
Urn Sampling Without Replacement: Enumerative

Combinatorics In R

Robin K. S. Hankin
University of Cambridge

Abstract

This vignette is based on Hankin (2007).
This short paper introduces a code snippet in the form of two new R functions that

enumerate possible draws from an urn without replacement; these functions call C code,
written by the author. Some simple combinatorial problems are solved using the software.

For reasons of performance, this vignette uses pre-calculated answers. To calculate
everything from scratch, set variable calculate_from_scratch in the first chunk to TRUE.

Keywords: Urn problems, drawing without replacement, enumerative combinatorics, Scrabble,
R.

1. Introduction

Drawing balls from an urn without replacement is a classical paradigm in probability (Feller
1968). It is useful in practice, and many elementary statistics textbooks use it to introduce
the binomial and hypergeometric distributions.

In this paper, I introduce software, written by the author, that enumerates1 all possible draws
from an urn containing specified numbers of balls of each of a finite number of types. Order
is not important in the sense that drawing AAB is equivalent to drawing ABA or BAA.
Formally, drawing n balls without replacement from an urn containing f1, f2, . . . , fS balls of
types 1, 2, . . . , S is equivalent to choosing a solution a1, . . . , aS to the Diophantine equation

S∑
i=1

ai = n, 0 6 ai 6 fi, (1)

with probability

(
fi
ai

)/(∑
fi

n

)
.

Combinatorial enumeration is often necessary in the context of integer optimization: the ap-
propriate configurations are enumerated and the optimal one reported. Sometimes explicit
enumeration is needed to count solutions satisfying some condition: simply enumerate candi-
date solutions, then test them one by one.

The software discussed here comprises two new R (R Development Core Team 2008) functions
S() and blockparts(), which are currently part of the partitions package (Hankin 2005),

1Enumerate: “to mention [a number of things] one by one, as if for the purpose of counting”

2 Urn sampling without replacement

version 1.3-3. These functions call C code, also written by the author, which is available as
part of the package.

All software is available from CRAN, http://CRAN.r-project.org/.

2. Examples

The software associated with this snippet is now used to answer a variety of combinatorial
questions, written in textbook example style, that require enumerative techniques to solve.

Question A chess player is considering endgames in which White has a king, no pawns, and
exactly three other pieces. What combinations of white pieces are possible? No promotions
have occurred.

Answer This is an urn problem with a pool of 7 objects, in this case non-king chess pieces. An
enumeration of the size-3 draws is required, which is given by new function blockparts().
This function enumerates the distinct solutions to equation 1 in columns which appear in
lexicographical order:

> blockparts(c(Bishops = 2, Knights = 2, Rooks = 2, Queens = 1), 3)

Bishops 2 1 2 1 0 1 0 2 1 0 1 0 0

Knights 1 2 0 1 2 0 1 0 1 2 0 1 0

Rooks 0 0 1 1 1 2 2 0 0 0 1 1 2

Queens 0 0 0 0 0 0 0 1 1 1 1 1 1

The first sample appears as the first column: this is the first lexicographically, as all draws
are from as low an index of f as possible. Subsequent draws are in lexicographical order.
Starting with a draw d—a vector of length(y) elements—the next draw is obtained by the
following algorithm:

1. Starting at the beginning of the vector, find the first block that can be moved one square
to the right, and move it. If no such block exists, all draws have been enumerated: stop.

2. Take all blocks to the left of the one that has moved, and place them sequentially in
the frame, starting from the left.

3. Go to item 1.

Figure 1 shows an example of this in action. The left diagram shows a draw of a bishop and
two knights, corresponding to the the second column of the matrix returned by blockparts()

above. The first block that can be moved is one of the knights. This moves one place to the
right and becomes a rook. The remaining pieces (that is, one bishop and one knight) are
redistributed starting from the left; they become two bishops.

There are thus 13 combinations: note that the majority of them have no Queen. The solutions
are in lexicographical order, which is useful in some contexts.

Question “Scrabble” is a popular word board game that involves choosing, at random, a rack
of 7 tiles from a pool of 100 with the following frequencies:

http://CRAN.r-project.org/

Robin K. S. Hankin 3

B N R QB N R Q B N R QB N R Q

Figure 1: A pictorial description of the algorithm used in function blockparts(). Three
blocks (grey squares) are arranged in a tableau (B, N, R, Q, representing the chess pieces
under consideration) in two consecutive configurations, the left one first. The larger, line
squares above each piece name show the maximum number of chess pieces allowed; thus
the two knights in the left diagram completely fill the ‘N’ column and this indicates that a
maximum of two knights may be drawn. The left diagram thus corresponds to one bishop
and two knights: this is column two in the matrix returned by blockparts() in the R chunk
above. The right diagram shows the next lexicographical arrangement, corresponding to
column three; the algorithm for the change is described in the text

> scrabble

a b c d e f g h i j k l m n o p q r s t u v w x y z

9 2 2 4 12 2 3 2 9 1 1 4 2 6 8 2 1 6 4 6 4 2 2 1 2 1 2

(note the last entry: two of the tiles are blank).

(i) how many distinct racks are possible?

(ii) what proportion of racks have no blanks?

(iii) what is the most probable rack and what is its frequency?

Answer

(i). The number of draws is given by function S(). This function returns the number of solu-

tions to equation 1 by determining the coefficient of xn in the generating function
∏S

i=1

∑fi
j=0 x

j

using the polynom (Venables, Hornik, and Maechler 2006) package:

> S(scrabble, 7)

[1] 3199724

(ii). The number of racks with no blank is given by function S(), applied with a suitably
shortened vector argument; the proportion of racks with no blank is then:

> S(scrabble[-27], 7)/S(scrabble, 7)

[1] 0.7763745

4 Urn sampling without replacement

Note that this question is distinct from that of determining the probability of drawing no

blanks, which is given by elementary combinatorial arguments as

(
98
7

)/(
100
7

)
, or

about 86%. This value is larger because racks with one or more blanks have relatively low
probabilities of being drawn.

(iii). To determine the most probable rack, we note that the probability of a given draw is
given by ∏(fi

ai

)
(

100
7

) .

The appropriate R idiom would be to enumerate all possible racks using blockparts(), and
apply a function that calculates the probability of each rack:

> f <- function(a) { prod(choose(scrabble, a))/choose(sum(scrabble), 7) }

> racks <- blockparts(scrabble, 7)

> probs <- apply(racks, 2, f)

The draw of maximal probability is given by the maximal element of probs. The correspond-
ing rack is then:

> rep(names(scrabble), racks[, which.max(probs)])

[1] "a" "e" "i" "n" "o" "r" "t"

In the context of the full Scrabble problem, there is only one acceptable anagram of the most
probable rack: “otarine”. Its probability is

> max(probs)

[1] 0.0001049264

or just over once per 9531 draws. It is interesting to note that the least probable rack is not
unique: there are exactly 1469 racks each with minimal probability (about 6.247 × 10−11).

3. Conclusions

The software discussed in this code snippet enumerates the possible draws from an urn made
without replacement; it is used to answer several combinatorial questions that require enu-
meration for their answer. Further work might include enumeration of solutions of arbitrary
linear Diophantine equations.

Acknowledgement

I would like to acknowledge the many stimulating and helpful comments made by the R-help
list while preparing this software.

Robin K. S. Hankin 5

I would also like to thank an anonymous referee who suggested that the polynom package
could be used to evaluate the generating function appearing in S().

References

Feller W (1968). An Introduction to Probability Theory and its Applications, volume 1. third
edition. New York: Wiley.

Hankin RKS (2005). “Additive integer partitions in R.” Journal of Statistical Software, Code
Snippets, 16(1).

Hankin RKS (2007). “Urn sampling without replacement: enumerative combinatorics in R.”
Journal of Statistical Software, Code Snippets, 17(1).

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Venables B, Hornik K, Maechler M (2006). polynom: A Collection of Functions to Implement
a Class for Univariate Polynomial Manipulations. R package version 1.2-1. S original by
Bill Venables, packages for R by Kurt Hornik and Martin Maechler., URL http://CRAN.

R-project.org/.

Affiliation:

Robin K. S. Hankin
University of Cambridge
19 Silver Street
Cambridge CB3 9EP
United Kingdom
E-mail: hankin.robin@gmail.com

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/
http://CRAN.R-project.org/
mailto:hankin.robin@gmail.com

	Introduction
	Examples
	Conclusions

