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1. Partially-observed Markov processes

Partially-observed Markov process models are also known as state-space models or stochastic dynamical
systems. The R package pomp provides facilities for fitting such models to uni- or multi-variate time
series, for simulating them, for assessing model adequacy, and for comparing among models. The methods
implemented in pomp are all “plug-and-play” in the sense that they require only that one be able to
simulate the process portion of the model. This property is desirable because it will typically be the
case that a mechanistic model will not be otherwise amenable to standard statistical analyses, but will
be relatively easy to simulate. Even when one is interested in a model for which one can write down an
explicit likelihood, for example, there are probably models that are “nearby” and equally interesting for
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which the likelihood cannot explicitly be written. The price one pays for this flexibility is primarily in
terms of computational expense.

A partially-observed Markov process has two parts. First, there is the true underlying process which is
generating the data. This is typically the thing we are most interested in: our goal is usually to better
understand this process. Specifically, we may have various alternate hypotheses about how this system
functions and we want to see whether time series data can tell us which hypotheses explain the data
better. The challenge, of course, is that the data shed light on the system only indirectly.

pomp assumes that we can translate our hypotheses about the underlying, unobserved process into a
Markov process model: That is, we are willing to assume that the system has a true state process, Xt

that is Markovian. In particular, given any sequence of times t0, t1, . . . , tn, the Markov property allows
us to write

Xtk+1
∼ f(Xtk , θ), (1)

for each k = 1, . . . , n, where f is some density. [In this document, we will be fairly cavalier about abusing
notation, using the letter f to denote a probability distribution function generically, assuming that the
reader will be able to unambiguously tell which probability distribution we’re talking about from the
arguments to f and the context.] That is, we assume that the state at time tk+1 depends only on the
state at time tk and on some parameters θ.

In addition to the state process Xt, there is some measurement or observation process Yt which models
the process by which the data themselves are generated and links the data therefore to the state process.
In particular, we assume that

Yt ∼ f(Xt, θ) (2)

for all times t. That is, that the observations Yt are random variables that depend only on the state at
that time as well as on some parameters.

So, to specify a partially-observed Markov process model, one has to specify a process (unobserved or
state) model and a measurement (observation) model. This seems straightforward enough, but from the
computational point of view, there are actually two aspects to each model that may be important. On
the one hand, one may need to evaluate the probability density of the state-transition Xtk → Xtk+1

,
i.e., to compute f(Xtk+1

|Xtk , θ). On the other hand, one may need to simulate this distribution, i.e., to
draw random samples from the distribution of Xtk+1

| Xtk . Depending on the model and on what one
wants specifically to do, it may be technically easier or harder to do one of these or the other. Likewise,
one may want to simulate, or evaluate the likelihood of, observations Yt. At its most basic level pomp
is an infrastructure that allows you to encode your model by specifying some or all of these four basic
components:

rprocess: a simulator of the process model,
dprocess: an evaluator of the process model probability density function,
rmeasure: a simulator of the measurement model, and
dmeasure: an evaluator of the measurement model probability density function.

Once you’ve encoded your model, pomp provides a number of algorithms you can use to work with it.
In particular, within pomp, you can:

(1) simulate your model easily, using simulate,
(2) integrate your model’s deterministic skeleton, using trajectory,
(3) estimate the likelihood for any given set of parameters using sequential Monte Carlo, implemented

in pfilter,
(4) find maximum likelihood estimates for parameters using iterated filtering, implemented in mif,
(5) estimate parameters using a simulated quasi-maximum-likelihood approach called nonlinear fore-

casting, implemented in nlf,
(6) estimate parameters using trajectory matching, as implemented in traj.match,
(7) estimate parameters using probe matching, as implemented in probe.match,
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(8) print and plot data, simulations, and diagnostics for the foregoing algorithms,
(9) build new algorithms for partially observed Markov processes upon the foundations pomp provides,

using the package’s applications programming interface (API).

In this document, we’ll see how all this works using relatively simple examples.

2. A first example: a simple discrete-time population model.

We’ll demonstrate the basics of pomp using a very simple discrete-time model. The plug-and-play
methods in pomp were designed to work on more complicated models, and for our first example, they’ll
be extreme overkill, but starting with a simple model will help make the implementation of more general
models clear. Moreover, our first example will be one for which plug-and-play methods are not even
necessary. This will allow us to compare the results from generalizable plug-and-play methods with exact
results from specialized methods appropriate to this particular model. Later we’ll look at a continuous-
time model for which no such special tricks are available.

Consider the discrete-time Gompertz model of population growth. Under this model, the density, Xt+∆t,
of a population of plants or animals at time t+ ∆t depends on the density, Xt, at time t according to

Xt+∆t = K1−e−r ∆t

Xe−r ∆t

t εt, (3)

where K is the so-called “carrying capacity” of the population, r is a positive parameter, and the εt are
independent and identically-distributed lognormal random variables. In different notation, this model is

logXt+∆t ∼ normal(logK + log

(
Xt

K

)
e−r∆t, σ), (4)

where σ2 = Var[log εt]. We’ll assume that we can measure the population density only with error. In
particular, we’ll assume that errors in measurement are lognormally distributed:

log Yt ∼ normal(logXt, τ). (5)

As we noted above, for this particular model, it isn’t necessary to use plug-and-play methods: one can
obtain exact maximum likelihood estimates of this model’s parameters using the Kalman filter. We will
demonstrate this below and use it to check the results of plug-and-play inference. For now, let’s approach
this model as we would a more complex model for which no such exact estimation is available.

3. Defining a partially observed Markov process in pomp.

In order to fully specify this partially-observed Markov process, we must implement both the process
model (i.e., the unobserved process) and the measurement model (the observation process). As we saw
before, we would like to be able to:

(1) simulate from the process model, i.e., make a random draw from Xt+∆t |Xt = x for arbitrary x
and t (rprocess),

(2) compute the probability density function (pdf) of state transitions, i.e., compute f(Xt+∆t =
x′ |Xt = x) for arbitrary x, x′, t, and ∆t (dprocess),

(3) simulate from the measurement model, i.e., make a random draw from Yt |Xt = x for arbitrary
x and t (rmeasure),

(4) compute the measurement model pdf, i.e., f(Yt = y |Xt = x) for arbitrary x, y, and t (dmeasure),
and

(5) compute the deterministic skeleton. In discrete-time, this is the map x 7→ E[Xt+∆t |Xt = x] for
arbitrary x.
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For this simple model, all this is easy enough. More generally, it will be difficult to do some of these
things. Depending on what we wish to accomplish, however, we may not need all of these capabilities
and in particular, to use any particular one of the algorithms in pomp, we need never specify
all of 1–5. For example, to simulate data, all we need is 1 and 3. To run a particle filter (and hence to
use iterated filtering, mif), one needs 1 and 4. To do MCMC, one needs 2 and 4. Nonlinear forecasting
(nlf) and probe matching (probe.match) require 1 and 3. Trajectory matching (traj.match) requires
4 and 5.

Using pomp, the first step is always to construct an R object that encodes the model and the data.
Naturally enough, this object will be of class pomp. The key step in this is to specify functions to do
some or all of 1–5, along with data and (optionally) other information. The package provides a number
algorithms for fitting the models to the data, for simulating the models, studying deterministic skeletons,
and so on. The documentation (?pomp) spells out the usage of the pomp constructor, including detailed
specifications for all its arguments and a worked example.

Let’s see how to implement the Gompertz model in pomp. Here, we’ll take the shortest path to this goal.
In the “advanced topics in pomp” vignette, we show how one can make the codes much more efficient
using compiled native (C or FORTRAN) code.

First, we write a function that implements the process model simulator. This is a function that will
simulate a single step (t→ t+ ∆t) of the unobserved process (3).

require(pomp)

gompertz.proc.sim <- function (x, t, params, delta.t, ...) {

## unpack the parameters:

r <- params["r"]

K <- params["K"]

sigma <- params["sigma"]

## the state at time t:

X <- x["X"]

## generate a log-normal random variable:

eps <- exp(rnorm(n=1,mean=0,sd=sigma))

## compute the state at time t+delta.t:

S <- exp(-r*delta.t)

xnew <- c(X=unname(K^(1-S)*X^S*eps))

return(xnew)

}

The translation from the mathematical description (3) to the simulator is straightforward. When this
function is called, the argument x contains the state at time t. The parameters (including K, r, and σ)
are passed in the argument params. Notice that x and params are named numeric vectors and that the
output must be also be a named numeric vector. In fact, the names of the output vector (here xnew)
must be the same as those of the input vector x. The algorithms in pomp all make heavy use of the
names attributes of vectors and matrices. The argument delta.t tells how big the time-step is. In this
case, our time-step will be 1 unit; we’ll see below how that gets specified.

Next, we’ll implement a simulator for the observation process (5).

gompertz.meas.sim <- function (x, t, params, ...) {

## unpack the parameters:

tau <- params["tau"]

## state at time t:

X <- x["X"]

## generate a simulated observation:

y <- c(Y=unname(rlnorm(n=1,meanlog=log(X),sd=tau)))
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return(y)

}

Again the translation from the model (5) is straightforward. When gompertz.meas.sim is called, the
unobserved states at time t will be in the named numeric vector x and the parameters in params as
before. The function returns a named numeric vector that represents a single draw from the observation
process (5).

Complementing the measurement model simulator is the corresponding measurement model density,
which we can implement as follows:

gompertz.meas.dens <- function (y, x, t, params, log, ...) {

## unpack the parameters:

tau <- params["tau"]

## state at time t:

X <- x["X"]

## observation at time t:

Y <- y["Y"]

## compute the likelihood of Y|X,tau

f <- dlnorm(x=Y,meanlog=log(X),sdlog=tau,log=log)

return(f)

}

We’ll need this later on for likelihood-based inference. Note that gompertz.meas.dens is closely related
to gompertz.meas.sim.
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4. Simulating the model: simulate

With the two functions above, we already have all we need to simulate the full model. The first step is
to construct an R object of class pomp which will serve as a container to hold the model and data. This
is done with a call to pomp:

gompertz <- pomp(

data=data.frame(

time=1:100,

Y=NA

),

times="time",

rprocess=discrete.time.sim(

step.fun=gompertz.proc.sim,

delta.t=1

),

rmeasure=gompertz.meas.sim,

t0=0

)

The first argument (data) specifies a data-frame that holds the data and the times at which the data
were observed. Since this is a toy problem, we have no data. In a moment, however, we’ll simulate
some data so we can explore pomp’s various fitting methods. The second argument (times) specifies
which of the columns of data is the time variable. The third argument (rprocess) specifies that the
process model simulator will be in discrete time, one step at a time. The function discrete.time.sim

belongs to the pomp package. It takes the argument step.fun, which specifies the particular function
that actually takes the step. Its second argument, delta.t, specifies the duration of the time step (by
default, delta.t=1). The argument rmeasure specifies the measurement model simulator function. t0

fixes t0 for this model; here we have chosen this to be one time unit before the first observation.

Before we can simulate the model, we need to settle on some parameter values. We do this by speci-
fying a named numeric vector that contains at least all the parameters needed by the functions gom-

pertz.proc.sim and gompertz.meas.sim. The parameter vector needs to specify the initial conditions
X(t0) = x0 as well.

theta <- c(

r=0.1,K=1,sigma=0.1,

tau=0.1,

X.0=1

)

In addition to the parameters r, K, σ, and τ , note that we’ve specified the initial condition X.0 in the
vector theta. The fact that the initial condition parameter’s name ends in “.0” is significant: it tells
pomp that this is the initial condition of the state variable X. This use of the “.0” suffix is the default
behavior of pomp: one can also parameterize initial conditions in an arbitrary way using the optional
initializer argument to pomp. See the documentation (?pomp) for details.

Now we can simulate the model:

gompertz <- simulate(gompertz,params=theta)

Now gompertz is identical to what it was before, but the data that were there before have been replaced
by simulated data. The parameters (theta) at which the simulations were performed have also been
saved internally to gompertz. We can plot the simulated data via
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Figure 1. Simulated data and unobserved states from the Gompertz model (Eqs. 3–5).
This figure shows the output of the command plot(gompertz,variables="Y").

plot(gompertz,variables="Y")

Fig. 1 shows the results of this operation.

5. Computing likelihood using particle filtering: pfilter

Some parameter estimation algorithms in the pomp package only require rprocess and rmeasure. These
include the nonlinear forecasting algorithm nlf and the probe-matching algorithm probe.match. If we
want to work with likelihood-based methods, however, we will need to be able to compute the likelihood
of the data Yt given the states Xt. Above, we wrote an R function, gompertz.meas.dens, to do this.
We haven’t yet used it all. To do so, we’ll need to incorporate it into the pomp object. We can do this
by specifying the dmeasure argument in another call to pomp:

gompertz <- pomp(

gompertz,

dmeasure=gompertz.meas.dens

)

coef(gompertz) <- theta
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The result of the above is a new pomp object gompertz in every way identical to the one we had before,
but with the measurement-model density function dmeasure now specified.

To compute the likelihood of the data, we can use the function pfilter. This runs a plain vanilla particle
filter (AKA sequential Monte Carlo) algorithm and results in an unbiased estimate of the likelihood. See
Arulampalam et al. (2002) for an excellent tutorial on particle filtering and Ionides et al. (2006) for a
pseudocode description of the algorithm implemented in pomp. We must decide how many concurrent
realizations (particles) to use: the larger the number of particles, the smaller the Monte Carlo error but
the greater the computational effort. Let’s run pfilter with 1000 particles to estimate the likelihood
at the true parameters:

pf <- pfilter(gompertz,params=theta,Np=1000)

loglik.truth <- logLik(pf)

loglik.truth

[1] 31.05209

Since the true parameters (i.e., the parameters that generated the data) are stored within the pomp

object gompertz and can be extracted by the coef function, we could have done

pf <- pfilter(gompertz,params=coef(gompertz),Np=1000)

or even just

pf <- pfilter(gompertz,Np=1000)

which would have worked since the parameters are stored in the pomp object gompertz. Now let’s
compute the log likelihood at a different point in parameter space, one for which r, K, and σ are 50%
higher than their true values.

theta.true <- coef(gompertz)

theta.guess <- theta.true

theta.guess[c("r","K","sigma")] <- 1.5*theta.true[c("r","K","sigma")]

pf <- pfilter(gompertz,params=theta.guess,Np=1000)

loglik.guess <- logLik(pf)

As we mentioned before, for this particular example, we can compute the likelihood exactly using the
Kalman filter, using this as a check on the validity of the particle filtering algorithm. An implementation
of the Kalman filter is given in Box 1. Let’s run the Kalman filter on the example data we generated
above:

y <- obs(gompertz)

x0 <- init.state(gompertz)

r <- coef(gompertz,"r")

K <- coef(gompertz,"K")

sigma <- coef(gompertz,"sigma")

tau <- coef(gompertz,"tau")

kf <- kalman.filter(y,x0,r,K,sigma,tau)

In this case, the Kalman filter gives us a log likelihood of 31.2, while the particle filter with 1000 particles
gives 31.05. Since the particle filter gives an unbiased estimate of the likelihood, the difference is due to
Monte Carlo error in the particle filter. One can reduce this error by using a larger number of particles
and/or by re-running pfilter multiple times and averaging the resulting estimated likelihoods. The
latter approach has the advantage of allowing one to estimate the Monte Carlo error itself.
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Box 1 Implementation of the Kalman filter for the Gompertz model.

kalman.filter <- function (Y, X0, r, K, sigma, tau) {

ntimes <- length(Y)

sigma.sq <- sigma^2

tau.sq <- tau^2

cond.loglik <- numeric(ntimes)

filter.mean <- numeric(ntimes)

pred.mean <- numeric(ntimes)

pred.var <- numeric(ntimes)

m <- log(X0)

v <- 0

S <- exp(-r)

for (k in seq_len(ntimes)) {

pred.mean[k] <- M <- (1-S)*log(K) + S*m

pred.var[k] <- V <- S*v*S+sigma.sq

q <- V+tau.sq

r <- log(Y[k])-M

cond.loglik[k] <- dnorm(x=log(Y[k]),mean=M,sd=sqrt(q),log=TRUE)

q <- 1/V+1/tau.sq

filter.mean[k] <- m <- (log(Y[k])/tau.sq+M/V)/q

v <- 1/q

}

list(

pred.mean=pred.mean,

pred.var=pred.var,

filter.mean=filter.mean,

cond.loglik=cond.loglik,

loglik=sum(cond.loglik)

)

}
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6. Interlude: utility functions for extracting and changing pieces of a pomp object

The pomp package provides a number of functions to extract or change pieces of a pomp-class object.
One can read the documentation on all of these by doing class?pomp and methods?pomp. For example,
as we’ve already seen, one can coerce a pomp object to a data frame:

as(gompertz,"data.frame")

and if we print a pomp object, the resulting data frame is what is shown, together with the call that
created the pomp object. One has access to the data and the observation times using

obs(gompertz)

obs(gompertz,"Y")

time(gompertz)

The observation times can be changed using

time(gompertz) <- 1:10

One can respectively view and change the zero-time by

timezero(gompertz)

timezero(gompertz) <- -10

and can respectively view and change the zero-time together with the observation times by doing, for
example

time(gompertz,t0=TRUE)

time(gompertz,t0=T) <- seq(from=0,to=10,by=1)

Alternatively, one can construct a new pomp object with the same model but with data restricted to a
specified window:

window(gompertz,start=3,end=20)

Note that window does not change the zero-time. One can display and modify model parameters using,
e.g.,

coef(gompertz)

coef(gompertz,c("sigma","tau")) <- c(1,0)

See below for more information on the coef and coef<- methods for getting and setting parameters.
Finally, one has access to the unobserved states via, e.g.,

states(gompertz)

states(gompertz,"X")
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7. Transforming parameters

The parameters in the Gompertz model above are constrained to be positive. When we estimate these
parameters using numerical search algorithms, we must find some way to ensure that these constraints
will be honored. A straightforward way to accomplish this is to transform the parameters so that they
become unconstrained. To introduce some terminology, we want to transform the parameters from the
natural scale (r, K, σ, τ), to another, internal scale, on which they will have some desirable property, e.g.,
they will be unconstrained. The following codes re-implement the Gompertz model using transformed
parameters.

gompertz.proc.sim <- function (x, t, params, delta.t, ...) {

## unpack and untransform the parameters:

r <- exp(params["log.r"])

K <- exp(params["log.K"])

sigma <- exp(params["log.sigma"])

## the state at time t:

X <- x["X"]

## generate a log-normal random variable:

eps <- exp(rnorm(n=1,mean=0,sd=sigma))

## compute the state at time t+delta.t:

S <- exp(-r*delta.t)

xnew <- c(X=unname(K^(1-S)*X^S*eps))

return(xnew)

}

gompertz.meas.sim <- function (x, t, params, ...) {

## unpack and untransform the parameters:

tau <- exp(params["log.tau"])

## state at time t:

X <- x["X"]

## generate a simulated observation:

y <- c(Y=unname(rlnorm(n=1,meanlog=log(X),sdlog=tau)))

return(y)

}

gompertz.meas.dens <- function (y, x, t, params, log, ...) {

## unpack and untransform the parameters:

tau <- exp(params["log.tau"])

## state at time t:

X <- x["X"]

## observation at time t:

Y <- y["Y"]

## compute the likelihood of Y|X,tau

f <- dlnorm(x=Y,meanlog=log(X),sdlog=tau,log=log)

return(f)

}

Note that, in each of the above functions, we untransform the parameters back onto the natural scale
before we do any computations.

pomp provides a facility to make it easier to work with parameter transformations. Specifically, we can
specify the optional functions parameter.transform and parameter.inv.transform when we create
the pomp object. The first function will take transform our parameters to the internal scale; the second
one will invert that operation, transforming the parameters from the internal back to the natural scale.
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dat <- as(gompertz,"data.frame")

theta <- coef(gompertz)

print(theta)

r K sigma tau X.0

0.1 1.0 0.1 0.1 1.0

gompertz <- pomp(

data=dat[c("time","Y")],

times="time",

rprocess=discrete.time.sim(gompertz.proc.sim),

rmeasure=gompertz.meas.sim,

dmeasure=gompertz.meas.dens,

t0=0,

parameter.transform=function(params,...){

params <- c(

params["X.0"],

log(params[c("r","K","tau","sigma")])

)

names(params) <- c("X.0","log.r","log.K","log.tau","log.sigma")

params

},

parameter.inv.transform=function(params,...){

params <- c(

params["X.0"],

exp(params[c("log.r","log.K","log.tau","log.sigma")])

)

names(params) <- c("X.0","r","K","tau","sigma")

params

}

)

The parameter transformations come into play via the coef and coef<- methods for getting and setting
parameters. One can set the parameters by doing

coef(gompertz,transform=TRUE) <- theta

and get the parameters by

coef(gompertz,transform=TRUE)

X.0 r K tau sigma

1.0 0.1 1.0 0.1 0.1

To be clear: the parameter-setting expression assumes that theta is a named vector of parameters on
the natural scale. After this operation, the parameters are stored internally in gompertz, on the internal
scale, as we can check by doing

coef(gompertz)

X.0 log.r log.K log.tau log.sigma

1.000000 -2.302585 0.000000 -2.302585 -2.302585

Note that it’s the user’s responsibility to ensure that the parameter.transform and parameter.inv.transform

are actually mutually inverse. A simple (but not foolproof) test of this is
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# use parameter.inv.transform:

theta <- coef(gompertz,transform=TRUE)

## theta is on the natural scale

g2 <- gompertz

## use parameter.transform:

coef(g2,transform=TRUE) <- theta

## compare the internal-scale representations:

identical(coef(gompertz),coef(g2))

[1] TRUE

A pomp object corresponding to the one just created (but with the rprocess, rmeasure, and dmeasure

bits coded in C for speed) can be loaded by executing data(gompertz). For your convenience, codes
creating this pomp object are included with the package. To view them, do:

file.show(system.file("examples/gompertz.R",package="pomp"))

file.show(system.file("examples/gompertz.c",package="pomp"))
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8. Estimating parameters using iterated filtering: mif

Iterated filtering is a technique for maximizing the likelihood obtained by filtering. In pomp, it is the
particle filter that is iterated. Iterated filtering is implemented in the mif function. For a description of
the algorithm and a description of its theoretical basis, see Ionides et al. (2006). A more complete set of
proofs is provided in Ionides et al. (2011).

The key idea of iterated filtering is to replace the model we are interested in fitting—which has time-
invariant parameters—with a model that is just the same except that its parameters take a random walk
in time. As the intensity of this random walk approaches zero, the modified model approaches the original
model. Adding additional variability in this way has three positive effects: (i) it smooths the likelihood
surface, which makes optimization easier, (ii) it combats particle depletion, the fundamental difficulty
associated with the particle filter, and (iii) the additional variability can be exploited to estimate of
the gradient of the (smoothed) likelihood surface with no more computation than is required to estimate
of the value of the likelihood. Iterated filtering exploits these effects to optimize the likelihood in a
computationally efficient manner. As the filtering is iterated, the additional variability is decreased
according to a cooling schedule. The cooling schedule can be adjusted in mif, as can the intensity of the
parameter-space random walk and the other algorithm parameters. See the documentation (?mif) for
details.

Let’s use iterated filtering to obtain an approximate MLE for the data in gompertz. We’ll initialize the
algorithm at several starting points around theta.true and just estimate the parameters r, τ , and σ:

estpars <- c("log.r","log.sigma","log.tau")

mf <- replicate(

n=10,

{

theta.guess <- theta.true

theta.guess[estpars] <- rnorm(

n=length(estpars),

mean=theta.guess[estpars],

sd=1

)

mif(

gompertz,

Nmif=100,

start=theta.guess,

pars=estpars,

rw.sd=c(

log.r=0.02,log.sigma=0.02,log.tau=0.05

),

Np=2000,

var.factor=4,

ic.lag=10,

cooling.factor=0.999,

max.fail=10

)

}

)

##mf <- lapply(mf,continue,Nmif=50)

Each of the 10 mif runs ends up at a different place. In this case (but by no means in every case),
we can average across these parameter estimates to get an approximate maximum likelihood estimate.
We’ll evaluate the likelihood several times at this estimate to get an idea of the Monte Carlo error in our
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Figure 2. Convergence plots can be used to help diagnose convergence of the iterated
filtering algorithm. This shows part of the output of compare.mif(mf).

likelihood estimate. The particle filter produces an unbiased estimate of the likelihood; therefore, we’ll
average the likelihoods, not the log likelihoods.

theta.true <- coef(gompertz)

theta.mif <- apply(sapply(mf,coef),1,mean)

loglik.mif <- replicate(n=10,logLik(pfilter(mf[[1]],params=theta.mif,Np=10000)))

bl <- mean(loglik.mif)

loglik.mif.est <- bl+log(mean(exp(loglik.mif-bl)))

loglik.mif.se <- sd(exp(loglik.mif-bl))/sqrt(length(loglik.mif))/exp(loglik.mif.est-bl)

loglik.true <- replicate(n=10,logLik(pfilter(gompertz,params=theta.true,Np=10000)))

loglik.true.est <- bl+log(mean(exp(loglik.true-bl)))

loglik.true.se <- sd(exp(loglik.true-bl))/sqrt(length(loglik.true))/exp(loglik.true.est-bl)

NA

log.r log.sigma log.tau loglik loglik.se

mle -2.66 -2.39 -2.2 31.7 0.038

truth -2.30 -2.30 -2.3 31.5 0.048
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9. Trajectory matching: traj.match

The idea behind trajectory matching is a simple one. One attempts to fit a deterministic dynamical
trajectory to the data. This is tantamount to assuming that all the stochasticity in the system is in the
measurement process. In pomp, the trajectory is computed using the trajectory function, which in
turn uses the skeleton slot of the pomp object. The skeleton slot should be filled with the deterministic
skeleton of the process model. In the discrete-time case, this is the map

x 7→ E [Xt+∆t | Xt = x, θ] . (6)

In the continuous-time case, this is the vectorfield

x 7→ lim
∆t→ 0

E
[
Xt+∆t − x

∆t

∣∣∣ Xt = x, θ

]
. (7)

Our discrete-time Gompertz has the deterministic skeleton

x 7→ K1−S xS , (8)

where S = e−r∆t and ∆t is the time-step. This can be implemented in the R function

gompertz.skel <- function (x, t, params, ...) {

delta.t <- 1

r <- exp(params["log.r"])

K <- exp(params["log.K"])

X <- x["X"]

S <- exp(-r*delta.t)

xnew <- c(X=unname(K^(1-S)*X^S))

return(xnew)

}

We can incorporate the deterministic skeleton into a new pomp object via the skeleton.map argument:

new.gompertz <- pomp(

data=data.frame(time=1:200,Y=NA),

times="time",

rprocess=discrete.time.sim(gompertz.proc.sim),

rmeasure=gompertz.meas.sim,

dmeasure=gompertz.meas.dens,

skeleton.type="map",

skeleton=gompertz.skel,

t0=0

)

coef(new.gompertz) <- theta

coef(new.gompertz,"X.0") <- 0.1

coef(new.gompertz,"log.r") <- log(0.1)

coef(new.gompertz,"log.tau") <- log(0.05)

coef(new.gompertz,"log.sigma") <- log(0.05)

new.gompertz <- simulate(new.gompertz,seed=88737400L)

We use skeleton.type="map" for discrete-time processes (such as the Gompertz model) and skele-

ton.type="vectorfield" for continuous-time processes.

The pomp function traj.match calls the optimizer optim to minimize the discrepancy between the
trajectory and the data. The discrepancy is measured using the dmeasure function from the pomp

object. Fig. 3 shows the results of this fit.



INTRODUCTION TO POMP 17

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

time

X

Figure 3. Illustration of trajectory matching. The points show data simulated from
new.gompertz. The solid line shows the trajectory of the best-fitting model, obtained
using traj.match. Fitting by trajectory matching is tantamount to the assumption
that the data-generating process has no process noise but only measurement error.

tm <- traj.match(

new.gompertz,

start=coef(new.gompertz),

est=c("log.r","log.K","log.tau","X.0"),

method="Nelder-Mead",

maxit=1000,

reltol=1e-8

)
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10. Probe matching: probe.match

In probe matching, we fit a model to data using a set of summary statistics. We evaluate these statis-
tics on the data and compare them to the distribution of values they take on simulations, then adjust
model parameters to maximize agreement between model and data according to some criterion. Fol-
lowing Kendall et al. (1999), we refer to the summary statistics as probes. In probe-matching, one has
unrestricted choice of probes, and there are a great many probes that one might sensibly choose. This
introduces a degree of subjectivity into the inference procedure but has the advantage of allowing the
investigator to identify a priori those features of a data set he or she believes to be informative.

In this section, we’ll illustrate probe matching using a stochastic version of the Ricker map. In this
discrete-time model, Nt represents the (true) size of a population at time t and obeys

Nt+1 = r Nt exp(−Nt + et), et∼normal(0, σ).

In addition, we assume that measurements yt of Nt are themselves noisy, according to

yt∼Poisson(φNt).

As before, we’ll begin by writing an R function that implements a simulator (rprocess) for the Ricker
model. It will be convenient to work with log-transformed parameters log r, log σ, log φ. Thus

ricker.sim <- function (x, t, params, delta.t, ...) {

e <- rnorm(n=1,mean=0,sd=exp(params["log.sigma"]))

xnew <- c(

exp(params["log.r"]+log(x["N"])-x["N"]+e),

e

)

names(xnew) <- c("N","e")

xnew

}

Note that, in this implementation, e is taken to be a state variable. This is not strictly necessary, but
it might prove useful, for example, in a posteriori diagnostic checking of model residuals. Now we can
construct a pomp object; in this case, we use the discrete.time.sim plug-in. Note how we specify the
measurement model.

ricker <- pomp(

data=data.frame(time=seq(0,50,by=1),y=NA),

times="time",

t0=0,

rprocess=discrete.time.sim(

step.fun=ricker.sim

),

measurement.model=y~pois(lambda=N*exp(log.phi))

)

coef(ricker) <- c(

log.r=3.8,

log.sigma=log(0.3),

log.phi=log(10),

N.0=7,

e.0=0

)

ricker <- simulate(ricker,seed=73691676L)
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A pre-built pomp object implementing this model is included with the package. Its rprocess, rmeasure,
and dmeasure components are written in C and are thus a bit faster than the R implementation above.
Do

data(ricker)

to load this pomp object.

In pomp, probes are simply functions that can be applied to an array of real or simulated data to
yield a scalar or vector quantity. Several functions that create commonly-useful probes are included
with the package. Do ?basic.probes to read the documentation for these probes. In this illustration,
we will make use of several probes recommended by Wood (2010): probe.marginal, probe.acf, and
probe.nlar. probe.marginal regresses the data against a sample from a reference distribution; the
probe’s values are those of the regression coefficients. probe.acf computes the auto-correlation or auto-
covariance of the data at specified lags. probe.nlar fits a simple nonlinear (polynomial) autoregressive
model to the data; again, the coefficients of the fitted model are the probe’s values. We construct our
set of probes by specifying a list

plist <- list(

probe.marginal("y",ref=obs(ricker),transform=sqrt),

probe.acf("y",lags=c(0,1,2,3,4),transform=sqrt),

probe.nlar("y",lags=c(1,1,1,2),powers=c(1,2,3,1),transform=sqrt)

)

An examination of the structure of plist reveals that it is a list of functions of a single argument.
Each of these functions can be applied to the ricker’s data or to simulated data sets. A call to pomp’s
function probe results in the application of these functions to the data, their application to each of some
large number, nsim, of simulated data sets, and finally to a comparison of the two. To see this, we’ll
apply probe to the Ricker model at the true parameters and at a wild guess.

pb.truth <- probe(ricker,probes=plist,nsim=1000,seed=1066L)

guess <- c(log.r=log(20),log.sigma=log(1),log.phi=log(20),N.0=7,e.0=0)

pb.guess <- probe(ricker,params=guess,probes=plist,nsim=1000,seed=1066L)

Results summaries and diagnostic plots showing the model-data agreement and correlations among the
probes can be obtained by

summary(pb.truth)

summary(pb.guess)

plot(pb.truth)

plot(pb.guess)

An example of a diagnostic plot (using a simplified set of probes) is shown in Fig. 4. Among the quantities
returned by summary is the synthetic likelihood (Wood, 2010). It is this synthetic likelihood that pomp
attempts to maximize in probe matching.

Let us now attempt to fit the Ricker model to the data using probe-matching.

pm <- probe.match(

pb.guess,

est=c("log.r","log.sigma","log.phi"),

method="Nelder-Mead",

maxit=2000,

seed=1066L,

reltol=1e-8,
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Figure 4. Results of plot on a probed.pomp-class object. Above the diagonal, the
pairwise scatterplots show the values of the probes on each of 1000 data sets. The red
lines show the values of each of the probes on the data. The panels along the diagonal
show the distributions of the probes on the simulated data, together with their values on
the data and a two-sided p-value. The numbers below the diagonal indicate the Pearson
correlations between the corresponding probes.

trace=3

)

summary(pm)

This code runs a Nelder-Mead optimizer from the starting parameters guess in an attempt to maximize
the synthetic likelihood based on the probes in plist. Both the starting parameters and the probes
are stored internally in pb.guess, which is why we don’t specify them explicitly here; if we wanted to
change these, we could do so by specifying the params and/or probes arguments to probe.match. See
?probe.match for full documentation.

By way of putting the synthetic likelihood in context, let’s compare the results of estimating the Ricker
model parameters using probe-matching and using iterated filtering, which is based on likelihood. The
following code runs 600 MIF iterations starting at guess:
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mf <- mif(

ricker,

start=guess,

Nmif=100,

Np=1000,

cooling.factor=0.99,

var.factor=2,

ic.lag=3,

max.fail=50,

rw.sd=c(log.r=0.1,log.sigma=0.1,log.phi=0.1)

)

mf <- continue(mf,Nmif=500,max.fail=20)

The following code compares parameters, likelihoods, and synthetic likelihoods (based on the probes
in plist) at each of (1) the wild guess, (2) the truth, (3) the MLE from mif, and (4) the maximum
synthetic likelihood estimate from probe.match.

pf.truth <- pfilter(ricker,Np=1000,max.fail=50,seed=1066L)

pf.guess <- pfilter(ricker,params=guess,Np=1000,max.fail=50,seed=1066L)

pf.mf <- pfilter(mf,Np=1000,seed=1066L)

pf.pm <- pfilter(pm,Np=1000,max.fail=10,seed=1066L)

pb.mf <- probe(mf,nsim=1000,probes=plist,seed=1066L)

res <- rbind(

cbind(guess=guess,truth=coef(ricker),MLE=coef(mf),PM=coef(pm)),

loglik=c(

pf.guess$loglik,

pf.truth$loglik,

pf.mf$loglik,

pf.pm$loglik

),

synth.loglik=c(

summary(pb.guess)$synth.loglik,

summary(pb.truth)$synth.loglik,

summary(pb.mf)$synth.loglik,

summary(pm)$synth.loglik

)

)

print(res,digits=3)

guess truth MLE PM

log.r 3.0 3.8 3.78 3.74

log.sigma 0.0 -1.2 -1.66 -1.12

log.phi 3.0 2.3 2.34 2.41

N.0 7.0 7.0 7.00 7.00

e.0 0.0 0.0 0.00 0.00

loglik -230.9 -139.5 -137.12 -143.33

synth.loglik -12.3 17.5 18.33 20.34
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11. Nonlinear forecasting: nlf

NLF is an indirect inference approach (Gouriéroux and Monfort, 1996), meaning that an intermediate
statistical model is used to quantify the model’s goodness of fit to the data. Specifically, NLF is a
Simulated Quasi-Maximum Likelihood (SQML) method. The quasilikelihood function is defined by
fitting a convenient statistical model to a long simulation output from the model of interest, and then
evaluating the statistical model’s likelihood function on the data. The intermediate statistical model in
nlf is a multivariate generalized additive autoregressive model, using radial basis functions as the ridge
functions and multivariate Gaussian process noise. Smith (1993) first proposed SQML and developed the
underlying statistical theory, Tidd et al. (1993) independently proposed a similar method, and Kendall
et al. (2005) describe in detail the methods used by nlf and use them to fit and compare models for
insect population cycles.

As a simple example we can use nlf to estimate the parameters log.K and log.r of the Gompertz
model. An example of a minimal call, accepting the defaults for all optional arguments, is

data(gompertz)

out <- nlf(

gompertz,

start=theta.guess,

est=c("log.K","log.r"),

lags=c(1,2)

)

where the first argument is the pomp object, theta.guess is a vector containing model parameters at
which nlf’s search will begin, est contains the names of parameters nlf will estimate, and lags specifies
which past values are to be used in the autoregressive model. In the call above lags=c(1,2) specifies
that the autoregressive model predicts each observation, yt using yt−1 and yt−2, the two most recent
past observations. The set of lags need not include the most recent observation, and skips are allowed,
so that lags=c(2,3,6) is also “legal”.

The quasilikelihood is optimized numerically, so the reliability of the optimization should be assessed by
doing multiple fits with different starting parameter values. Because of the way nlf controls the random
number seed, starting values should all be chosen before the calls to nlf:

starts <- list()

for (j in 1:5) { # Pick 5 random starting parameter values

sj <- coef(gompertz)

sj[c("log.K","log.r")] <- rnorm(n=2,mean=sj[c("log.K","log.r")],sd=0.1)

starts[[j]] <- sj

}

Then to make the results from different starts comparable, use the seed argument to initialize the
random number generator the same way for each fit:

out <- list()

for (j in 1:5) { # Do fits. method, trace, and nasymp are explained below

out[[j]] <- nlf(

gompertz,

start=starts[[j]],

est=c("log.K","log.r"),

lags=c(1,2),

seed=7639873,

method="Nelder-Mead",
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trace=4,

nasymp=5000

)

}

fits <- t(sapply(out,function(x)c(x$params[c("log.r","log.K")],value=x$value)))

The results in this case are very encouraging,

fits

log.r log.K value

[1,] -2.250544 0.07551205 31.26467

[2,] -2.250655 0.07548694 31.26467

[3,] -2.251044 0.07544822 31.26467

[4,] -2.250643 0.07546796 31.26467

[5,] -2.251464 0.07538140 31.26466

so below we will trust that repeated optimization isn’t needed.

The call above also used the method argument to specify that the Nelder-Mead option in optim is used
to maximize the quasilikelihood, and the trace argument is passed to optim; other arguments can be
passed to optim in the same way. nasymp sets the length of the Gompertz model simulation on which
the quasilikelihood is based; larger values will give less variable parameter estimates, but will slow down
the fitting process. The slowdown is dominated by the time required to generate the model simulations,
so efficient coding of rprocess is essential. The “Advanced topics in pomp” vignette gives some advice
on this. Do vignette("advanced_topics_in_pomp") to view it.

The choice of lags affects the accuracy of the intermediate statistical model and therefore the accuracy
of parameter estimates, so it is worth putting some effort into choosing good lags. Given enough time, a
user could generate many artificial data sets, fit them all with several candidate lags, and evaluate the
precision and accuracy of estimates. A quicker approach is to explore the shape and variability of the
quasilikelihood function near pilot parameter estimates for several candidate sets of lags, using nlf with
eval.only=TRUE to evaluate the quasilikelihood without performing optimization.

For the Gompertz model the complete state vector is observed, so it is plausible that forecasting based on
the one most recent observation is optimal, i.e. lags=1. But because of measurement error, prediction
based on multiple lags might be more accurate and more sensitive to parameter values, and longer-term
forecasting might be beneficial if the effects of parameters are amplified over time. Fig. 5 shows results for
several candidate lags suggested by these considerations. To reduce Monte Carlo error in the objective
function, we used simulate to create a very long “data set”:

long.gomp <- simulate(gompertz,times=1:1000)

theta <- coef(long.gomp)

and then evaluated the quasilikelihood for a range of parameter values:

lags <- list(1,2,c(1,2),c(2,3))

log.r.vals <- theta["log.r"]+seq(-0.69,0.69,length=25)

fvals <- matrix(nrow=25,ncol=4)

for (j in 1:25) {

cat(j,"\n")

pars <- theta

pars["log.r"] <- log.r.vals[j]

for(k in 1:4) {

fvals[j,k] <- nlf(
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Figure 5. Values of the NLF objective function (log of the quasilikelihood) for the
Gompertz model as a function of the parameters log.r,log.K for various choices of the
lags argument. All plotted curves were shifted vertically so as to have maximum value
zero. The objective function was evaluated on an artificial data set of length 1000 that
was generated assuming log.r=-2.3, log.K=0, indicated by the vertical blue lines.

long.gomp,

start=pars,

nasymp=5000,

est=NULL,

lags=lags[[k]],

eval.only=TRUE

)

}

}

Based on Fig. 5, lags=2 seems like a good choice. Another consideration is the variability of parameter
estimates on multiple short data sets:

nreps <- 100

ndata <- 60

fvals <- matrix(nrow=nreps,ncol=length(lags))

new.pomp <- simulate(gompertz,times=1:ndata,nsim=nreps,seed=NULL) # nreps simulated data sets

for (j in 1:nreps) {

for (k in seq_along(lags)) {

fvals[j,k] <- nlf(

new.pomp[[j]],

start=coef(gompertz),

nasymp=5000,

est=NULL,

lags=lags[[k]],

eval.only=TRUE
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)

}

}

fvals <- exp(fvals/ndata)

The last line above expresses the objective function as the geometric mean (quasi)likelihood per data
point. The variability across data sets was nearly the same for all lags:

apply(fvals,2,function(x)sd(x)/mean(x))

[1] 0.1462303 0.1476348 0.1397683 0.1474704

so we proceed to fit with lags=2.

true.fit <- nlf(

gompertz,

start=coef(gompertz),

est=c("log.K","log.r"),

lags=2,

seed=7639873,

method="Nelder-Mead",

trace=4,

nasymp=5000

)

From true.fit$params and true.fit$se we get the estimates (± 1 standard error) log r = -2.2 ± 0.59
and logK = 0.074 ± 0.078.

The standard errors provided by nlf are based on a Newey-West estimate of the variance-covariance
matrix that is generally somewhat biased downward. More importantly, these rough-and-ready standard
error estimates can be unstable. This is because they are obtained from finite differences of the NLF
objective function. This function, in turn, is approximated using simulated time series of finite length,
which typically gives rise to fine-scale wrinkles. Therefore, when time permits, bootstrap standard errors
are preferable. When nlf is called with bootstrap=TRUE, the quasilikelihood function is evaluated on
the bootstrap sample of the time series specified in bootsamp. The first max(lags) observations cannot
be forecast by the autoregressive model, so the size of the bootstrap sample is the length of the data
series minus max(lags):

lags <- 2

ndata <- length(obs(gompertz))

nboot <- ndata-max(lags)

nreps <- 100

pars <- matrix(0,nreps,2)

bootsamp <- replicate(n=nreps,sample(nboot,replace=TRUE))

for (j in seq_len(nreps)) {

fit <- nlf(

gompertz,

start=coef(gompertz),

est=c("log.K","log.r"),

lags=lags,

seed=7639873,

bootstrap=TRUE,

bootsamp=bootsamp[,j],

skip.se=TRUE,
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method="Nelder-Mead",

trace=4,

nasymp=5000

)

pars[j,] <- fit$params[c("log.r","log.K")]

}

colnames(pars) <- c("log.r","log.K")

apply(pars,2,sd)

log.r log.K

0.50235518 0.08752123

In this case, the bootstrap standard errors don’t differ much from the Newey-West estimates.

The code above implements a “resampling cases” approach to bootstrapping the data set to which the
intermediate autoregressive model is fitted. This is valid when observations are conditionally independent
given the past observations, which is only true for a Markov process if the complete state is observed.
Otherwise there may be correlations, and we need to use methods for bootstrapping time series. In nlf

it is relatively easy to implement the “blocks of blocks” resampling method (Davison and Hinkley, 1997,
p. 398). For example, with block length l = 3 we resample (with replacement) observations in groups of
length 3:

bootsamp <- replicate(n=nreps,sample(nboot,size=floor(nboot/3),replace=TRUE))

bootsamp <- rbind(bootsamp,bootsamp+1,bootsamp+2)

and otherwise proceed exactly as above.
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12. Bayesian sequential Monte Carlo: bsmc

Liu and West (2001). To be added.

13. Particle Markov chain Monte Carlo: pmcmc

Andrieu et al. (2010). To be added.
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Figure 6. Diagram of the SIR model. The host population is divided into three classes
according to their infection status: S, susceptible hosts; I, infected (and infectious) hosts;
R, recovered and immune hosts. Births result in new susceptibles and all individuals
have a common death rate µ. Since the birth rate equals the death rate, the expected
population size, N = S + I +R, remains constant. The S→I rate, λ, called the force of
infection, depends on the number of infectious individuals according to λ(t) = β I/N .
The I→R, or recovery, rate is γ. The case reports, C, result from a process by which
infections are recorded with probability ρ. Since diagnosed cases are treated with bed-
rest and hence removed, infections are counted upon transition to R.

14. A more complex example: a seasonal epidemic model

The stochastic SIR model. A mainstay of theoretical epidemiology, the SIR model describes the
progress of a contagious infection through a population of hosts. The hosts are divided into three classes,
according to their status vis-a-vis the infection (Fig. 6). The S class contains those that have not yet
been infected and are thereby still susceptible to it; the I class comprises those who are currently infected
and, by assumption, infectious; the R class includes those who have recovered from the infection. The
latter are assumed to be immune against reinfection. We let S(t), I(t), and R(t) represent the numbers
of individuals within the respective classes at time t.

It is natural to formulate this model as a continuous-time Markov process. In this process, the numbers of
individuals within each class change through time in whole-number increments. In particular, individuals
move between classes (entering S at birth, moving thence to I, and on to R unless death arrives first)
at random times. Thus, the numbers of births and class-transitions that occur in any interval of time
are random variables. The birth rate, death rates, and the rate of transition, γ, from I to R are
frequently assumed to be constants, specific to the infection and the host population. Crucially, the S
to I transition rate, the so-called force of infection, is not constant, but depends on the current number
of infectious individuals. The assumption that transmission is frequency dependent, as for example
when each individual realizes a fixed number of contacts per unit time, corresponds to the assumption
λ(t) = β I(t)/N , where β is known as the contact rate and N = S + I + R is the population size. This
assumption introduces the model’s only nonlinearity. It is useful sometimes to further assume that birth
and death rates are equal and independent of infection status—call the common rate µ—which has the
consequence that the expected population size then remains constant.

It is typically impossible to monitor S, I, and R, directly. Relatively commonly, however, records of
cases, i.e., individual infections, are kept by public health authorities. The number of cases, C(t1, t2),
recorded within a given reporting interval [t1, t2) might perhaps be modeled by a binomial process

C(t1, t2) ∼ binomial(∆I→R(t1, t2), ρ)
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where ∆I→R(t1, t2) is the accumulated number of recoveries that have occured over the interval in
question and ρ is the reporting rate, i.e., the probability that a given infection is observed and recorded.

The model’s deterministic skeleton is a system of nonlinear ordinary differential equations—a vectorfield—
on the space of positive values of S, I, and R (cf. Eq. 7). Specifically, the SIR deterministic skeleton
is

dS

dt
= µ (N − S)− β I

N
S

dI

dt
= β

I

N
S − γ I − µ I

dR

dt
= γ I − µR

Implementing the SIR model in pomp. As before, we’ll need to write functions to implement some
or all of the SIR model’s rprocess, dprocess, rmeasure, dmeasure, and skeleton components. It turns
out to be relatively straightforward to implement all of these but dprocess.

For the rprocess portion, we can use gillespie.sim to implement the continuous-time Markov process
exactly using the stochastic simulation algorithm of Gillespie (1977). For many practical purposes,
however, this will prove quite slow and inefficient. If we are willing to live with an approximate simulation
scheme, we can use the the so-called “tau-leap” algorithm, one version of which is implemented in pomp
as the euler.sim plug-in. This algorithm holds the transition rates λ, µ, γ constant over a small interval
of time δt and simulates the numbers of births, deaths, and transitions that occur over that interval.
It then updates the state variables S, I, R accordingly, increments the time variable by δt, recomputes
the transition rates, and repeats. Naturally, as δt → 0, this approximation to the true continuous-time
process becomes better and better. The critical feature from the inference point of view, however, is that
no relationship need be assumed between the Euler simulation interval δt and the reporting interval,
which itself need not even be the same from one observation to the next.

Under this assumption, the number of individuals leaving any of the classes by all available routes
over a particular time interval becomes a multinomial process. In particular, the probability that an

S individual, for example, becomes infected is pS→I = λ(t)
λ(t)+µ (1 − e−(λ(t)+µ) δt); the probability that

an S individual dies before becoming infected is pS→ = µ
λ(t)+µ (1 − e−(λ(t)+µ) δt); and the probability

that neither happens is 1− pS→I − pS→ = e−(λ(t)+µ) δt. Thus, if ∆S→I and ∆S→ are the numbers of S
individuals acquiring infection and dying, respectively, in the Euler simulation interval (t, t+ δt), then

(∆S→I ,∆S→, S −∆S→I −∆S→) ∼ multinomial (S(t); pS→I , pS→, 1− pS→I − pS→) ,

Now, the expression on the right arises with sufficient frequency in compartmental models like the SIR
that pomp has special functions for it. In pomp, the random variable (∆S→I ,∆S→) above is said to
have an Euler-multinomial distribution. The pomp functions reulermultinom and deulermultinom

provide facilities for drawing random deviates from, and computing the p.d.f. of, such distributions.
As the help pages relate, reulermultinom and deulermultinom parameterize the Euler-multinomial
distributions by the size (S(t) in the example above), rates (λ(t) and µ), and time interval δt. Obviously,
the Euler-multinomial distributions generalize to an arbitrary number of exit routes.

The help (?euler.sim) informs us that to use euler.sim, we need to specify a function that advances
the states from t to t+ δt. The function sir.proc.sim, defined here, does this.

sir.proc.sim <- function (x, t, params, delta.t, ...) {

## untransform the parameters

N <- exp(params["N"]) # population size

gamma <- exp(params["gamma"]) # recovery rate

mu <- exp(params["mu"]) # birth rate = death rate

beta <- exp(params["beta"]) # contact rate
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foi <- beta*x["I"]/N # the force of infection

trans <- c(

rpois(n=1,lambda=mu*N*delta.t), # births are assumed to be Poisson

reulermultinom(n=1,size=x["S"],rate=c(foi,mu),dt=delta.t), # exits from S

reulermultinom(n=1,size=x["I"],rate=c(gamma,mu),dt=delta.t), # exits from I

reulermultinom(n=1,size=x["R"],rate=c(mu),dt=delta.t) # exits from R

)

## now connect the compartments

x[c("S","I","R","cases")]+c(

trans[1]-trans[2]-trans[3],

trans[2]-trans[4]-trans[5],

trans[4]-trans[6],

trans[4] # accumulate the recoveries

)

}

Note that we’ve assumed here that the parameters have been log-transformed.

Two significant wrinkles remains to be explained. First, notice that in sir.proc.sim, the state vari-
able cases accumulates the total number of recoveries. Thus, cases will be a counting process and,
in particular, will be nondecreasing with time. In fact, the number of recoveries within an interval,
∆I→R(t1, t2) = cases(t2)− cases(t1). Clearly, including cases as a state variable violates the Markov
assumption.

However, this is not an essential violation. Because none of the rates λ, µ, or γ depend on cases, the
process remains essentially Markovian. We still have a difficulty with the measurement process, however,
in that our data are assumed to be records of infections resolving within a given interval while the process
model keeps track of the accumulated number of infections that have resolved since the record-keeping
began. We can get around this difficulty by re-setting cases to zero immediately after each observation.
We tell pomp to do this using the pomp’s zeronames argument, as we will see in a moment.

The second wrinkle has to do with the initial conditions, i.e., the states S(t0), I(t0), R(t0). By default,
pomp will allow us to specify these initial states arbitrarily. For the model to be consistent, they should
be positive integers that sum to the population size N . We can enforce this constraint by customizing
the parameterization of our initial conditions. We do this in by specializing a custom initializer in
the call to pomp that constructs the pomp object. Let’s construct it now and fill it with simulated data.

simulate(

pomp(

data=data.frame(

time=seq(1/52,15,by=1/52),

reports=NA

),

times="time",

t0=0,

rprocess=euler.sim(

step.fun=sir.proc.sim,

delta.t=1/52/20

),

measurement.model=reports~binom(size=cases,prob=exp(rho)),

initializer=function(params, t0, ic.pars, comp.names, ...){

x0 <- c(S=0,I=0,R=0,cases=0)

N <- exp(params["N"])

fracs <- exp(params[ic.pars])
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x0[comp.names] <- round(N*fracs/sum(fracs))

x0

},

zeronames=c("cases"), # zero this variable after each obsvn.

ic.pars=c("S0","I0","R0"), # initial condition parameters

comp.names=c("S","I","R") # names of the compartments

),

params=log(

c(

N=50000,

beta=60,gamma=8,mu=1/50,

rho=0.6,

S0=8/60,I0=0.002,R0=1-8/60-0.001

)

),

seed=677573454L

) -> sir

Notice that we are assuming here that the data are collected weekly and use an Euler step-size of 1/20 wk.
Here, we’ve assumed an infection with an infectious period of 1/γ = 1/8 yr and a basic reproductive
number, R0 of β/(γ + µ) ≈ 7.5. We’ve assumed a host population size of 50,000 and 60% reporting
efficiency. Fig. 7 shows one realization of this process.

Complications: seasonality, imported infections, extra-demographic stochasticity. Let’s add
a bit of real-world complexity to the simple SIR model. We’ll modify the model to take three facts
into account: (i) For many infections, the contact rate is seasonal : β = β(t) is a periodic function
of time. (ii) No host population is truly closed: imported infections arise when infected individuals
visit the host population and transmit. (iii) Stochastic fluctuation in the rates λ, µ, and γ can give
rise to extrademographic stochasticity, i.e., random process variability beyond the purely demographic
stochasticity we’ve included so far.

One way to incorporate seasonality into the model is to assume some functional form for β(t). Alter-
natively, we can use flexible functions to allow β to take a variety of shapes. B-splines are useful in
this regard and pomp provides some simple facilities for using these. If si(t), i = 1, . . . , k is a periodic
B-spline basis, as in Fig. 8, then we can for example define

log β(t) =
∑
i

bi si(t)

and, by varying the coefficients bi, we can obtain a wide variety of shapes for β(t). In pomp, we can
define a set of periodic B-spline basis functions by doing:

tbasis <- seq(0,20,by=1/52)

basis <- periodic.bspline.basis(tbasis,nbasis=3,degree=2,period=1,names="seas%d")

This results in a data-frame with 3 columns; each column is a quadratic periodic B-spline over the 20 yr
domain, with period 1 yr. Fig. 8 shows these basis functions. Effectively, tbasis and basis function as
a look-up table that can be used by the rprocess simulator to obtain a seasonal contact rate, β(t). We
accomplish this using the covar and tcovar arguments to pomp, as we will see below.

There are a number of ways to take account of imported infections. Here, we’ll simply assume that there
is some background force of infection, ι, not due to I-class individuals. Putting this together with the
seasonal contact rate results in a force of infection λ(t) = β(t) I(t)/N + ι.

Finally, we can allow for extrademographic stochasticity by allowing the force of infection to be itself a
random variable. We’ll accomplish this by assuming a multiplicative white noise on the force of infection,
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Figure 7. Results of plot(sir).

i.e.,

λ(t) =

(
β(t)

I(t)

N
+ ι

)
dW (t)

dt
,

where dW/dt is a white noise, specifically the “derivative” of an integrated Gamma white noise process.
He et al. (2010) discuss such processes and apply them in an inferential context; Bretó and Ionides (in
press) develop the theory of infinitesimally overdispersed processes.

Let’s modify the process-model simulator to incorporate these three complexities.

complex.sir.proc.sim <- function (x, t, params, delta.t, covars, ...) {

## untransform the parameters

N <- exp(params["N"]) # population size

gamma <- exp(params["gamma"]) # recovery rate

mu <- exp(params["mu"]) # birth rate = death rate

iota <- exp(params["iota"]) # import rate

b <- params[c("b1","b2","b3")] # contact-rate coefficients

beta <- exp(b%*%covars) # flexible seasonality

beta.sd <- exp(params["beta.sd"]) # extrademographic noise intensity

beta.var <- beta.sd*beta.sd
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if (beta.var > 0)

dW <- rgamma(n=1,shape=delta.t/beta.var,scale=beta.var)

else

dW <- delta.t

foi <- (beta*x["I"]/N+iota)*dW/delta.t # the force of infection

trans <- c(

rpois(n=1,lambda=mu*N*delta.t), # births are assumed to be Poisson

reulermultinom(n=1,size=x["S"],rate=c(foi,mu),dt=delta.t), # exits from S

reulermultinom(n=1,size=x["I"],rate=c(gamma,mu),dt=delta.t), # exits from I

reulermultinom(n=1,size=x["R"],rate=c(mu),dt=delta.t) # exits from R

)

## now connect the compartments

x[c("S","I","R","cases","W")]+

c(

trans[1]-trans[2]-trans[3],

trans[2]-trans[4]-trans[5],

trans[4]-trans[6],

trans[4], # accumulate the recoveries

(dW-delta.t)/beta.sd # mean = 0, var = delta.t

)

}

simulate(

pomp(

sir,

tcovar=tbasis,

covar=basis,

rprocess=euler.sim(

complex.sir.proc.sim,

delta.t=1/52/20

),

initializer=function(params, t0, ic.pars, comp.names, ...){

x0 <- c(S=0,I=0,R=0,cases=0,W=0)

N <- exp(params["N"])

fracs <- exp(params[ic.pars])

x0[comp.names] <- round(N*fracs/sum(fracs))

x0

}

),

params=log(

c(

N=50000,

b1=60,b2=10,b3=110,

gamma=8,mu=1/50,

rho=0.6,

iota=0.01,beta.sd=0.1,

S0=8/60,I0=0.002,R0=1-8/60-0.001

)

),

seed=8274355L

) -> complex.sir
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Figure 8. Periodic B-spline basis functions can be used to construct flexible periodic
functions. The colored lines show the three basis functions, s1, s2, s3. The dashed black
line shows the seasonality β(t) assumed in complex.sir.

Note that the seasonal basis functions are passed to complex.sir.proc.sim via the covars argument.
Whenever complex.sir.proc.sim is called, this argument will contain values of the covariates obtained
from the look-up table.
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