PS such
that distributions of measured covariates are sufficiently balanced in treatment groups

within each stratum defined by PS (1; 8). It can be supposed that each stratum mimics
a randomized situation within which distributions of measured covariates are balanced in
expectation. If the assumption of ’SITA’ holds (see below), stratum-specific parameters

can be unbiasedly estimated (1) and those estimates are then summed up across strata
using appropriate weights to estimate the marginal parameter of interest.

If matching by PS is used, one or more untreated individuals are matched to one treated
individual or vice versa. Individuals within matched sets have similar or even equal PS
whereas the similarity is often defined by a caliper, generally used as one-fifth of the stan-

dard deviation of the logit of the estimated PS (9). Although matching by PS has been
frequently applied (6; 7), it has been shown that the dependence structure in the total
matched sample is often not accounted for the estimation of the interesting parameter

(10)-(12). Approaches such as generalized linear mixed models or generalized estimation

1In the following, we only use the phrase ’... conditional probability of receiving a certain treatment’,
i.e., we concentrate on the comparison of outcome in treated and untreated individuals. The comparison
of two treatments, e.g., new and standard therapy are also possible. The PS can be also be the conditional
probability of being exposed given covariates, respectively, such that the comparison of outcome for exposed
and unexposed individuals is of interest.
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equations are appropriate to analyze data with correlation structure (13)-(17).

In general, PS methods are embedded in the framework of causal modeling dealing with
potential outcomes (18)-(20). Consider a pair of random variables (Y0, Y1), where Y1
denotes the outcome of an individual if treated, and Y0 represents the outcome of the same
individual if not treated. The observed outcome is Y = ZY1 +(1−Z)Y0, and the expected
values of counterfactuals E[Y1] and E[Y0] can be derived if the identifying assumption called

’strongly ignorable treatment assignment’ (SITA) holds (1). This assumption states, that,
within subgroups defined by PS, the observed outcome of individuals assigned to treatment
Z = 0 has the same distribution as the unobserved outcome of individuals assigned to

treatment Z = 1, if the latter had been assigned to treatment Z = 0. This means,
individuals in treatment groups are comparable and the measured treatment difference
between groups can be attributed to treatment itself.

The idea of PS was initiated to estimate marginal linear treatment effects defined as
∆ = E[Y1 − Y0] (1). By now, the idea has been transferred to estimating the marginal

odds ratio of outcome, i.e., the change in odds of outcome, if everybody versus nobody
were treated (21)-(23). Therefore, marginal probabilities for potential outcomes P[Y1 = 0]

and P[Y1 = 1] have to be estimated which are used to construct to an appropriate esti-

mator for the marginal odds ratio defined as δ = p1/(1−p1)
p0/(1−p0)

with pz = P[Yz = 1], z = 0, 1.
In case of stratified data, marginal probabilities of potential outcomes can be estimated

by outcome rates from PS strata or derived from standard regression results (21).

In the following, the application of the nonrandom package is demonstrated step by step
introducing all implemented functions. The usage is illustrated by the exemplary analysis
of two data sets. First, there are data on quality of life in breast cancer patients in

an observational treatment study of the German Breast Cancer Study Group (GBSG)
(24; 25). Patients with mastectomy and lumpectomy, respectively, are compared with

each other regarding the quality of life measured as a linear sum score. The second data
example deals with lower respiratory tract infections (LRTI) in a population of infants and
children aged less than three years in the observational study Pri.DE (Pediatric Respiratory

Infection, Deutschland) in Germany (26). Here, the impact of the exposure to an infection
with the respiratory syncytial virus (RSV) on the severity of LRTI is investigated (23).

2 The estimation of the propensity score

The PS is generally unknown and has to be estimated often done by fitting an appropriate
regression model. The selection of such a PS model is mostly a delicate issue (27)-(31).
A measure describing the extent to which a covariate is confounding the treatment effect

on outcome is proposed by Lunt et al.˜(2). Covariates with a large impact are potential
candidates for the inclusion in the PS model. This proposal is implemented in function
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relative.effect(). If an appropriate PS model is selected, function pscore() then
offers the estimation of PS by fitting a logistic model.

2.1 Selection of the propensity score model: relative.effect()

An important step is to decide which covariates Xk, k = 1, ...,K, measured at baseline

should be included in the PS model. The measure describing the extent to which a
covariate Xk is confounding the effect of treatment Z on outcome Y is defined as relative
effect (per cent) (

βz,xk
− βz
βz

)
× 100

with unadjusted treatment effect βz and treatment effect βz,xk
adjusted for covariate Xk,

k = 1, . . . ,K. In case of binary outcome, the relative effect (per cent) is defined as(
exp{βz,xk

} − exp{βz}
exp{βz}

)
× 100.

Therefore, K + 1 regression models for outcome Y , both unadjusted and adjusted for
covariates Xk, k = 1, ...,K, are fitted using generalized linear regression models with
respect to the measuring scale of outcome (internal use of glm()). There are two options for

model specification. On the one hand, it is possbile to set separately outcome, treatment
and covariates as strings or numerics using arguments resp, treat and sel.

> ## PRI.De data dealing with LRTI

> load(pride)

> pride.effect <- relative.effect(data = pride,

+ sel = c(2:14),

+ family = "binomial",

+ resp = 15,

+ treat = "PCR_RSV")

On the other hand, an explicit regression formula using formula can be specified:

> ## STU1 data on quality of life

> load(stu1)

> stu1.effect <- relative.effect(data = stu1,

+ formula = pst~therapie+tgr+age)

Information about relative effects as well as corresponding unadjusted and adjusted treat-
ment effects on outcome are available. In the STU1 data example, two covariates are
investigated. Both seem to affect the treatment effect on outcome and should be involved

in the estimation of PS.



2 THE ESTIMATION OF THE PROPENSITY SCORE 5

> stu1.effect

Treatment: therapie

Outcome: pst

Covariates: tgr age

Unadjusted treatment effect: 1.5894

Adjusted and relative effects:

adj. treatment effect rel. effect

age 0.7880392 50.420198

tgr 1.7004732 6.985956

2.2 Estimation of the propensity score: pscore()

If an appropriate model for PS is selected, it can be estimated using function pscore():

> stu1.ps <- pscore(data = stu1,

+ formula = therapie~tgr+age)

>

> pride.ps <- pscore(data = pride,

+ formula = PCR_RSV~SEX+RSVINF+REGION+

+ AGE+ELTATOP+EINZ+EXT,

+ name.pscore = "ps")

A logistic regression model is internally fitted using function glm(). The argument
name.pscore offers to specify the label for the estimated propensity score with which

the estimated propensity score is in turn stored in data. In the PRI.De data example, the

default setting pscore is modified to ps. The output object is of class pscore and it contains
a list including comprehensive information about the PS model, e.g., names of the esti-
mated PS ($name.pscore), treatment ($name.treat) and outcome ($name.resp) as well

as the specified formula of the PS model ($formula.pscore). Furthermore, the complete
data set ($data) extended by the estimated PS, the estimated PS itself ($pscore) and

treatment variable ($treat) are separately available.

In the new released version of nonrandom (version 1.1), it is possible to visualize the

distribution of the estimated PS in treatment groups (pscore.plot()). Therefore, the

density of the estimated PS is internally estimated in treatment groups using function
density. However, the previous use of function pscore() is needed since the estimated

PS sourced from $pscore of the input object is needed:
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> pscore.plot(object=pride.ps,

+ main="PRI.De study: Density estimation of estimated PS",

+ with.legend=TRUE,

+ cex.main=1.6, cex.axis=1.4, legend.cex=1.25, cex.lab=1.5,

+ par.1=list(lty=1, lwd=2), par.0=list(lty=3, lwd=2),

+ xlab="",

+ ylim=c(0,4.5))

0.0 0.2 0.4 0.6 0.8 1.0

0
1
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PRI.De study: Density estimation of estimated PS
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treated untreated

Figure 1: Density estimation of the estimated PS in PRI.De data using function
pscore.plot

3 Propensity score based methods

Observational studies frequently exhibit imbalances in covariate distributions between

treatment groups. Stratification and matching by PS are used to eliminate these im-
balances by creating data situation as in randomized experiments.
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3.1 Stratification by the propensity score: ps.makestrata()

Stratification by PS groups individuals with similar or even identical PS. Several ways for
stratification (argument breaks) are implemented in function ps.makestrata() whereas
it has been shown that stratification using quintiles of the PS distribution yields a ninety

per cent bias reduction (8; 34).

The usage of ps.makestrata() depends on the class of the input object whereas two
object classes are allowed: data.frame and pscore (if pscore() is previously used) are
permitted. No specification of the stratification variable (argument stratified.by) is

needed if the input object is of class pscore. The estimated PS stored in $pscore is auto-
matically sourced. This in contrast to the case where the input object is of class data frame.

Strata bounds can be set either by defining a fixed number of strata, using pre-defined
strata bounds or applying appropriate R functions. However, the default is NULL, i.e.,

the stratification variable is factorized and each factor corresponds to one stratum. This
is only meaningful when the stratification variable has only few values.

> stu1.str4 <- ps.makestrata(object = stu1.ps)

> stu1.str4

Stratified by: pscore

Strata information:

Strata bounds n n (per cent)

1 0.601 231 35.8

2 0.709 65 10.1

3 0.824 255 39.5

4 0.883 95 14.7

In case of the STU1 data, the PS is estimated using function pscore() and stored in

value $pscore of the outpt object stu1.ps. It is chosen as stratification variable. Since
the estimated PS consists only four values, the arguments breaks does not need to be

specified. Using print or summary functions, the name of the used stratification variable

is autmoatically given, e.g., ’pscore’ in case of STU1 data stratified by PS.

If an integer is given in argument breaks, the number of strata with respect to the stra-

tification variable is specified:

> pride.str.b5 <- ps.makestrata(object = pride.ps, breaks = 5)

> pride.str.b5
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Stratified by: ps

Strata information:

Strata bounds n n (per cent)

1 [0.0619,0.168] 175 5.7

2 (0.168,0.275] 796 25.9

3 (0.275,0.382] 1015 33

4 (0.382,0.488] 866 28.1

5 (0.488,0.595] 226 7.3

If a numeric vector is given or an appropriate R-function is used, e.g., quantile(), these

values explicitly indicate the stratum bounds. In case of PRI.De data, quintiles from
the distribution of the estimated PS are used for stratification by the estimated PS. The
argument name.stratum.index specifies the name of the variable including the generated

stratum indices which is in turn stored in data.

> pride.str5 <- ps.makestrata(object = pride.ps,

+ breaks = quantile(pride.ps$pscore,

+ seq(0,1,0.2)),

+ name.stratum.index = "stratum")

> pride.str5

Stratified by: ps

Strata information:

Strata bounds n n (per cent)

1 [0.0624,0.236] 616 20

2 (0.236,0.306] 615 20

3 (0.306,0.369] 616 20

4 (0.369,0.431] 615 20

5 (0.431,0.594] 616 20

Depending on the class of the input object, ps.makestrata() returns an object of class

stratified.pscore or stratified.data.frame. If the class of the input object is pscore, the
output object inherits all values from the input object. Similar to function pscore(), the

complete data set ($data) extended by stratum indices labeled by $name.stratum.index

is available for the output object. Furthermore, the name of the stratification variable

($stratified.by), individual stratum indices ($stratum.index) generated at least as
well as the corresponding stratum bounds ($intervals) are stored in the output object.

Stratification of data can be done repeatedly, but only information from the last application
is stored separately in values of the output object. However, stratum indices from all
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stratification procedures previously done are included in the data set stored in the output
object.

3.2 Matching by PS: ps.match()

The most popular PS method to cope with covariate imbalances is matching by PS. One
or more untreated individuals are matched to treated individuals (or vice versa) according

to the estimated PS. Individuals matched to each other have similar or identical estimated
PS wheres the similarity is determined by a caliper size with a pre-defined maximum width
of one-fifth of the standard deviation of the logit of the estimated PS (9).

Similar to the function ps.makestrata(), the use of ps.match() depends both on classes
(data.frame and pscore) and numbers of input objects (one or two data frames). No

specification of the matching variable (matched.by) is needed if the input object is of
class pscore. The estimated PS stored in the input object ($pscore) is automatically
sourced.

> pride.m1 <- ps.match(object = pride.ps,

+ ratio = 1, x = 0.2, caliper = "logit",

+ matched.by = "ps", setseed = 38902)

> pride.m1

Matched by: ps

Matching parameter:

Caliper size: 0.102

Ratio: 1.000

Who is treated?: 1.000

Matching information:

Untreated to treated?: TRUE

Best match?: TRUE

Matching data:

Number of matched obs: 2062

Number of matched treated obs: 1031

Number of matched untreated obs: 1031

Number of dropped obs: 1016

Number of matching sets: 1031

Number of incomplete matching sets: 0
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In case of one or two data frames as input objects, the matching (matched.by) as well
as the treatment variable (argument treat) are needed. If the first data frame only

contains data from treated (or untreated) individuals, a second input object (argument
object.control) comprising data from untreated (or treated) individuals is necessary.
The indicated matching variable must be the same in both input data frames. If it differs,

the matching variable in the second data frame (argument control.matched.by) must
be specified. Independent of classes and numbers of input objects, the value of treatment
indicating treated individuals must be given (argument who.treated, default is ’1’).

> stu1.m2 <- ps.match(object = stu1.ps,

+ ratio = 2, caliper = 0.5,

+ givenTmatchingC = FALSE,

+ setseed = 39062)

Argument 'givenTmatchingC'=FALSE: Treated elements were matched to

each untreated element.

> stu1.m2

Matched by: pscore

Matching parameter:

Caliper size: 0.5

Ratio: 2.0

Who is treated?: 1.0

Matching information:

Untreated to treated?: FALSE

Best match?: TRUE

Matching data:

Number of matched obs: 501

Number of matched treated obs: 334

Number of matched untreated obs: 167

Number of dropped obs: 145

Number of matching sets: 167

Number of incomplete matching sets: 0

There are further parameters to specify the matching procedure: the matching ratio

(ratio) indicating how many individuals should be matched and a statement concern-

ing who should be matched to whom (givenTmatchingC=TRUE: treated to untreated indi-
viduals). The argument bestmatch.first indicating whether matching partners should
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be taken randomly from the pool of potential matching partners (FALSE) or those with
the most similar estimated PS (TRUE; default). Furthermore, a random number can be

specified (setseed) to make the matching procedure reproducible. The caliper size can be
defined using arguments caliper and x. The default setting for the caliper size is one-fifth
(x=2) of the standard deviation of the logit of estimated PS (caliper="logit"). However,

it is possible to specify numerics in argument caliper (argument x is then disregarded)
or to modify argument x in connection with caliper="logit".

As demonstrated in PRI.De data, one untreated individual is matched to a treated indi-
vidual (ratio=1) and the default caliper size is used. The matching variable is ps indi-

cating the estimated PS stored in data of the input object pride.ps. It is here identical
to the value $pscore of the input object. The matching algorithm for the STU1 data
is switched such that two treated individuals are matched to one untreated individual

(ratio=2, givenTmatchingC=FALSE) since fewer untreated than treated individuals are
available. Furthermore, the caliper size is set to 0.5.

The function ps.match() may return three different types of classes for output object(s):

matched.pscore, matched.data.frame or matched.data.frames. This depends on class(es)
and numbers of input object(s) and on the specification of argument combine.output.
This argument is reasonable if there are two data frames as input objects. The default is

combine.output=TRUE such that both input data frames extended by matching informa-
tion are combined for output. The complete data set ($data) and the data set limited to
matched individuals are stored in the output object ($data.matched). Both data sets are

extended by a column including matching indices labeled by name.match.index. Further-
more, individual matching indices generated at last ($match.index, $name.match.index),
the name of the matching variable ($matched.by) and several matching parameters used

at last ($match.parameter) are stored. If there are two input objects and argument
combine.output is set to FALSE, values $data, $data.matched and $match.index are
lists of data frames and vectors corresponding to input objects, respectively. If the class of

the input object is pscore, the output object also inherits all values from the input object.

4 Balance check for covariates

PS methods are used to eliminate imbalances in covariate distributions between treatment

groups. An important, but often neglected issue is the balance check of covariate distribu-
tions after stratification or matching by PS. Graphics, statistical tests and standardized

differences can be used to examine covariate distributions (35)-(37).
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4.1 Grahical balance check: dist.plot()

The function dist.plot() offers an illustration of covariate distributions in treatment
groups. As before, the use of function dist.plot() depends on the class of the input ob-
ject. Therefore, arguments treat, stratum.index and match.index do not be specficied

if the input object results from a previous application of ps.makestrata() or ps.match().
This is in contrast to the case where the input object is a data frame.

If input object is of class stratified.data.frame or stratified.pscore, covariate distributions
are plotted separately by treatment and strata. If the class of the input object is either
matched.data.frame, matched.data.frames or matched.pscore, covariate distributions are

illustrated per treatment group in the matched data. If covariate distributions in strata
or matched data should be compared to distributions in original data, i.e., in data before
stratification or matching, argument compare has to be set to TRUE.

> ## Figure 2 (left)

> stu1.plot1 <- dist.plot(object = stu1.m2, sel = c("tgr"),

+ plot.type = 1, compare = TRUE,

+ bar.cex = 1.2, legend.cex=1.5, sub.cex=1.2,

+ label.match = c("original data","matched sample"),

+ col=c("gray65", "gray35"))

>

> ## Figure 2 (right)

> stu1.plot2 <- dist.plot(object = stu1.m2, sel = c("age"),

+ plot.type = 2, compare = TRUE,

+ bar.cex = 1.2, legend.cex=1.2, sub.cex=1.2,

+ legend.title = "Therapy",

+ col=c("gray65", "gray35"))

There are two different plot types (argument plot.type) which act depending on the
measuring scale of covariates. The selected covariates (argument sel) are classified in

categorical and non-categorical (i.e., numerical) covariates. This classification is done by

argument cat.level. The default is 10, i.e., covariates with more than 10 different values
are considered as non-categorical. The default of argument plot.type is 1, i.e., bar plots

are used to show frequencies for categorical and means for numerical covariates.

If argument plot.type is set to 2, covariate distributions are illustrated by means of

histograms. The argument plot.levels specifies here the number of cutpoints needed to
define histogram classes for non-categorical covariates. When the covariate is categorical,
the number of its categories are used to define cutpoints. However, the use of plot.levels

still depends on the covariate structure to be plotted such that the used number of classes
may differ from its specification.

There are three further useful arguments. Argument with.legend=TRUE (default) includes

a legend in plots. If plot.type=1, category labels (if covariate is categorical) or treatment
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Figure 2: Frequencies of categorical covariate ’tgr’ indicating tumor size (1: ≤ 10mm, 2:
>10mm) of patients in STU1 data before and after matching; different types of plots in
function dist.plot() are used: plot.type=1 (left) and plot.type=2 (right)

labels (in case of non-categorical covariates) are given in the legend. Therefore, users have
to be careful to modify this argument when categorical and non-categorical covariates
are simultaneously plotted. If plot.type is set to 2, treatment labels are always shown

in the legend independent of the covariate type. The arguments label.stratum and
label.match permit modification of labels within plots. Defaults are Original and Stratum
and Matched, respectively. Further arguments can be used to modify, among others, font

sizes, labels, colors and plot margins as illustrated for STU1 data (Figure 2) and PRI.De
data (Figure 3).

> ## Figure 3 (left)

> pride.plot1 <- dist.plot(object = pride.str5,

+ sel = c("AGE"), plot.type = 1

+ bar.cex = 1.2, sub.cex = 1.3, legend.cex = 1.2,

+ col=c("gray65", "gray35"))

>

> ## Figure 3 (right)

> pride.plot2 <- dist.plot(object = pride.m1, sel = c("AGE"),

+ plot.type = 2, compare = TRUE,

+ legend.title = "RSV infection",

+ legend.cex = 1.2, bar.cex = 1.2, sub.cex = 1.2,

+ col=c("gray65", "gray35"))
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Figure 3: Illustration of function distplot() using different plot.types: (Left) Means of
covariate ’AGE’ in treatment groups in five PS strata of PRI.De data; (Right) Histograms
of covariate ’AGE’ in PRI.De data per treatment group before and after matching

Numerous values from plotted data using function dist.plot() are stored as lists in the
output object, among others, names of categorical ($var.cat) and non-categorical covari-
ates ($var.noncat), frequencies ($frequency) or means ($means) of covariates separated

by treatment. The length and the manner of list entries depend on the type of selected
covariates and the chosen plot type. For example, the value frequency of output object
stu1.plot1 is a list with length equal to the number of plotted categorical covariates.

The list entries contain frequencies (scaled to 1) of different values (1 and 2) of covariate
tgr per treatment group (0 and 1) in original data and in the matched sample.

> ## STU1 data matched by PS

> ## Means of covariate 'tgr' in PS strata; plotted in Figure 2 (left)

> stu1.plot1$var.cat

[1] "tgr"

>

> stu1.plot1$frequency

[[1]]

, , index = original data

treat

0 1

1 0.1796407 0.2713987

2 0.8203593 0.7286013
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, , index = matched sample

treat

0 1

1 0.1796407 0.1676647

2 0.8203593 0.8323353

If argument plot.type is set to 2, frequencies of covariates in histogram classes are sep-

arately stored for both treatment groups. Furthermore, cutpoints of histograms for non-
categorical covariates are stored in the output object ($breaks.noncat).

> ## STU1 data matched by PS

> ## Frequencies for values of covariate 'age' in original and matched

> ## sample; plotted in Figure 2 (right)

>

> stu1.plot2$var.cat

[1] "age"

>

> ## Frequencies from categories of covariate 'age' in treatment group 0

> ## (Therapy=0) in original data (1st column) and in the matched

> ## sample (2nd column)

> stu1.plot2$x.s.cat

[[1]]

index

1 2

1 56 56

2 111 111

> ## Frequencies from categories of covariate 'age' in treatment group 1

> ## (Therapy=1) in original data (1st column) and in the matched

> ## sample (2nd column)

> stu1.plot2$y.s.cat

[[1]]

index

1 2

1 294 149

2 185 185

The specification plot.type=1 in dist.plot() for non-categorical covariates results in
visualization of means of covariates per treatment group. There are stored in lists of the
output object:

> ## PRI.De data stratified by quintiles of the



4 BALANCE CHECK FOR COVARIATES 16

> ## distribution of estimated PS

> ## Means of covariate'AGE' per treatment and strata, Figure 3 (left)

> pride.plot1$var.noncat

[1] "AGE"

>

> ## Means in PS strata (columns) in exposure groups (1st row: no

> ## infection '0', 2nd row: RSV infection '1')

> pride.plot1$mean

[[1]]

1 2 3 4 5

0 2.174609 1.482517 0.9733666 0.6686585 0.4156446

1 2.185500 1.563706 1.0035175 0.5804821 0.3117728

If histograms are used to plot the distribution of non-categorical covariates (plot.type=2),
list entries are in turn lists:

> ## PRI.De data matched by PS

> ## Figure 3 (right)

> pride.plot2$var.noncat

[1] "AGE"

>

> ## Frequencies per histogram class in group 'RSV infection = 0' for

> ## original data (1st list) and in matched sample (2nd list)

> pride.plot2$x.s.noncat

[[1]]

[[1]]$`1`

[1] 383 554 405 310 225 170

[[1]]$`2`

[1] 315 321 178 101 78 38

>

> ## Frequencies per histogram class in group 'RSV infection = 1' for

> ## original data (1st list) and in matched sample (2nd list)

> pride.plot2$y.s.noncat

[[1]]

[[1]]$`1`

[1] 393 261 135 123 67 52

[[1]]$`2`

[1] 393 261 135 123 67 52

In addition to data information which is plotted, treatment ($treatment), individual
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stratum indices ($stratum.index) or matching indices ($match.index) and selected co-
variates ($name.sel, $sel) are stored in the output object.

4.2 Statistical tests and standardized differences: ps.balance()

Graphical illustration of covariate distributions in treatment groups may give a first in-
sight in covariate differences between treatment groups. However, statistical tests decide

whether differences between groups are significant. The function ps.balance() permits
the application of statistical tests and the computation of standardized differences. There
is an ongoing discussion about the appropriateness of statistical tests for balance deci-

sion such that standardized differences are recommended for balance decision especially
in matched data (38)-(40).

Similar to functions described above, the usage of function ps.balance() depends on the
class of the input object. If information about treatment, stratum or matching indices is
stored in the input object, it is not necessary to specify them since they are automatically

sourced from the input object. If the input object is a data frame, the corresponding ar-
guments have to be given. By default, statistical tests (argument method="classical")
are used with respect to the measuring scale of selected covariates. That means, the t-test

and the χ2- test for non-categorical and categorical covariates (internal use of t.test()
and chisq.test()) are applied whereas the argument cat.levels defines whether a co-
variate is categorical or non-categorical (see function dist.plot()). The tests are applied

to data both before and after the balancing procedure (stratification or matching). A ta-
ble summarizing balance decisions for all tested covariates is given (Summary of balance

check). Furthermore, the balance decision for each selected covariate is shown as well as

more detailed information about test results.

> ## Balance check for stratified PRI.De data using statistical tests

> pride.str5.bal <- ps.balance(object = pride.str5, sel = c(2:8),

+ method = "classical", alpha = 5)

> pride.str5.bal

Summary of balance check:

Before: no bal (0) Before: bal (1)

After: no bal (0) 2 1

After: bal (1) 1 2

Covariates not completely tested:

RSVINF

Detailed balance check (overall):
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SEX ETHNO FRUEHG RSVINF HERZ REGION AGE

Before 0 1 1 0 1 0 0

After 1 0 1 NA 1 0 0

Detailed balance check (per stratum):

[p-values from tests (significance level: 0.05)]

SEX ETHNO FRUEHG RSVINF HERZ REGION AGE

Before 0.01 0.907 0.413 0 0.518 0 0

------ ----- ----- ----- ----- ----- ----- -----

Stratum 1 0.296 0.632 0.223 0.647 0.766 0.058 0.83

Stratum 2 0.16 0.003 0.98 0.422 0.642 0.133 0.084

Stratum 3 0.798 0.169 0.678 0.757 0.484 0.038 0.429

Stratum 4 0.124 0.212 0.724 NA 0.843 0.542 0.002

Stratum 5 0.96 0.882 0.404 NA 0.523 0.415 0

--------- ---- ---- ---- ---- ---- ---- ----

Test chi^2 chi^2 chi^2 chi^2 chi^2 chi^2 t

In case of the PRI.De data, p-values from statistical tests applied to data before and after
stratification are given. Covariates, for which tests are not applicable or standardized dif-

ferences are not computable, are not contained in the summary balance table, but listed
separately. It concerns the covariate ’RSVINF’ (describing whether there was a former
infection to RSV) since it can be tested in the fourth and fifth stratum.

If the argmuent method="stand.diff", standardized differences are calculated before and
after the balancing procedure. The table for detailed balance information then contains

standardized differences instead of p-values:

> ## Balance check for matched STU1 data using standardized differences

> stu1.m2.bal <- ps.balance(object = stu1.m2,

+ sel = c("tgr","age"),

+ method = "stand.diff",

+ alpha = 20)

> stu1.m2.bal

Summary of balance check:

before: no balance (0) before: balance (1)

after: no balance (0) 1 0

after: balance (1) 1 0
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Covariates not completely tested: ---

Detailed balance check (overall):

tgr age

table.before 0 0

table.after 1 0

Detailed balance check:

[Standardized differences (cut point: 20)]

tgr age

Before 22.089 58.065

------ ----- -----

After 3.162 22.852

--------- ---- ----

Scale bin bin

The shown information of covariate balance for selected covariates is stored in value
$bal.test of the output object. When standardized differences are calculated (argu-

ment method="stand.diff"), means and standard deviations (SD) for each covariate per
treatment group are additionally stored:

> ## Means for covariates 'tgr' and 'age' before (1st row) and after

> ## matching (2nd row) in treatment group 1

> stu1.balance$bal.test$Means.treat.1

tgr age

[1,] 0.7286013 0.3862213

[2,] 0.8323353 0.5538922

>

> ## Standard deviations for covariates 'tgr' and 'age' before (1st row)

> ## and after matching (2nd row) in treatment group 1

> stu1.balance$bal.test$SDs.treat.1

tgr age

[1,] 0.4446813 0.4868823

[2,] 0.3735682 0.4970871

Information about statistical tests applied or covariate types needed for correct calcula-

tion of standardized differences is also stored ($bal.test$method in the output object. In
addition, the significance level is available ($bal.test$alpha). It has to be interpreted
as cutpoint at which the decision about the balance of a covariate distribution is made if
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standardized differences are calculated.

In the new released version 1.1 of nonrandom it is possible to visualize standardized dif-
ferences of selected covariates before and after matching (Figure 4).

●

●

●

●

●

●

●

PRI.De: Matching by PS

Standardized differences

0 10 20 30 40

SEX

ETHNO

FRUEHG

RSVINF

HERZ

REGION

AGE

● before matching after matching

Figure 4: Illustration of standardized differences of several covariates in PRI.De data
before and after matching by the estimated PS using function stdf.plot()

> ## Plot standardized differences of selected covariates

> ## in (matched) PRI.De data

> pride.m1.bal <- ps.balance(object = pride.m1, sel = c(2:8),

+ method = "stand.diff", alpha = 20)

>

> ## Figure 4

> stdf.plot(objct = pride.m1.bal,

+ main = "PRI.De: Matching by PS",

+ sub = "Standardized differences",

+ las = 1, cex.main = 1.4, cex.sub = 1.3,

+ legend.label=c("before matching","after matching"),

+ legend.xy=c(7.5,1.5),

+ mymar=c(6,6,4,2), col.p=c("gray65", "gray35"))
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The check for balance of covariate distributions entails the knowledge about the correctness
of the PS model. If the PS model is correctly fitted, at least covariates included in PS

model should be sufficiently balanced after the stratification or matching. Otherwise re-
modeling of the PS model should be considered.

5 Propensity score based treatment effects: ps.estimate()

The estimation of PS based treatment effect differs in the previous application of PS
method and in the measuring scale of outcome. Therefore, the description of function
ps.estimate() is in the following separated by PS methods directly applicable in the

nonrandom package.

In general, the use of function ps.estimate() depends on the class of the input object. If

function ps.makestrata() or ps.match() are previously used, arguments for treatment
(treat), stratum (stratum.index) or matching indices (match.index) are not needed,
contrary to the case if the input object is a data frame. In addition to PS based effect esti-

mates, it is possible to fit a regression model (argument regr) for the issue of comparison.
The resulting estimates are those for conditional parameters in regression models. They
are automatically projected to estimates for corresponding marginal parameters. Further-

more, additional adjustment for still imbalanced covariates in stratified or matched data
can be done (argument adj).

5.1 Effect estimator based on stratification by PS

If stratification is applied in data with continuous outcome, the marginal treatment effect

based on PS is estimated as a weighted sum of differences of the mean outcomes in treated
and untreated individuals across PS strata. Therefore, two different weighting schemes are
available: on the one hand, weights are equal to the proportion of individuals per stratum

(weights="rr") and on the other hand weights are related to the inverse variance of
stratum-specific treatment effects (weights="opt").

> ## STU1: Effect estimation of therapy on quality of life ('pst')

> ## based on PS stratification

> stu1.estimate <- ps.estimate(object = stu1.str4,

+ resp = "pst",

+ weights = "opt",

+ regr = c("tgr", "age")

> summary(stu1.estimate)

Summary for effect estimation
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Treatment/exposure: therapie

Outcome: pst

Effect measure: effects

Effect estimates:

effect SE[effect] [95%-CI[effect]]

------ ---------- ----------------

Crude 1.589 1.261 [-0.883,4.061]

Stratification

Unadjusted 0.793 1.3068 [-1.768,3.354]

Adjusted [,]

Regression 0.788 1.2951 [-1.75,3.326]

Stratum-specific parameter estimates:

S1 S2 S3 S4

----- ----- ----- -----

Unadjusted effect 3.453 -6.703 1.223 -7.001

Stratum-specific adjusted parameter estimates:

Stratum-specific weights:

0.47 0.13 0.34 0.06

The summary function for ps.estimate() offers an overview about all estimated effects,
standard errors and confidence intervals. In the example of stratified STU1 data, no fur-

ther adjustment in PS strata is specified such that the respective row in the result table
remains empty. Furthermore, stratum-specific parameter estimates and weights are given.

In case of stratified data with binary outcome, the estimator based on outcome rates from

PS strata (21) is implemented in function ps.estimate() to estimate the marginal odds
ratio as effect measure. The marginal odds ratio for outcome describes the change in odds

for outcome, if everybody versus nobody were treated. It is different to the conditional
odds ratio, e.g., estimated by logistic regression (with the assumption of constant individ-
ual odds ratios). The popular stratified MH estimator stratified by PS can fail to estimate

both the indivdiual, conditional and the marginal odds ratio (23; 41). However, the strat-

ified MH estimator is implemented since often used in the analysis of stratified data. The
approach of outcome rates from PS strata is proposed by Graf et al.˜(21). PS methods are

used to estimate marginal treatment effects, but only the outcome rates based estimator
fulfills the criteria for an estimator of the marginal odds ratio. It is defined as an odds
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ratio of marginal outcome probabilities, contrary to the stratified MH estimator which is
a weighted sum of stratum-specific odds ratios (21; 23).

> ## PRI.De: Effect estimation of exposure to RSV infection on the

> ## severity of LRTI based on data stratified by PS

> pride.estimate <- ps.estimate(object = pride.str5,

+ family = "binomial",

+ resp = "SEVERE",

+ treat = "PCR_RSV",

+ adj = c("REGION", "ETHNO", "AGE"),

+ regr = SEVERE~PCR_RSV+SEX+ETHNO+FRUEHG +

+ HERZ+ELTATOP+REGION+AGE+KRANKSUM+

+ TOBACCO+VOLLSTIL+EXT+EINZ,

+ weights = "rr")

> summary(pride.estimate)

Summary for effect estimation

Treatment/exposure: PCR_RSV

Outcome: SEVERE

Effect measure: odds ratios

Effect estimates:

or SE[log[or]] [95%-CI[or]]

----- ----------- ------------

Crude 1.677 0.0796 [1.435,1.96]

Stratification

Outcome rates 1.362 0.0805 [1.163,1.595]

MH 1.419 0.0823 [1.208,1.667]

Adjusted 1.565 0.2013 [1.055,2.322]

Regression

Conditional 1.515 0.0904 [1.269,1.809]

Marginal 1.399 0.0691 [1.222,1.602]

Stratum-specific parameter estimates:

S1 S2 S3 S4 S5

----- ----- ----- ----- -----

outcome rates 'p0' 0.44 0.53 0.55 0.6 0.66

outcome rates 'p1' 0.48 0.57 0.58 0.71 0.81

odds ratio 1.16 1.15 1.16 1.67 2.17
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Stratum-specific adjusted parameter estimates:

1.407 1.398 1.245 1.62 2.154

Stratum-specific weights:

0.2 0.2 0.2 0.2 0.2

There are two options to specify arguments adj and regr. On the one hand, they can be

specified as typical formulas whereas treatment has to be the first independent variable.
Furthermore, outcome and treatment must be the same as specified in arguments resp

and treat. On the other hand, a vector of strings or numerics can be given which indicate

covariates to be adjusted for in original data and in each stratum, respectively. The used
formulas for those fitted regression models are stored in the output object. Corresponding
stratum-specific adjusted treatment effects and weights are also stored in the output object.

Information stored in the output object is managed as follows. Results from regres-

sion modeling is stored in value $lr.estimation. PS based results can be found in
value $ps.estimation. This value is in turn divided in $ps.estimation$unadj and
$ps.estimation$adj for unadjusted and adjusted analyses, respectively. In both values,

stratum-specific information are stored. Further values of the output object contain in-
formation about outcome ($name.resp, $resp), treatment ($name.treat, $treat) and

stratum indices ($name.stratum.index, $stratum.index). The output object inherits
all values from the input object as well.

5.2 Effect estimator based on matching by PS

If matching is applied, the dependency structure of the matched sample has to be ac-
counted for in the data analysis (42)-(44). Generalized linear mixed models are appropri-

ate and involved in the nonrandom package. Therefore, the function lmer implemented
in the lme4 package is internally used whereas random intercepts for matching set are
modeled.

The data analysis of matched data can be done in the same way as for stratified data. The

values of the output object in case of matched data differ slightly from the those based on
the analysis of stratified data. There are naturally no stratum-specific information and no
corresponding weights available, but only an estimated overall unadjusted and adjusted

treatment effects (if argument adj is specified) and corresponding standard errors and
confidence intervals. If the outcome is binary, the standard error is given for the effect

estimate on log-scale.

> ## STU1: Effect estimation of therapy on quality of life ('pst')

> ## based on PS matching

> stu1.estimate.m2 <- ps.estimate(object = stu1.m2,

+ resp = "pst")

> stu1.estimate.m2
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Effect estimation for treatment/exposure on outcome

Treatment/exposure: therapie

Outcome: pst

Effect measure: difference ('effect')

Table of effect estimates:

effect SE[effect] [95%-CI[effect]]

----- ----------- ----------------

Crude 1.589 1.261 [-0.883,4.061]

Matching

Unadjusted 0.873 1.3176 [-1.709,3.455]

Adjusted [,]

Regression [,]

The print function again provides an overview about effect estimates, corresponding stan-

dard errors and confidence intervals. The output object contains the same information as
above when the data analysis is based on stratified data unless stratum-specific informa-

tion.

> ## PRI.De: Effect estimation of exposure to RSV infection on the

> ## severity of LRTI based on data matched by PS

> pride.estimate.m <- ps.estimate(object = pride.m1,

+ resp = "SEVERE",

+ family = "binomial")

> pride.estimate.m

Effect estimation for treatment/exposure on outcome

Treatment/exposure: PCR_RSV

Outcome: SEVERE

Effect measure: odds ratio ('or')

Table of effect estimates:

or SE[log[or]] [95%-CI[or]]

----- ----------- ------------

Crude 1.677 0.0796 [1.435,1.96]

Matching
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Unadjusted 1.379 0.0916 [1.152,1.65]

Adjusted [,]

Regression

Conditional [,]

Marginal [,]

Altogether, the nonrandom package offers PS based analyses in an easy way, however,
suitable knowledge for adequaete interpretation of results is still needed. The estimation
of treatment effects on linear and binary outcome is implemented, limited to the situation

considering a binary treatment. It provides the experienced user a set of functions for
an easy and flexible implementation of PS based analyses. Users who are not familiar
with the application of such methods and the underlying theory are enabled to conduct

an adequate PS based analysis guided by the package.

References

[1] PR˜Rosenbaum and DB˜Rubin. The central role of the propensity score in observa-
tional studies for causal effects. Biometrika, 70(1):41–55, 1983.

[2] M˜Lunt, D˜Solomon, K˜Rothman, R˜Glynn, K˜Hyrich, DPM Symmons, and

T˜Stürmer. Different methods of balancing covariates leading to different effect es-
timates in the presence of effect modification. American Journal of Epidemiology,
169(7):909–917, 2009.

[3] PR˜Rosenbaum. Model-based direct adjustment. Journal of American Statistical As-
sociation, 82:387–394, 1987.

[4] K˜Hirano and GW˜Imbens. Estimation of causal effects using propensity score
weighting: An application to data on right heart catheterization. Health Services

& Outcomes Research Methodology, 2:259–278, 2001.

[5] DA˜Freedman and RA˜Berk. Weighting regressions by propensity scores. Evaluation
Review, 32:392–409, 2008.

[6] BR˜Shah, A˜Laupacis, JE˜Hux, and PC˜Austin. Propensity score methods gave sim-
ilar results to traditional regression modeling in observational studies: A system-

atic review. Journal of Clinical Epidemiology, 58(6):550–559, 2005.

[7] T˜Stürmer, M˜Joshi, RJ˜Glynn, J˜Avorn, KJ˜Rothman, and S˜Schneeweiss. A re-
view of the application of propensity score methods yielded increasing use, advan-

tages in specific settings, but not substantially different estimates compared with

conventional multivariable methods. Journal of Clinical Epidemiology, 59(5):437–
461, 2006.

[8] PR˜Rosenbaum and DB˜Rubin. Reducing bias in observational studies using sub-

classification on the propensity score. Journal of American Statistical Association,
79(387):516–524, 1984.



REFERENCES 27

[9] WG˜Cochran and DB˜Rubin. Controlling bias in observational studies: a review.
Sankhya Series A, (35):516–524, 1973.

[10] DB˜Rubin and N˜Thomas. Characterizing the effect of matching using linear propen-
sity score methods with normal distributions. Biometrike, 79(4):797–809, 1992.

[11] P˜Austin. Propensity-score matching in the cardiovascular surgery literature from
2004 to 2006: a systematic review and suggestions for improvement. Journal of
Thoracic and Cardiovascular Surgery, 134:1128–1135, 2007.

[12] PC˜Austin. A critical appraisal of propensity-score matching in the medical literature
between 1996 and 2003. Statistics in Medicine, 27(12):2037–2049, 2008.

[13] JA˜Nelder and RWM Wedderburn. Generalized linear models. Jornal of Royal Sta-
tistical Society A, 135(3):370–384, 1972.

[14] DR˜Cox and EJ˜Snell. Analysis of binary data. Chapman and Hall, London, second
edition, 1989.

[15] PJ˜Diggle, KY˜Liang, and SL˜Zeger. Analysis of Longitudinal Data. Oxford Univer-

sity Press, Oxford, 1994.

[16] JA˜Hanley, A˜Negassa, MD˜deB. Edwardes, and JE˜Forrester. Statistical analysis of

correlated data using generalized estimating equations: An orientation. American
Journal of Epidemiology, 157(4):364–375, 2003.

[17] AJ˜Dobson and AG˜Barnett. Introduction to Generalized Linear Models. Chapman
and Hall, London, third edition, 2008.

[18] J˜Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press,

2000.

[19] MA˜Hernan. A definition of causal effect for epidemiological research. Journal of

American Statistical Association, 58:265–271, 2003.

[20] MA˜Hernan and JM˜Robins. Estimating causal effects from epidemiological data.

Journal of Epidemiology and Community Health, 60:578–586, 2006.

[21] E˜Graf and M˜Schumacher. Letter to the editor: Comments on ˜the performance of
different propensity score methods for estimating marginal odds ratios. Statistics

in Medicine, 27(19):3915–3917, 2008.

[22] A˜Forbes and S˜Shortreed. Letter to the editor: Inverse probability weighted estima-

tion of the marginal odds ratio: Correspondence regarding ’The performance of
different propensity score methods for estimating marginal odds ratios’. Statistics
in Medicine, 27(26):5556–5559, 2008.

[23] S˜Stampf, E˜Graf, C˜Schmoor, and M˜Schumacher. Estimators and confidence in-
tervals for the marginal odds ratio using logistic regression and propensity score

stratification. Statistics in Medicine, in press, 2010.



REFERENCES 28

[24] H.˜F. Rauschecker, R.˜Sauer, A.˜Schauer, M.˜Schumacher, M.˜Olschewski,
W.˜Sauerbrei, M.˜H. Seegenschmiedt, and C.˜Schmoor. Therapy of small breast

cancer – four–year results of a prospective non–randomized study. Breast Cancer
Research and Treatment, 34:1–13, 1995.

[25] Stephen Senn, Erika Graf, and Angelika Caputo. Stratification for the propensity

score compared with linear regression techniques to assess the effect of treatment
or exposure. Statistics in Medicine, 26(30):5529–5544, 2007.

[26] J˜Forster, G˜Ihorst, CH˜Rieger, V˜Stephan, HD˜Frank, H˜Gurth, R˜Berner,
A˜Rohwedder, H˜Werchau, M˜Schumacher, T˜Tsai, and G˜Petersen. Prospective
population-based study of viral lower respiratory tract infections in children under

3 years of age (the pri.de study). European Journal of Pediatrics, 163(12):709–716,
2004.

[27] C˜Drake. Effects of misspecification on the propensity score on estimatiors of treat-
ment effects. Biometrics, 49(4):1231–1236, 1993.

[28] Katherine Huppler˜Hullsiek and Thomas˜A. Louis. Propensity score modeling strate-

gies for the causal analysis of observational data. Biostatistics, 2(4):179–193, 2002.

[29] S˜Weitzen, KL˜Lapane, AY˜Toledano, AL˜Hume, and V˜Mor. Principles for mod-

elling propensity scores in medical research. Pharmacoepidemiology and Drug
Safety, 13(12):841–853, 2004.

[30] Alan˜M. Brookhart, Sebastian Schneeweiss, Kenneth˜J. Rothman, Robert˜J. Glynn,
Jer˜ry Avorn, and Til Stürmer. Variable selection for propensity score models.
American Journal of Epidemiology, 141(12):1–8, 2006.

[31] DB˜Rubin. The design versus the analysis of observational studies for causal effects:
Parallels with the design of randomized trials. Statistics in Medicine, 26:20–36,

2007.

[32] PR˜Rosenbaum. Observational studies. Springer Verlag, New York, 1995.

[33] MM˜Joffe and PR˜Rosenbaum. Invited commentary: Propensity scores. American
Journal of Epidemiology, 150:327–333, 1999.

[34] WG˜Cochran. The effectiveness of adjustment by subclassification in removing bias

in observational studies. Biometrics, 24:295–313, 1968.

[35] PC˜Austin. Assessing balance in measured baseline covariates when using many-to-

one matching on the propensity score. Pharmacoepidemiology and drug safety,
17(12):1218–1225, 2008.

[36] BB˜Hansen. Commentary: The essential role of balance tests in propensity-matched

observational studies: Comments on ’a critical appraisal of propensity-score
matching in the medical literature between 1996 and 2003’ by peter austin, statis-

tics in medicine. Statistics in Medicine, 27(12):2050–2054, 2008.



REFERENCES 29

[37] PC˜Austin. The realibility of different propensity score methods to balance measured
covariates between treated and untreated subjects in observational studies. Medical

decision making, doi:10.1177/0272989X09341755, 2008.

[38] J˜Hill. Commentary: Discussion of research using propensity-score matching: Com-
ments on ’a critical appraisal of propensity-score matching in the medical litera-

ture between 1996 and 2003’ by peter austin, statistics in medicine. Statistics in
Medicine, 27(12):2055–2061, 2008.

[39] EA˜Stuart. Commentary: Developing practical recommendations for the use of
propensity scores: Discussion of ’a critical appraisal of propensity score matching
in the medical literature between 1996 and 2003’ by peter austin, statistics in

medicine. Statistics in Medicine, 27(12):2062–2065, 2008.

[40] PC˜Austin. Rejoinder: Discussion of ’a critical appraisal of propensity-score match-

ing in the medical literature between 1996 and 2003’. Statistics in Medicine,
27(12):2066–2069, 2008.

[41] S˜Greenland. Interpretation and choice of effect measures in epidemiologic analyses.

American Journal of Epidemiology, 125:761–768, 1987.

[42] NE˜Breslow and NE˜Day. Statistical Methods in Cancer Research, Volume 1 - The

Analysis of Case-Control Studies. International Agency for Research on Cancer
(IARC Scientific Publications No. 32), Lyon, 1980.

[43] KJ˜Rothman, S˜Greenalnd, and TL˜Lash. Modern epidemiology. Lippincott
Williams & Wilkins, Philadelphia, third edition, 2008.

[44] A˜Agresti and Y˜Min. Effects and non-effects of paired identical observations in com-

paring proportions with binary matched-pairs data. Statistics in Medicine, 23:65–
75, 2004.


	Introduction
	The estimation of the propensity score
	Selection of the propensity score model: relative.effect()
	Estimation of the propensity score: pscore()

	Propensity score based methods
	Stratification by the propensity score: ps.makestrata()
	Matching by PS: ps.match()

	Balance check for covariates
	Grahical balance check: dist.plot()
	Statistical tests and standardized differences: ps.balance() 

	Propensity score based treatment effects: ps.estimate()
	Effect estimator based on stratification by PS
	Effect estimator based on matching by PS


