
pedantics: Tools to facilitate power and

sensitivity analyses for pedigree-based studies of

natural popualitons

M. B. Morrissey

October 28, 2009

1

Contents

1 Introduction 3

2 Fixing pedigrees 3

3 Visualizing pedigrees 6

4 Pedigree summary statistics 6

5 Generating ‘plausible true’ and assumed pedigrees 8

6 Generating simulated phenotypic data 9

7 A power analysis 9

8 Making pedantics talk to non-R software 11

9 Further processing of simulated data 12
9.1 Fixed effects . 13
9.2 Repeated records . 13
9.3 Non-normal data . 14

10 Acknowledgements 15

2

1 Introduction

pedantix contains three types of functions. The first are functions specifically
designed to aid power and sensitivity analyses for quantitative genetic stud-
ies, particulary with thought to accommodating the proglems and data struc-
tures that arise in data from natural populations. Of these rpederr, fpederr,
phensim, and microsim were described, albeit not as R functions, in [Mor-
rissey et al., 2007] and [Morrissey and Wilson, in press]. Two functions for
this class of use have since been added, rpederrBird, genomeSim. The second
class of functions in pedantix are utilities for manipulating pedigrees. Some,
such as makePedigreeNumeric and makePedigreeFactor are intended primar-
ily to be used by other pedantics functions. More importantly, fixPedigree,
is intended as a general function to manipulate pedigrees into a form that is
required for many pedantics modules and other softwares often used in quan-
titative genetic analyses, such as asreml Gilmour et al. [2002] or the R package
MCMCglmm [Hadfield and Kruuk, 2009]. The remaining functions, pedigreeStats
and drawPedigree, are exploratory tools for summarizing and visualizing pedi-
grees. First we will explore the utility functions in pedantics, and then we
will work through some sample power and sensitivity analyses, and finally I will
provide a few pointers on setting up more advanced analyses.

All of the functions in pedantics include more advanced features than are
described here. All features are described in the help files, accessable in the
standard R manner using the function help().

2 Fixing pedigrees

The first thing to do before we can use pedantics is to load it:

library(pedantics)

Pedigrees of natural populations are commonly represented in forms that are
not well handled by computer programs. The two most common problems are
(1) that not all individuals in the pedigree are represented by their own records,
and (2) very often we construct pedigrees in such a way that records of parents
do not necessarily preceed records of offspring. Rectification of these problems
is automated in fixPedigree(). Consider the pedigree:

pedigree<-as.data.frame(matrix(c(
10,1,2,
11,1,2,
12,1,3,
13,1,3,
14,4,5,
15,6,7,
4,NA,NA,
5,NA,NA,

3

6,NA,NA,
7,NA,NA),10,3,byrow=TRUE))

names(pedigree)<-c("id","dam","sire")

This is a form in which we might find a pedigree that has been constructed
from observational or molecular data. While this is a valid pedigree structure,
most computer programs will require that the maternal records preceed their
offspring’s records and that the paternal records get included in the pedigree,
again before the first point at which those males appear as sires. We can ac-
complish this by:

> pedigree
id dam sire

1 10 1 2
2 11 1 2
3 12 1 3
4 13 1 3
5 14 4 5
6 15 6 7
7 4 NA NA
8 5 NA NA
9 6 NA NA
10 7 NA NA
>
> fixedPedigree<-fixPedigree(Ped=pedigree)
>
> fixedPedigree

id dam sire
7 4 <NA> <NA>
8 5 <NA> <NA>
9 6 <NA> <NA>
10 7 <NA> <NA>
31 1 <NA> <NA>
61 2 <NA> <NA>
63 3 <NA> <NA>
1 10 1 2
2 11 1 2
3 12 1 3
4 13 1 3
5 14 4 5
6 15 6 7
>

This has resulted in our pedigree having a different length and order. Some
phenotypic data may need to be used in conjunction with the new pedigree
order. While this would not be a large problem in general in R, i.e., the function

4

match() can be handy, any data that is optionally supplied to fixPedigree()
will be returned in the new order, for example:

data<-as.data.frame(matrix(c(
10,1,2.45,
11,2,2.87,
12,2,2.98,
13,2,2.40,
14,1,3.10,
15,2,3.60,
4,0,1.34,
5,0,2.48,
6,0,1.72,
7,0,2.56),10,3,byrow=TRUE))

names(data)<-c("id","phenotype1","phenotype2")

> data
id phenotype1 phenotype2

1 10 1 2.45
2 11 2 2.87
3 12 2 2.98
4 13 2 2.40
5 14 1 3.10
6 15 2 3.60
7 4 0 1.34
8 5 0 2.48
9 6 0 1.72
10 7 0 2.56
>
> fixedPedigree<-fixPedigree(Ped=pedigree, dat=data)
>
> fixedPedigree

id dam sire V4 V5
7 4 <NA> <NA> 0 1.34
8 5 <NA> <NA> 0 2.48
9 6 <NA> <NA> 0 1.72
10 7 <NA> <NA> 0 2.56
31 1 <NA> <NA> NA NA
61 2 <NA> <NA> NA NA
63 3 <NA> <NA> NA NA
1 10 1 2 1 2.45
2 11 1 2 2 2.87
3 12 1 3 2 2.98
4 13 1 3 2 2.40
5 14 4 5 1 3.10
6 15 6 7 2 3.60

5

>

3 Visualizing pedigrees

Here we will begin to use the fictional example dataset that is distributed with
pedantics, data on gryphons collected in the 12th century.

> data(gryphons)
> head(gryphons)

id dam sire sex cohort fatherErrorProb fatherSampledProb firstReproCohort
1 204 NA NA 1 1147 1 0.5 1148
2 205 NA NA 1 1147 1 0.5 1148
3 206 NA NA 0 1147 1 0.5 1148
4 207 NA NA 0 1147 1 0.5 1148
5 208 NA NA 1 1147 1 0.5 1148
6 209 NA NA 1 1147 1 0.5 1148
>

The simplest visual interpretation of this pedigee can be provided as follows:

gryphPed<-as.data.frame(cbind(gryphons$id,gryphons$dam,
gryphons$sire))

names(gryphPed)<-c("id","dam","sire")
drawPedigree(gryphPed)

Here maternal links are in red and paternal links are in blue (Figure 1a). A
more useful visual description of the pedigree can be provided by plotting by
cohort (Figure 1b):

drawPedigree(gryphPed,cohorts=gryphons$cohort)

4 Pedigree summary statistics

A range of summary statistics for the gryphon pedigree can be generated as
follows:

> pedStatSummary(pedigreeStats(gryphPed,graphicalReport=’n’))
records maternities

4.918000e+03 2.435000e+03
paternities full sibs

1.156000e+03 8.600000e+01
maternal sibs maternal half sibs
6.957000e+03 6.871000e+03
paternal sibs paternal half sibs
6.138000e+03 6.052000e+03

6

(a) (b)

Figure 1: Sample pedigree images using drawPedigree().

maternal grandmothers maternal grandfathers
1.503000e+03 8.890000e+02

paternal grandmothers paternal grandfathers
5.070000e+02 3.540000e+02

maximum pedigree depth founders
6.000000e+00 2.483000e+03

mean maternal sibsip size mean paternal sibsip size
4.183849e+00 3.853333e+00
non-zero F F > 0.125

2.300000e+01 7.000000e+00
mean pairwise relatedness pairwise relatedness>=0.125

8.580691e-02 3.309669e-01
pairwise relatedness>=0.25 pairwise relatedness>=0.5

1.272125e-01 2.350472e-02

In many pedigree-based studies of natural populations, attributes of pedi-
grees vary in important ways over time. Providing cohort affinities to pedigreeStats
allows it to provide more informative data, especially in graphical form:

stats2<-pedigreeStats(gryphPed,cohorts=gryphons$cohort)

The above code generates a number of graphical representations of different
aspects of the pedigree, including those in Figure 2.

7

(a) (b)

Figure 2: Samples of the graphical output of pedigree statistics generated by
pedigreeStats().

5 Generating ‘plausible true’ and assumed pedi-
grees

When pedigrees are uncertain, an important step in power and sensitivity anal-
yses can be the generation of pairs of pedigrees. One pedigree of the pair mimics
a true pedigree based on the true breeding system of the organism in question
and the other pedigree differs from the first in a way that mimics patterns of
pedigree uncertainty in any given study. pedantics contains several functions
to generate these pairs of pedigrees. The function rpederr is most useful for
the gryphon pedigree, because with a lot of pedigree data have already been
collected, so generation of the plausible true pedigree can be done based on the
uncertain pedigree, thus avoiding the need to simulate an entire pedigree from
scratch:

gryphons<-gryphons[order(gryphons$cohort),]
gryphPed<-as.data.frame(cbind(gryphons$id,gryphons$dam,

gryphons$sire))
names(gryphPed)<-c("id","dam","sire")

fullPedigree<-rpederr(gryphPed,founders=(is.na(gryphons$dam))+0,
sex=gryphons$sex,sireE=gryphons$fatherErrorProb,
cohort=gryphons$cohort,first=gryphons$firstReproCohort,
last=gryphons$lastReproCohort)$truePedigree

This particular use of rpederr would only have filled in some of the missing
paternal links, since all individuals without maternal links were designated as

8

founders (many other more realistic assumptions are possible with rpederr).
We can check that it worked right be making sure that some paternal links did
get filled in:

> table(is.na(gryphPed$sire))

FALSE TRUE
1156 3762

>
> table(is.na(fullPedigree$sire))

FALSE TRUE
2435 2483

>

6 Generating simulated phenotypic data

The next step in work flows for many power and sensitivity analyses will be the
generation of data based on the plausible true pedigree. Here we can simulate
data for a single trait with a heritability of 0.5:

simPhen<-phensim(fullPedigree,randomA=0.5,randomE=0.5)$phenotypes

We can check that this worked out by regressing offspring phenotypes on
their parents. In this case, we’ll calculate the mother-offspring covariance, which
should equal to half the additive genetic variance [Lynch and Walsh, 1998]:

simPhen<-phensim(fullPedigree,randomA=0.5,randomE=0.5)$phenotypes
simPhen$mum<-gryphons$dam[match(simPhen$id,gryphons$id)]
simPhen$mumPhenotype<-simPhen$trait_1[

match(simPhen$mum,as.numeric(as.character(simPhen$id)))]
>
> cov(simPhen$mumPhenotype,simPhen$trait_1,use="pairwise.complete.obs")
[1] 0.2314591

7 A power analysis

Normally, analysis of a single simulated dataset, as above, will not be partic-
ularly informative. Typically we need to repeat analyses of each of a number
of scenarios a large number of times before we can begin to make inferences on
issues of power and sensitivity. An analysis of the power to detect segregat-
ing genetic variation using mother-offspring regression in the gryphon data set
might proceed as follows:

we’ll do plenty of replicates of each scenario:
n<-1000

9

here is a decent range of heritabilities to simulate:
heritabilities<-seq(0,0.2,by=0.02)

we will need to keep track of the p-values resulting
from each replicate of each scenario, and for each
scenario, we’ll want to keep track of the proportion
of significant tests:
p_values<-matrix(NA,n,length(heritabilities))
power<-array(dim=length(heritabilities))

here we’ll loop through all the scenarios and replicates,
keeping track of the p-value at the end of each iteration
through the work flow, and stopping to calculate the
proportion of significant tests each time we get through
all the replicates for each heritability
for(x in 1:length(heritabilities)) {
for(y in 1:n) {
simPhen<-phensim(fullPedigree,randomA=heritabilities[x],

randomE=1-heritabilities[x])$phenotypes
simPhen$mum<-gryphons$dam[match(simPhen$id,gryphons$id)]
simPhen$mumPhenotype<-simPhen$trait_1[match(simPhen$mum,

as.numeric(as.character(simPhen$id)))]
p_values[y,x]<-anova(lm(simPhen$trait_1~simPhen$mumPhenotype))[1,5]

}
power[x]<-table(p_values[,x]<0.05)["TRUE"]/n

}

And we can view the power curve in tabular form:

> power_results<-cbind(heritabilities,power)
> power_results

heritabilities power
[1,] 0.00 0.039
[2,] 0.02 0.069
[3,] 0.04 0.172
[4,] 0.06 0.313
[5,] 0.08 0.497
[6,] 0.10 0.664
[7,] 0.12 0.828
[8,] 0.14 0.900
[9,] 0.16 0.949

[10,] 0.18 0.986
[11,] 0.20 0.996
>

10

8 Making pedantics talk to non-R software

One of the difficulties of setting up an analysis with pedantics is that several
steps are required. Often, not all of these steps can yet be conduced directly
in R. The above sensitivity analysis demonstrates a typical work flow, but often
the step where simulated data are analysed will require a non-R software. In
quantitative genetic analyses, this might involve using asreml (Gilmour et al.
2002; note that an R version is available, but lacks significant functionality
relative to the stand alone version) or wombat Meyer [2006].

Use of an external program in an R-based pedantics analysis is possible,
and requires three operations: (1) simulated data must be made available to
the external program, (2) the external program must be called, and (3) output
from the external program must be read back into R.

The first step is easily accomplished using write.table(). For example, we
could write the pedigree and data files required by asreml, for the sensitivity
analysis we conducted by mother-offspring regression as follows:

write a pedigree file
write.table(fullPedigree,"pedigree_for_asreml.ped")
write a data file file
write.table(simPhen,"phens_for_asreml.ped")

If R had been invoked from the ../asreml/bin folder, these files would now
be in place to conduct an asreml analysis. We can do this without having to leave
the R environment using the system() call function. Assuming an appropriate
asreml program file (and post-processing file - the commands for the second
step of most asreml analyses where variance components and their standard
errors are produced) existed in the ../asreml/bin folder, it could be run as
follows:

system("./asreml gryphTest.as")
system("./asreml gryphTest.pin")

This would generate an ouput file gryphTest.pvc that might look like the
following:

3 phenvar 1.023 0.0213
2 addvar 0.566 0.1224
h2 = addvar /phenvar = 0.550 0.145

The trickiest step is extraction of this information from the datafile, and
getting it back into R. This is particularly difficult because the file is not arranged
as a table. For the asreml results above, the variance components and their
standard errors can be recovered into R as follows:

inp<-readLines("./gryphTest.pvc")
get_vals<-function(lineData){

11

this function reduces text and numbers separated by
variable numbers of spaces into a vector of just
the numeric values:
suppressWarnings(subset(as.numeric(unlist(

strsplitlineData[1]," "))),is.na(as.numeric(
unlist(strsplit(lineData[1]," "))))==FALSE))

}
phenVar<-get_vals(inp[1])[2]
phenVarSE<-get_vals(inp[1])[3]
additiveVar<-get_vals(inp[2])[2]
additiveVarSE<-get_vals(inp[2])[3]
heritability<-get_vals(inp[3])[1]
heritabilitySE<-get_vals(inp[3])[2]

We can check that we recovered the right values:

> phenVar
[1] 1.023
> phenVarSE
[1] 0.0213
>
> additiveVar
[1] 0.566
> additiveVarSE
[1] 0.1224
>
> heritability
[1] 0.055
> heritabilitySE
[1] 0.145
>

This set of text handling R functions is described in Crawley [2007], p. 105.
Note that some adjustement will be required for the particular locations where
different results will occur in asreml .pvc files generated for different kinds of
analyses. Note that the positions of important data in the decomposed string
from each line of the .pvc can change: in the above example, the genetic and
phenotypic variances and their standard errors are the second and third numeric
values on their respective lines, while the estimates and standard errors of the
heritability occur in the first and second numeric positions of the heritability
line.

9 Further processing of simulated data

In the following sections, I provide a few pointers on how to take advantage of
the flexibility provided by the implementation of pedantics in R to simulate

12

complexities in phenotypic data, beyond those that are immediately provided
by the modules in pedantics.

9.1 Fixed effects

Suppose some issue in the analysis of the gryphon data required a simulation
study where birth year effects on mean phenotype were important. Year effects
taken from a normal distribution with variance 0.5 units could be added to the
phenotypic data we simulated in section 6 as follows

simulate some effects associated with each cohort
cohort_effects<-as.data.frame(cbind(as.numeric(

names(table(gryphons$cohort))),
rnorm(length(table(gryphons$cohort)),
0,sqrt(0.5))))

associate cohort effects with individuals
simPhen$cohort_effect<-cohort_effects[match(

gryphons$cohort,cohort_effects[,1]),2]

re-calculate phenotype
simPhen$measured_value<-simPhen$trait_1+simPhen$cohort_effect

9.2 Repeated records

Multiple records are quite common. Given the new implementation of pednatics
in R, the simulation of a variety of scenarios of repeated records data, includ-
ing random-regression is possible. One scenario might include a trait measured
several times, say anually, with declining data availability (due to mortality). A
trait measured up to four times, for individuals with an annual survival rate of
0.5 might be simulated as follows. We’ll use the trait above into which we in-
corporated a cohort effect to simulate these data. Additionally, we will simulate
an additional environmental variance of 0.2 for between-year, within-individual
variation:

simulate with no missing data
simulate with no missing data
simPhen$year1<-simPhen$measured_value+

rnorm(length(simPhen[,1]),0,sqrt(0.2))
simPhen$year2<-simPhen$measured_value+

rnorm(length(simPhen[,1]),0,sqrt(0.2))
simPhen$year3<-simPhen$measured_value+

rnorm(length(simPhen[,1]),0,sqrt(0.2))
simPhen$year4<-simPhen$measured_value+

rnorm(length(simPhen[,1]),0,sqrt(0.2))

13

simulate missing data, remembering that a dead
individual can’t be measured in subsequent years
simPhen$year1<-simPhen$year1*

rbinom(length(simPhen[,1]),1,0.5)
simPhen$year2<-simPhen$year2*

rbinom(length(simPhen[,1]),1,0.5)*
((simPhen$year1!=0)+0)

simPhen$year3<-simPhen$year3*
rbinom(length(simPhen[,1]),1,0.5)*
((simPhen$year2!=0)+0)

simPhen$year4<-simPhen$year4*
rbinom(length(simPhen[,1]),1,0.5)*
((simPhen$year3!=0)+0)

change the zeros that we now have for missing data to NAs
simPhen$year1[simPhen$year1 %in% 0]<-NA
simPhen$year2[simPhen$year2 %in% 0]<-NA
simPhen$year3[simPhen$year3 %in% 0]<-NA
simPhen$year4[simPhen$year4 %in% 0]<-NA

And to check a portion of the data:

> simPhen[1:10,c("id","year1","year2","year3","year4")]
id year1 year2 year3 year4

1 91 NA NA NA NA
2 92 0.74858933 0.1685677 0.7500114 NA
3 93 0.95772673 NA NA NA
4 94 NA NA NA NA
5 95 NA NA NA NA
6 96 NA NA NA NA
7 97 -0.87097848 -0.9690001 -0.6132075 -1.0726285
8 98 0.12817738 0.4200899 -1.0273101 NA
9 99 NA NA NA NA
10 100 -0.03473497 -0.6074088 -0.7519217 0.0485704
>

9.3 Non-normal data

Non-normal data distributions (e.g. binary, binomial, exponential, poisson) can
be produced by treating the normal deviates generated by pedantics as an
underlying liability. In such an approach the non-normal data can be generated
using a link function. For example, a lot of ecological data are binary, (e.g.
reproduced/failed) and such data can be created using the inverse logit function
and binomial deviates with one trial:

note that we are leaving the data centered on zero, as
simulated. To change the population mean, we would

14

need to add a constant to the liability
simPhen$year1<-suppressWarnings(rbinom(length(

simPhen[,1]),1,inv.logit(simPhen$year1)))
simPhen$year2<-suppressWarnings(rbinom(length(

simPhen[,1]),1,inv.logit(simPhen$year2)))
simPhen$year3<-suppressWarnings(rbinom(length(

simPhen[,1]),1,inv.logit(simPhen$year3)))
simPhen$year4<-suppressWarnings(rbinom(length(

simPhen[,1]),1,inv.logit(simPhen$year4)))

And to check a portion of the data:

> simPhen[1:10,c("id","year1","year2","year3","year4")]
id year1 year2 year3 year4

1 91 NaN NaN NaN NaN
2 92 0 1 0 NaN
3 93 1 NaN NaN NaN
4 94 NaN NaN NaN NaN
5 95 NaN NaN NaN NaN
6 96 NaN NaN NaN NaN
7 97 0 0 0 0
8 98 1 1 0 NaN
9 99 NaN NaN NaN NaN
10 100 0 0 0 0
>

10 Acknowledgements

pedantics has been developed with input from Alastair Wilson, Jarrod Had-
field, Josephine Pemberton, Loeske Kruuk, Moira Ferguson, Denis Reale, and
Jane Reid. Jarrod Hadfield helped enormously in preparing pedantics in the
form of an R package.

References

M.J. Crawley. The R book. Wiley, West Sussex, England, 2007.

A. R. Gilmour, B. J. Gogel, B. R. Cullis, S. J. Welham, and R. Thompson.
ASReml user guide release 1.0. VSN International Ltd, Hemel Hempstead,
United Kingdom, 2002.

J.D. Hadfield and L. E. B. Kruuk. MCMC methods for multi-response gener-
alised linear mixed models: The MCMCglmm R package. submitted, 2009.

M. Lynch and B. Walsh. Genetics and analysis of quantitative traits. Sinauer,
Sunderland, MA, 1998.

15

K. Meyer. WOMBAT - digging deep for quantitative genetic analyses by re-
stricted maximum likelihood. In 8th World Congress on Genetics Applied to
Livestock Production, August 13-18, Belo Horizonte, Brazil, 2006.

M. B. Morrissey, A. J. Wilson, J. M. Pemberton, and M. M. Ferguson. A
framework for power and sensitivity analyses for quantitative genetic studies
of natural populations and case studies in soay sheep (Ovis aries). Journal
of Evolutionary Biology, 20:2309–2321, 2007.

M.B. Morrissey and A.J. Wilson. pedantics, an R package for pedgiree-based
genetic simulation and pedigree manipulation, characterization, and viewing.
Molecular Ecology Resources, in press.

16

