
The phylo4 S4 classes and methods

Ben Bolker & Peter Cowan

March 25, 2011

Contents

1 Introduction 1

2 Package overview 2

3 Using the S4 help system 3

4 Trees without data 3

5 Trees with data 6

6 Subsetting 8

7 Tree-walking 8

8 multiPhylo classes 8

9 Examples 9
9.1 Constructing a Brownian motion trait simulator 9

9.1.1 the easy way . 9
9.1.2 The hard way . 10

A Definitions/slots 11
A.1 phylo4 . 11
A.2 phylo4d . 12
A.3 multiphylo4 . 12

1 Introduction

This document describes the new phylo4 S4 classes and methods, which are intended to provide
a unifying standard for the representation of phylogenetic trees and comparative data in R. The
phylobase package was developed to help both end users and package developers by providing
a common suite of tools likely to be shared by all packages designed for phylogenetic analysis,
facilities for data and tree manipulation, and standardization of formats.

This standardization will benefit end-users by making it easier to move data and compare
analyses across packages, and to keep comparative data synchronized with phylogenetic trees.
Users will also benefit from a repository of functions for tree manipulation, for example tools

1

for including or excluding subtrees (and associated phenotypic data) or improved tree and data
plotting facilities. phylobase will benefit developers by freeing them to put their programming
effort into developing new methods rather than into re-coding base tools. We (the phylobase

developers) hope phylobase will also facilitate code validation by providing a repository for
benchmark tests, and more generally that it will help catalyze community development of
comparative methods in R.

A more abstract motivation for developing phylobase was to improve data checking and
abstraction of the tree data formats. phylobase can check that data and trees are associated
in the proper fashion, and protects users and developers from accidently reordering one, but
not the other. It also seeks to abstract the data format so that commonly used information
(for example, branch length information or the ancestor of a particular node) can be accessed
without knowledge of the underlying data structure (i.e., whether the tree is stored as a matrix,
or a list, or a parenthesis-based format). This is achieved through generic phylobase functions
which which retrieve the relevant information from the data structures. The benefits of such
abstraction are multiple: (1) easier access to the relevant information via a simple function
call (this frees both users and developers from learning details of complex data structures), (2)
freedom to optimize data structures in the future without breaking code. Having the generic
functions in place to “translate” between the data structures and the rest of the program
code allows program and data structure development to proceed somewhat independently. The
alternative is code written for specific data structures, in which modifications to the data
structure requires rewriting the entire package code (often exacting too high a price, which
results in the persistence of less-optimal data structures). (3) providing broader access to the
range of tools in phylobase. Developers of specific packages can use these new tools based on
S4 objects without knowing the details of S4 programming.

The base phylo4 class is modeled on the the phylo class in ape. phylo4d and multiphylo4

extend the phylo4 class to include data or multiple trees respectively. In addition to describing
the classes and methods, this vignette gives examples of how they might be used.

2 Package overview

The phylobase package currently implements the following functions and data structures:

• Data structures for storing a single tree and multiple trees: phylo4 and multiPhylo4?

• A data structure for storing a tree with associated tip and node data: phylo4d

• A data structure for storing multiple trees with one set of tip data: multiPhylo4d

• Functions for reading nexus files into the above data structures

• Functions for converting between the above data structures and ape phylo objects as
well as ade4 phylog objects (although the latter are now deprecated . . .)

• Functions for editing trees and data (i.e., subsetting and replacing)

• Functions for plotting trees and trees with data

2

3 Using the S4 help system

The S4 help system works similarly to the S3 help system with some small differences relating to
how S4 methods are written. The plot() function is a good example. When we type ?plot we
are provided the help for the default plotting function which expects x and y. R also provides a
way to smartly dispatch the right type of plotting function. In the case of an ape phylo object
(a S3 class object) R evaluates the class of the object and finds the correct functions, so the
following works correctly.

> library(ape)
> set.seed(1) ## set random-number seed
> rand_tree <- rcoal(10) ## Make a random tree with 10 tips
> plot(rand_tree)

However, typing ?plot still takes us to the default plot help. We have to type ?plot.phylo
to find what we are looking for. This is because S3 generics are simply functions with a dot
and the class name added.

The S4 generic system is too complicated to describe here, but doesn’t include the same dot
notation. As a result ?plot.phylo4 doesn’t work, R still finds the right plotting function.

> library(phylobase)
> rand_p4_tree <- as(rand_tree, "phylo4")
> plot(rand_p4_tree)

All fine and good, but how to we find out about all the great features of the phylobase

plotting function? R has two nifty ways to find it, the first is to simply put a question mark in
front of the whole call:

> `?`(plot(rand_p4_tree))

R looks at the class of the rand p4 tree object and takes us to the correct help file (note:
this only works with S4 objects). The second ways is handy if you already know the class of
your object, or want to compare to generics for different classes:

> `?`(method, plot("phylo4"))

More information about how S4 documentation works can be found in the methods package,
by running the following command.

> help("Documentation", package = "methods")

4 Trees without data

You can start with a tree — an object of class phylo from the ape package (e.g., read in using
the read.tree() or read.nexus() functions), and convert it to a phylo4 object.

For example, load the raw Geospiza data:

> library(phylobase)
> data(geospiza_raw)
> ## what does it contain?
> names(geospiza_raw)

[1] "tree" "data"

3

Convert the S3 tree to a S4 phylo4 object using the as() function:

> (g1 <- as(geospiza_raw$tree, "phylo4"))

label node ancestor
1 fuliginosa 1 24
2 fortis 2 24
3 magnirostris 3 23
4 conirostris 4 22
5 scandens 5 21
6 difficilis 6 20
7 pallida 7 25
8 parvulus 8 27
9 psittacula 9 27
10 pauper 10 26
11 Platyspiza 11 18
12 fusca 12 17
13 Pinaroloxias 13 16
14 olivacea 14 15
15 <NA> 15 0
16 <NA> 16 15
17 <NA> 17 16
18 <NA> 18 17
19 <NA> 19 18
20 <NA> 20 19
21 <NA> 21 20
22 <NA> 22 21
23 <NA> 23 22
24 <NA> 24 23
25 <NA> 25 19
26 <NA> 26 25
27 <NA> 27 26

edge.length node.type
1 0.05500 tip
2 0.05500 tip
3 0.11000 tip
4 0.18333 tip
5 0.19250 tip
6 0.22800 tip
7 0.08667 tip
8 0.02000 tip
9 0.02000 tip
10 0.03500 tip
11 0.46550 tip
12 0.53409 tip
13 0.58333 tip
14 0.88077 tip
15 NA root
16 0.29744 internal
17 0.04924 internal
18 0.06859 internal
19 0.13404 internal
20 0.10346 internal
21 0.03550 internal
22 0.00917 internal
23 0.07333 internal
24 0.05500 internal
25 0.24479 internal
26 0.05167 internal
27 0.01500 internal

The (internal) nodes appear with labels <NA> because they are not defined:

> nodeLabels(g1)

15 16 17 18 19 20 21 22 23 24 25 26 27
NA NA NA NA NA NA NA NA NA NA NA NA NA

You can also retrieve the node labels with labels(g1,"internal")).
A simple way to assign the node numbers as labels (useful for various checks) is

> nodeLabels(g1) <- paste("N", nodeId(g1,
+ "internal"), sep = "")
> head(g1, 5)

4

label node ancestor
1 fuliginosa 1 24
2 fortis 2 24
3 magnirostris 3 23
4 conirostris 4 22
5 scandens 5 21

edge.length node.type
1 0.05500 tip
2 0.05500 tip
3 0.11000 tip
4 0.18333 tip
5 0.19250 tip

The summary method gives a little extra information, including information on the distribu-
tion of branch lengths:

> summary(g1)

Phylogenetic tree : g1

Number of tips : 14
Number of nodes : 13
Branch lengths:

mean : 0.1764008
variance : 0.04624379
distribution :

Min. 1st Qu. Median Mean 3rd Qu.
0.00917 0.04985 0.08000 0.17640 0.21910

Max.
0.88080

Print tip labels:

> tipLabels(g1)

1 2
"fuliginosa" "fortis"

3 4
"magnirostris" "conirostris"

5 6
"scandens" "difficilis"

7 8
"pallida" "parvulus"

9 10
"psittacula" "pauper"

11 12
"Platyspiza" "fusca"

13 14
"Pinaroloxias" "olivacea"

(labels(g1,"tip") would also work.)
Print node numbers (in edge matrix order):

> nodeId(g1, type = "all")

[1] 1 2 3 4 5 6 7 8 9 10 11 12
[13] 13 14 15 16 17 18 19 20 21 22 23 24
[25] 25 26 27

Print edge labels (also empty in this case — therefore all NA):

> edgeLabels(g1)

15-16 16-17 17-18 18-19 19-20 20-21
NA NA NA NA NA NA

21-22 22-23 23-24 24-1 24-2 23-3
NA NA NA NA NA NA

22-4 21-5 0-15 20-6 19-25 25-7
NA NA NA NA NA NA

25-26 26-27 27-8 27-9 26-10 18-11
NA NA NA NA NA NA

17-12 16-13 15-14
NA NA NA

5

Is it rooted?

> isRooted(g1)

[1] TRUE

Which node is the root?

> rootNode(g1)

[1] 15

Does it contain any polytomies?

> hasPoly(g1)

[1] FALSE

Does it have information on branch lengths?

> hasEdgeLength(g1)

[1] TRUE

You can modify labels and other aspects of the tree — for example, to convert all the labels
to lower case:

> tipLabels(g1) <- tolower(tipLabels(g1))

You could also modify selected labels, e.g. to modify the labels in positions 11 and 13 (which
happen to be the only labels with uppercase letters):

> tipLabels(g1)[c(11, 13)] <- c("platyspiza",
+ "pinaroloxias")

5 Trees with data

The phylo4d class matches trees with data, or combines them with a data frame to make a
phylo4d (tree-with-data) object.

Now we’ll take the Geospiza data from geospiza_raw$data and merge it with the tree.
However, since G. olivacea is included in the tree but not in the data set, we will initially run
into some trouble:

> g2 <- phylo4d(g1, geospiza_raw$data)

Error in formatData(phy = x, dt = tip.data, type = "tip", ...) :
The following nodes are not found in the dataset: platyspiza, pinaroloxias, olivacea

We have two problems — the first is that we forgot to lowercase the labels on the data to
match the tip labels:

> gdata <- geospiza_raw$data
> row.names(gdata) <- tolower(row.names(gdata))

6

To deal with the second problem (missing data for G. olivacea), we have a few choices. The
easiest is to use missing.data="warn" to allow R to create the new object with a warning (you
can also use missing.data="OK" to proceed without warnings):

> g2 <- phylo4d(g1, gdata, missing.data="warn")

Another way to deal with this would be to use prune() to drop the offending tip from the
tree first:

> g1B <- prune(g1, "olivacea")
> phylo4d(g1B, gdata)

You can summarize the new object:

> summary(g2)

Phylogenetic tree : as(x, "phylo4")

Number of tips : 14
Number of nodes : 13
Branch lengths:

mean : 0.1764008
variance : 0.04624379
distribution :

Min. 1st Qu. Median Mean 3rd Qu.
0.00917 0.04985 0.08000 0.17640 0.21910

Max.
0.88080

Comparative data:

Tips: data.frame with 14 taxa and 5 variable(s)

wingL tarsusL
Min. :3.975 Min. :2.807
1st Qu.:4.189 1st Qu.:2.929
Median :4.235 Median :2.980
Mean :4.236 Mean :2.991
3rd Qu.:4.265 3rd Qu.:3.039
Max. :4.420 Max. :3.271
NA's :1.000 NA's :1.000

culmenL beakD
Min. :1.974 Min. :1.191
1st Qu.:2.187 1st Qu.:1.941
Median :2.311 Median :2.073
Mean :2.333 Mean :2.083
3rd Qu.:2.430 3rd Qu.:2.347
Max. :2.725 Max. :2.824
NA's :1.000 NA's :1.000

gonysW
Min. :1.401
1st Qu.:1.845
Median :1.962
Mean :2.014
3rd Qu.:2.222
Max. :2.676
NA's :1.000

Nodes: data.frame with 13 internal nodes and 5 variables

wingL tarsusL
Min. : NA Min. : NA
1st Qu.: NA 1st Qu.: NA
Median : NA Median : NA
Mean :NaN Mean :NaN
3rd Qu.: NA 3rd Qu.: NA
Max. : NA Max. : NA
NA's : 13 NA's : 13

culmenL beakD
Min. : NA Min. : NA
1st Qu.: NA 1st Qu.: NA
Median : NA Median : NA
Mean :NaN Mean :NaN
3rd Qu.: NA 3rd Qu.: NA

7

Max. : NA Max. : NA
NA's : 13 NA's : 13

gonysW
Min. : NA
1st Qu.: NA
Median : NA
Mean :NaN
3rd Qu.: NA
Max. : NA
NA's : 13

Or use tdata() to extract the data (i.e., tdata(g2)). By default, tdata() will retrieve tip
data, but you can also get internal node data only (tdata(tree, "internal")) or — if the tip
and node data have the same format — all the data combined (tdata(tree, "allnode")).

If you want to plot the data (e.g. for checking the input), plot(tdata(g2)) will create the
default plot for the data — in this case, since it is a data frame [this may change in future
versions but should remain transparent] this will be a pairs plot of the data.

6 Subsetting

The subset command offers a variety of ways of extracting portions of a phylo4 or phylo4d

tree, keeping any tip/node data consistent.

tips.include give a vector of tips (names or numbers) to retain

tips.exclude give a vector of tips (names or numbers) to drop

mrca give a vector of node or tip names or numbers; extract the clade containing these taxa

node.subtree give a node (name or number); extract the subtree starting from this node

Different ways to extract the fuliginosa-scandens clade:

> subset(g2, tips.include = c("fuliginosa",
+ "fortis", "magnirostris", "conirostris",
+ "scandens"))
> subset(g2, node.subtree = 21)
> subset(g2, mrca = c("scandens",
+ "fortis"))

One could drop the clade by doing

> try(subset(g2, tips.exclude = c("fuliginosa",
+ "fortis", "magnirostris", "conirostris",
+ "scandens")), silent = TRUE)
> try(subset(g2, tips.exclude = names(descendants(g2,
+ MRCA(g2, c("difficilis", "fortis"))))),
+ silent = TRUE)

7 Tree-walking

getnodes, children, parent, descendants, ancestors, siblings, MRCA . . .
generally take a phylo4 object, a node (specified by number or name) and return a named

vector of node numbers.

8 multiPhylo classes

Fix me!

8

9 Examples

9.1 Constructing a Brownian motion trait simulator

This section will describe two (?) ways of constructing a simulator that generates trait values for
extant species (tips) given a tree with branch lengths, assuming a model of Brownian motion.

9.1.1 the easy way

We can use as(tree,"phylo4vcov") to coerce the tree into a variance-covariance matrix form,
and then use mvrnorm from the MASS package to generate a set of multivariate normally dis-
tributed values for the tips. (A benefit of this approach is that we can very quickly generate a
very large number of replicates.) This example illustrates a common feature of working with
phylobase — combining tools from several different packages to operate on phylogenetic trees
with data.

We start with a randomly generated tree using rcoal() from ape to generate the tree
topology and branch lengths:

> set.seed(1001)
> tree <- as(rcoal(12), "phylo4")

Next we generate the phylogenetic variance-covariance matrix (by coercing the tree to a
phylo4vcov object) and pick a single set of normally distributed traits (using MASS:mvrnorm to
pick a multivariate normal deviate with a variance-covariance matrix that matches the structure
of the tree).

> vmat <- as(tree, "phylo4vcov")
> vmat <- cov2cor(vmat)
> library(MASS)
> trvec <- mvrnorm(1, mu = rep(0,
+ 12), Sigma = vmat)

The last step (easy) is to convert the phylo4vcov object back to a phylo4d object:

> treed <- phylo4d(tree, tip.data = as.data.frame(trvec))
> plot(treed)

9

●

●

●

●

●

●

t12

t2

t8

t10

t1

t6

t4

t11

t5

t3

t9

t7

tr
ve

c

9.1.2 The hard way

> ## add node labels so we can match to data
> nodeLabels(tree) <- as.character(nodeId(tree, "internal"))
> ## ordering will make sure that we have ancestor value
> ## defined before descendant
> tree <- reorder(tree, "preorder")
> edgemat <- edges(tree)
> ## set aside space for values
> nodevals <- numeric(nrow(edgemat))
> ## label data in edge matrix order
> names(nodevals) <- labels(tree, "all")[nodeId(tree, "all")]
> ## variance is proportional to edge length; drop first
> ## element of edge length, which is NA
> dvals <- rnorm(nrow(edgemat) - 1, sd=edgeLength(tree)[-1]^2)
> ## indexing: ind[node number] gives position in edge matrix
> ind <- order(nodeId(tree, "all"))
> for (i in 2:nrow(edgemat)) {
+ ## value of ancestor node plus change
+ nodevals[i] <- nodevals[ind[edgemat[i, 1]]] + dvals[i - 1]
+ }
> nodevals <- data.frame(nodevals)
> treed2 <- phylo4d(tree, all.data=nodevals)

10

A Definitions/slots

This section details the internal structure of the phylo4, multiphylo4, phylo4d, and multiphylo4d

classes. The basic building blocks of these classes are the phylo4 object and a dataframe. The
phylo4 tree format is largely similar to the one used by phylo class in the package ape 1.

We use “edge” for ancestor-descendant relationships in the phylogeny (sometimes called
“branches”) and “edge lengths” for their lengths (“branch lengths”). Most generally, “nodes”
are all species in the tree; species with descendants are “internal nodes” (we often refer to these
just as “nodes”, meaning clear from context); “tips” are species with no descendants. The “root
node” is the node with no ancestor (if one exists).

A.1 phylo4

Like phylo, the main components of the phylo4 class are:

edge a 2-column matrix of integers, with N rows for a rooted tree or N−1 rows for an unrooted
tree and column names ancestor and descendant. Each row contains information on
one edge in the tree. See below for further constraints on the edge matrix.

edge.length numeric list of edge lengths (length N (rooted) or N − 1 (unrooted) or empty
(length 0))

tip.label character vector of tip labels (required), with length=# of tips. Tip labels need not
be unique, but data-tree matching with non-unique labels will cause an error

node.label character vector of node labels, length=# of internal nodes or 0 (if empty). Node
labels need not be unique, but data-tree matching with non-unique labels will cause an
error

order character: “preorder”, “postorder”, or “unknown” (default), describing the order of rows
in the edge matrix. , “pruningwise” and “cladewise” are accepted for compatibility with
ape

The edge matrix must not contain NAs, with the exception of the root node, which has an
NA for ancestor. phylobase does not enforce an order on the rows of the edge matrix, but it
stores information on the current ordering in the @order slot — current allowable values are
“unknown” (the default), “preorder” (equivalent to “cladewise” in ape) or “postorder” 2.

The basic criteria for the edge matrix are similar to those of ape, as documented it’s tree
specification3. This is a modified version of those rules, for a tree with n tips and m internal
nodes:

• Tips (no descendants) are coded 1, . . . , n, and internal nodes (≥ 1 descendant) are coded
n + 1, . . . , n + m (n + 1 is the root). Both series are numbered with no gaps.

• The first (ancestor) column has only values > n (internal nodes): thus, values ≤ n (tips)
appear only in the second (descendant) column)

1http://ape.mpl.ird.fr/
2see http://en.wikipedia.org/wiki/Tree_traversal for more information on orderings. (ape’s “pruning-

wise” is “bottom-up” ordering).
3ape.mpl.ird.fr/misc/FormatTreeR_28July2008.pdf

11

http://ape.mpl.ird.fr/
http://en.wikipedia.org/wiki/Tree_traversal
ape.mpl.ird.fr/misc/FormatTreeR_28July2008.pdf

• all internal nodes [not including the root] must appear in the first (ancestor) column at
least once [unlike ape, which nominally requires each internal node to have at least two
descendants (although it doesn’t absolutely prohibit them and has a collapse.singles

function to get rid of them), phylobase does allow these “singleton nodes” and has
a method hasSingle for detecting them]. Singleton nodes can be useful as a way of
representing changes along a lineage; they are used this way in the ouch package.

• the number of occurrences of a node in the first column is related to the nature of the
node: once if it is a singleton, twice if it is dichotomous (i.e., of degree 3 [counting ancestor
as well as descendants]), three times if it is trichotomous (degree 4), and so on.

phylobase does not technically prohibit reticulations (nodes or tips that appear more than
once in the descendant column), but they will probably break most of the methods. Discon-
nected trees, cycles, and other exotica are not tested for, but will certainly break the methods.

We have defined basic methods for phylo4:show, print, and a variety of accessor functions
(see help files). summary does not seem to be terribly useful in the context of a “raw” tree,
because there is not much to compute.

A.2 phylo4d

The phylo4d class extends phylo4 with data. Tip data, and (internal) node data are stored sep-
arately, but can be retrieved together or separately with tdata(x,"tip"), tdata(x,"internal")
or tdata(x,"all"). There is no separate slot for edge data, but these can be stored as node
data associated with the descendant node.

A.3 multiphylo4

12

	Introduction
	Package overview
	Using the S4 help system
	Trees without data
	Trees with data
	Subsetting
	Tree-walking
	multiPhylo classes
	Examples
	Constructing a Brownian motion trait simulator
	the easy way
	The hard way

	Definitions/slots
	phylo4
	phylo4d
	multiphylo4

