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1 Introduction

The rsae package offers functions to estimate

• model A, area-level SAE model, aka Fay-Herriot model,

• model B, basic unit-level SAE model,

by either maximum likelihood or robust methods. The classification of the models (A
or B) follows the proposal of Rao (2003). Currently, the package includes the following
robust (i.e. bounded-influence estimating equation) methods for model A:

• Huber-type M -estimation, using a slight generalization of Huber’s Proposal 2 to
estimate the variance components; cf., Richardson and Welsh (1995), Sinha and Rao
(2009), Schoch (2011),

• variance estimation and MSPE estimation (parametric bootstrap; see Sinha and Rao
(2009))

• robust high-breakdown point S-estimation [testing phase, expected release for SAE
conference 2011],

• robust simple and minimal-iterative methods using fast-LTS and a MED-MAD strat-
egy.[under development]

(Robust estimating methods for model type ”a” will be released in the near future)
NOTE: In order to use the full functionality of rsae, I recommend to install the robust-
base package.

2 Getting started

I will not attempt to provide another introduction to R. There are several excellent re-
sources intended to accomplish this task.

Once R is running, the installation of additional packages is straightforward. A platform-
independent way to install the rsae package is to type

> install.package("rsae")

in the console (note that the character ”>” is not part of the command; it denotes the
command prompt of the command-line interface, indicating that R is ready to read your
commands). Provided your computer has a proper internet connection (and you have
sufficient writing permissions on your system), the installation of the package should pro-
ceed automatically (at least on Windows and Apple computers, because binary sources
are available from CRAN). On POSIX compliant OS, e.g., AIX, HP-UX, Solaris, etc. and
mostly POSIX-compliant systems such as Linux, OpenSolaris, etc. installation is more
involved (see Appendix C for more details on the installation process).

Once the rsae package is installed, we need to load it to the current session.1

1Note that we have to load a package in every session where we need its functionality, whereas installation
is needed a single time on your computer.
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> library(rsae)

The model fitting exercise with rsae takes alway three (or more) steps. Namely,

• setting up a saemodel, given some data,

• fitting the saemodel by robust methods,

• (robustly) predicting the random effects and the area-specific means, given the ro-
bustly fitted model.

These steps will be discussed in subsequent Sections.

3 Setting up a model

First of all, we have to set up a model. We use the landsat data from Battese et al. (1988),
the landmark paper on the basic unit-level SAE model (here: units=segments, each about
250 hectares; areas=Counties). Those readers who are not familiar with the landsat can
type help(landsat) in the R console in order to get a description of the data.

3.1 Exploring the data

First, we have to load the landsat data into the workspace.

> data(landsat)

Next, we will explore the data. The names command reports the names of the variables
in the landsat data.

> names(landsat)

[1] "SegmentsInCounty" "SegementID" "HACorn"

[4] "HASoybeans" "PixelsCorn" "PixelsSoybeans"

[7] "MeanPixelsCorn" "MeanPixelsSoybeans" "outlier"

[10] "CountyName"

Get a table (i.e., an aggregation) of the variable CountyName.

> table(landsat$CountyName)

Cerro Gordo Hamilton Worth Humboldt Franklin Pocahontas

1 1 1 2 3 3

Winnebago Wright Webster Hancock Kossuth Hardin

3 3 4 5 5 6

So, there are twelve areas – the smallest areas (Cerro Gordo, Hamilton, and Worth) contain
one unit, the largest area, Hardin, involves six units.

Next, we want to have a look at observations no. 30 to 35 and some interesting
variables.
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> landsat[30:35, c("HACorn", "PixelsCorn", "PixelsSoybeans", "CountyName",

+ "outlier")]

HACorn PixelsCorn PixelsSoybeans CountyName outlier

30 122.66 342 182 Kossuth FALSE

31 104.21 294 179 Kossuth FALSE

32 88.59 220 262 Hardin FALSE

33 88.59 340 87 Hardin TRUE

34 165.35 355 160 Hardin FALSE

35 104.00 261 221 Hardin FALSE

Note that I added the variable outlier to the original data. This variable flags observation
no. 33 as outlier. This is in line with Battese et al. (1988), who indicate that for both
observations no. 32 and 33, the interviewed farm operators reported for HACorn the same
value. Despite the same number of estimated hectares under corn (i.e., 88.59), the readings
for PixelsCorn are very different for obs. no. 32 and 33. To be precise, we would call
observation no. 33 a leverage point rather than an outlier.
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The following figure is a display of the (standardized) residuals of the linear model
against the leverage. Note that obs. no. 33 is very close the the bound on the values of
Cook’s distance.
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> linmodel <- lm(HACorn ~ PixelsCorn + PixelsSoybeans, data = landsat)

> plot(linmodel, 5)

Note that Sinha and Rao (2009), on the other hand, included this bad leverage point
in their simulation exercise and obtained completely different estimates.

3.2 We set up our first model

Having explored the data, we consider setting up the model. The (first of their) model
writes (Battese et al., 1988)

HACorni,j = α+ β1 · PixelsCorni,j + β2 · PixelsSoybeansi,j + ui + ei,j ,

where j = 1, . . . , ni, i = 1, . . . , 12.
The rsae package provides the function saemodel to set up a model. The model is

specified by mainly three arguments: (1) the formula argument defines the fixed-effect
part (the ∼ operator separates dependent and independent variables), (2) the area ar-
gument specifies the area-level random effect (here, the variable CountyName serves as
area identifier; note the leading ∼ operator), (3) the data argument specifies the data
(a data.frame). The only ”difficulty” here is that we use data=subset(landsat, sub-

set=(outlier==FALSE)) to include only non-outlying observations, instead of data=landsat.
We call our model bhfmodel (Batteese, Harter, and Fuller).

> bhfmodel <- saemodel(formula = HACorn ~ PixelsCorn + PixelsSoybeans,

+ area = ~CountyName, data = subset(landsat, subset = (outlier ==

+ FALSE)))

(Note that in R, a formula object (evaluated by model.frame and model.matrix) con-
tains always an intercept term. In the case we want to fit the above model without an
intercept, we have to change the RHS of the formula part to look like this: -1 + Pix-

elsCorn + PixelsSoybeans).
Suppose we have generated several different models (e.g., using different independent

variables), and they all reside in the current workspace. It may be difficult to figure out
which of them is the bhfmodel (except you you have adopted unique naming conventions).
For situations like this, type the name of the model to get some information.

> bhfmodel

SAE MODEL TYPE: B (J.N.K. Rao's classification)

---

FIXED EFFECTS: HACorn ~ (Intercept) + PixelsCorn + PixelsSoybeans

AREA-SPECIFIC RANDOM EFFECTS: CountyName

If you need to know more about a particular model, you may use the summary method.

> summary(bhfmodel)
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Model summary:

saemodel(formula = HACorn ~ PixelsCorn + PixelsSoybeans, area = ~CountyName,

data = subset(landsat, subset = (outlier == FALSE)))

---

No. of areas: 12

No. of obs.: 36

Smallest area: 1 units

Largest area: 5 units

The important thing to note is that summary reminds you of the fact that the model was
generated using only non-outlying observations.

4 (Robust) Estimation

Having set up our model, we consider estimating the parameters of the Gaussian core
model by different methods. All fitting is done using the following workhorse function

fitsaemodel(method, model, ...)

Depending on the arguments delivered, fitsaemodel decides what method to use. The
decision is based on the method argument.

4.1 Maximum likelihood estimation

To start with, we compute the usual maximum likelihood (ML) estimates. Therefore, we
call fitsaemodel with method="ml" (the ML methods does not need any additional [...]
arguments).

> mlfit <- fitsaemodel("ml", bhfmodel)

Type name of the fit, i.e. mlfit, to get a display of the model fit.

> mlfit

ESTIMATES OF SAE-MODEL (model type B)

Method: Maximum likelihood estimation

---

Fixed effects

Model: HACorn ~ (Intercept) + PixelsCorn + PixelsSoybeans

Coefficients:

(Intercept) PixelsCorn PixelsSoybeans

50.968 0.329 -0.134

---

Random effects

Model: ~1|

(Intercept) Residual

Std. Dev. 11.0 11.7
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---

Number of Observations: 36

Number of Areas: 12

Note that the layout of the output is similar to the one of the lme (linear mixed-effects
model) function in the nlme package (cf. Pinheiro et al., 2011). In particular, the out-
put on the random-effects part mimicks what the print methods reports for lme (i.e.,
∼1|Countyname).

To learn more about the fit, we may call the summary method. In particular, the model
summary supplies us with inferential statistics of fixed effects.

> summary(mlfit)

ESTIMATION SUMMARY

Method: Maximum likelihood estimation

---

Fixed effects

Value Std.Error t-value df p-value

(Intercept) 50.9675 23.4751 2.1711 22 0.041 *

PixelsCorn 0.3286 0.0480 6.8477 22 7e-07 ***

PixelsSoybeans -0.1337 0.0531 -2.5198 22 0.020 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

4.1.1 When the ML estimator does not converge

Now, we deliberately set the number of outer-loop iterations to one, in order to show the
model report, when the algorithm fails to converge.

> failconvg <- fitsaemodel("ml", bhfmodel, niter = 1)

Here is the report

> failconvg

THE METHOD DID NOT CONVERGE!

---

1) use convergence() of your fitted model to learn more

2) study the documentation using the command ?fitsaemodel

3) you may call fitsaemodel with 'init' equal to (either) 'lts'
or 's' (this works also for ML, though it may no be very efficient)

4) if it still does not converge, the last resort is to modify

'acc' and/or 'niter' (and hope and pray)

Obviously, niter=1 is a bad choice. Nontheless, we follow the hint and call the convergence
method:

> convergence(failconvg)
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CONVERGENCE REPORT

NOTE: ALGORITHM DID NOT CONVERGE!

---

User specified number of iterations (niter) and

numeric precision (acc):

niter acc

overall loop 1e+00 1e-05

fixeff 2e+02 1e-05

residual var 2e+02 1e-05

area raneff var 1e+02 1e-05

---

Number of runned EE-specific iterations in each

call (given the user-defined specs), reported for

each of the 1 overall iterations separately:

fixeff residual var area raneff var

1 2 2 12

Now, it may happen that the ML-method of fitsaemodel does not converge (even if the
parameters have not been modified). A remedy is to initialize the ML method by a regres-
sion S-estimator (sic!), calling fitsaemodel with init="s". Obviously, this approach is
not optimal in terms of computing time. Nonetheless, by this specification, fitsaemodel
enters the ”safe mode” of robust Huber-type M -estimation and applies several checks
whether the algorithm behaves well (these checks are ignored in the default mode).

4.1.2 When the mixed linear model is not appropriate

Suppose that our data do not have area-specific variation. Notably, we shall generate data
based on the linear model,

yi,j = (1, xi,j)
Tβ + ei,j , (1)

where xi,j ∼ N(0, 1), ei,j ∼ N(0, 1), β = (1, 1)T , ni = n = 10, ∀i = 1, . . . , 10 (balanced
data). The following code generates the data.

> set.seed(12345)

> n <- 200

> beta <- c(1, 1)

> cst <- rep(1, n)

> x <- rnorm(n)

> y <- as.matrix(cbind(cst, x)) %*% beta + rnorm(n)

> areaid <- rep(1:10, each = 10)

> df <- data.frame(y = y, x = x, areaid = areaid)

The OLS fit of our linear model is

> lm(y ~ x, data = df)
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Call:

lm(formula = y ~ x, data = df)

Coefficients:

(Intercept) x

1.080 1.034

Then, we set up the saemodel with the identical data (i.e., df)

> fakemlm <- saemodel(y ~ x, area = ~areaid, data = df)

and consider the following model fit

> fitsaemodel("ml", fakemlm)

ESTIMATES OF SAE-MODEL (model type B)

Method: Maximum likelihood estimation

---

Fixed effects

Model: y ~ (Intercept) + x

Coefficients:

(Intercept) x

1.08 1.03

---

Random effects

Model: ~1|

---

NOTE THAT THE VARIANCE OF THE AREA-LEVEL RANDOM

EFFECT IS ALMOST ZERO! DO YOU REALLY NEED THE

RANDOM EFFECT? IF SO, GO AHEAD. HOWEVER, YOU

SHOULD CONSIDER FITTING A (ROBUST) GLS MODEL.

---

(Intercept) Residual

Std. Dev. 0.000 0.955

---

Number of Observations: 200

Number of Areas: 10

The report indicates that the random-effect variance is close to zero or equal to zero.
Therefore, the MLM model is not appropriate.

4.2 Huber-type M-estimation

Huber-type M -estimation is the recommended estimation method for situations where
the response variable is supposed to be (moderately) contaminated. The M -estimators
downweight the influence of outlying observations (in the vector of responses) on the es-
timates. Notably, they bound the influence of outliers. But, no attempt is made to limit
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the effect of leverage points (see above). In principle, one may adapt generalized regres-
sion M -estimators (GM) to the family of linear mixed-level models in order to deal with
influential observations/leverage (i.e., to bound also the influence of the design matrix).
This has been done by Richardson (1997). However, in terms of numerical properties,
the Schweppe- and Mallows-type weighted GM -estimators turned out to be extremely
unstable (Richardson, 1995). Therefore, we propose to use the S-estimator (with con-
strained parameter space) if the data are heavily contaminated and/or contain influential
observations/leverage (see below).

Next, we discuss two different fitting modes for the Huber-type M -estimation method.

• If the reponse variable is supposed to be uncontamined or contaminated by only a
couple of outliers, I recommend to use the (very fast) default mode.

• If the response variable is moderately contaminated and/or if the default-mode
algorithm failed to converge, I recommend the safe mode.

4.2.1 Default mode

The default-mode setup of the Huber-type M -estmation exercise is

> huberfit <- fitsaemodel("huberm", bhfmodel, k = 1.5)

where k denotes the robustness-tuning constant of the Huber ψ-function (0 < k ≤ ∞; note
that (in the limit) k =∞ leads to the ML estimates). (NOTE: that in the simple location-
scale model, the choice of k=1.345 leads to estimates which feature an asymptotic relative
efficiency w.r.t. the ML estimate of approx. 95% at the true (uncontamined) Gaussian
core model. This property does not directly carry over to the estimates of mixed-linear
models!)

> huberfit

ESTIMATES OF SAE-MODEL (model type B)

Method: Huber-type M-estimation

Robustness tuning constant: k = 1.5

---

Fixed effects

Model: HACorn ~ (Intercept) + PixelsCorn + PixelsSoybeans

Coefficients:

(Intercept) PixelsCorn PixelsSoybeans

50.285 0.328 -0.139

---

Random effects

Model: ~1|

(Intercept) Residual

Std. Dev. 12.0 12.4

---

Number of Observations: 36

Number of Areas: 12
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To learn more about the fit, we shall call the summary method.

> summary(huberfit)

ESTIMATION SUMMARY

Method: Huber-type M-estimation

Robustness tuning constant: k = 1.5

---

Fixed effects

Value Std.Error t-value df p-value

(Intercept) 50.2848 24.8465 2.0238 22 0.055 .

PixelsCorn 0.3285 0.0508 6.4691 22 1.7e-06 ***

PixelsSoybeans -0.1392 0.0562 -2.4771 22 0.021 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

---

Degree of downweighting/winsorization:

sum(wgt)/n

fixeff 0.984

residual var 0.972

area raneff var 0.984

The output is by default separated into 2 blocks when the algorithm converged.

• Block 1 reports some inferential statistics of the fixed-effects part.

• Block 2 reports the degree of down-weighting outlying residuals at the final itera-
tion. The degree of down-weighting is reported for all estimating equations (EE)
separately. In general d = 1, if no down-weighting took place. Conversely, the
smaller d, the more outlying residuals have been down-weighted (and/or the same
outliers are heavier down-weighted).

In addition, the convergence method supplies us with a report on the convergence of
the method.

> convergence(huberfit)

CONVERGENCE REPORT

---

User specified number of iterations (niter) and

numeric precision (acc):

niter acc

overall loop 4e+01 1e-05

fixeff 2e+02 1e-05

residual var 2e+02 1e-05

area raneff var 1e+02 1e-05
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---

Number of runned EE-specific iterations in each

call (given the user-defined specs), reported for

each of the 12 overall iterations separately:

fixeff residual var area raneff var

1 6 17 12

2 2 8 12

3 10 10 12

4 11 7 12

5 6 6 12

6 8 5 12

7 6 5 12

8 5 4 12

9 4 3 12

10 2 2 12

11 2 2 12

12 1 1 12

It consist of the following blocks:

• Block 1 reports the default or user-specified max number of iterations, niter, and
the numeric tolerance, acc, used in the termination rule of the algorithms.

• Block 2 reports the number of iterations that each of the estimating equation–specific
(EE-specific) loops (aka inner loops) and the overall loop (aka outer loop) used to
conform to the termination rule. Each row in the table represents a single run of the
overall loop. In the example, the algorithm needed 7 overall loops. The entries of a
row refer to the EE-specific number of iterations in a particular overall loop.

It is evident that the number of (inner-loop) iterations for fixeff and residual

var become smaller, the higher the number of outer/overall loops. This is not (and
will never be) the case for area raneff var because it is obtained using a different
optimization method.

In general, we can feel confident if the number of inner-loop iterations decrease (in
the case of fixeff and residual var). However, there are situations where the
algorithm converges perfectly without featuring such a nice decrease in the number
of inner-loop iterations.

4.2.2 Safe mode

The safe mode should be used when the data are supposed to be moderately contaminated
and/or the algorithm in default mode failed to converge. The safe-mode algorithm is
initialized by a high-breakdown-point regression estimator. However, it is only safe up to
a certain degree of contamination (i.e., breakdown-point is rather low for M -estimators).
In the presence of too many outliers, the M -estimator will break down.

NOTICE: in order to use the safe-mode functions, you need the robustbase package
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(Rousseeuw et al., 2011).

The safe mode is entered if one specifies (in fitsaemodel) either

• init = "lts" for initializing the method by a fast-LTS regression estimator (Rousseeuw,
1984; Rousseeuw and Van Driessen, 2006),

• init = "s" for initializing the method by a regression S-estimator (Rousseeuw and
Yohai, 1984; Salibian-Barrera and Yohai, 2006).

(Also, the safe mode uses a couple of tests to check whether the estimates at consecutive
iterations behave well. Notably, it prevents cycling estimates (i.e., the situation when the
algorithm is trapped in a flip-flop), which typically occurs for very small robustness-tuning
constants).

In general, the results of fitsaemodel with either init = "s" or init = "lts" are
the same. For data with more than 50,000 observations, init="s" is considerably faster.
The call is

> fitsaemodel("huberm", bhfmodel, k = 1.2, init = "s")

ESTIMATES OF SAE-MODEL (model type B)

Method: Huber-type M-estimation

Robustness tuning constant: k = 1.2

---

Fixed effects

Model: HACorn ~ (Intercept) + PixelsCorn + PixelsSoybeans

Coefficients:

(Intercept) PixelsCorn PixelsSoybeans

57.134 0.312 -0.161

---

Random effects

Model: ~1|

(Intercept) Residual

Std. Dev. 13.1 12.9

---

Number of Observations: 36

Number of Areas: 12

Also, we can get more information calling the summary method.

4.3 S-estimation

[has to be written]

5 Robust prediction

Once the parameters of the Gaussian core model have been estimated robustly, we consider
(robustly) predicting the random effects. Sinha and Rao (2009) proposed to solve the
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robustified mixed model equations (Fellner, 1986) by a Newton-Raphson-type updating
scheme that is obtained from a Taylor-series expansion of the robustified mixed model
equations. Consequently, computation is very involved.

However, Schoch (2011) showed that robust predictions of the random effects can be
obtained far more easily. Namely, since the robustly estimated parameters of the core
Gaussian model determine the model completely, prediction is straightforward.

The workhorse function for (robust) prediction is given by

robpredict(fit, areameans=NULL, k=NULL, reps=NULL)

where fit is a fitted model (an object produced by fitsaemodel), k is the robustness-
tuning constant (of the Huber ψ-function) for robust prediction. By default k is NULL

which means that the procedure takes the same k as has been used for estimating the
parameters of the core model. The robustness-tuning constant k does not necessarily be
the same as the one used in fitsaemodel. Further, choosing k sufficiently large (e.g.,
k=20000 should work in (almost) all situations), robpredict produces the usual EBLUP
predictions. If areameans=NULL (the default setting), the prediction is based on the same
data that have been used for the model fitting exercise (i.e., within-sample prediction).
However, in the SAE context, we are usually interested in (robustly) predicting the small-
area means. Therefore, we deliver the area-specific population means through areameans.

In addition, the robpredict function can compute area-specific mean squared pre-
diction errors (MSPE) by means of a (robust) parametric bootstrap method; see Sinha
and Rao (2009). In order to obtain MSPE, we need to specify the number of bootstrap
replicates, reps.
NOTICE: I recommend to start with relatively small values of reps, e.g., reps=100,
since large values of reps are associated with a large computational effort. Once you get
an intuition of how much time the algorithm consumes, you can try larger values of reps.

In the landsat example, the county-specific population means of pixels of the segments
under corn and soybeans are recorded in the variables MeanPixelsCorn and MeanPixelsSoybeans,
respectively. Note that each sample segment in a particular county has assigned the county-
specific mean (in the landsat data). Therefore, each population mean of the variables
MeanPixelsCorn and MeanPixelsSoybeans occurs ni times. The unique county-specific
population means are obtained using

> d <- unique(landsat[-33, c("MeanPixelsCorn", "MeanPixelsSoybeans",

+ "CountyName")])

> d <- cbind(rep(1, 12), d)

> rownames(d) <- d$CountyName

> d <- d[, 1:3]

Let us have a look at d.

> d

rep(1, 12) MeanPixelsCorn MeanPixelsSoybeans

Cerro Gordo 1 295.29 189.70

Hamilton 1 300.40 196.65
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Worth 1 289.60 205.28

Humboldt 1 290.74 220.22

Franklin 1 318.21 188.06

Pocahontas 1 257.17 247.13

Winnebago 1 291.77 185.37

Wright 1 301.26 221.36

Webster 1 262.17 247.09

Hancock 1 314.28 198.66

Kossuth 1 298.65 204.61

Hardin 1 325.99 177.05

The first column of d is a dummy variable (the bhfmodel has an intercept term). The
second and third column represent the county-specific population means of segments under
corn and soybeans (the rows of the above table are labeled with the county names).

Next, we consider predicting the random and fixed effects and the county means. Note
that we do not explicitly specify k. This means that the procedure uses the same k as
the one that has been used for robust estimation (here, the model has been estimated
by method="ml" which is equivalent to k = ∞). MSPE is obtained using 500 bootstrap
replicates.

> pr <- robpredict(mlfit, areameans = d, reps = 500)

The results are

> pr

Robustly Estimated/Predicted Area-Level Means:

raneff fixeff area mean MSPE

Cerro Gordo -0.348 122.629 122.281 85.593

Hamilton 2.731 123.379 126.110 83.286

Worth -11.522 118.677 107.154 77.908

Humboldt -8.313 117.053 108.741 55.590

Franklin 13.641 130.380 144.021 37.387

Pocahontas 9.529 102.425 111.954 41.985

Winnebago -9.043 122.052 113.009 40.026

Wright 1.648 120.358 122.006 37.110

Webster 11.082 104.073 115.155 29.679

Hancock -3.229 127.671 124.442 26.024

Kossuth -14.621 121.740 107.119 27.197

Hardin 8.445 134.408 142.853 26.783

(MSPE: 500 boostrap replicates)

and a visual display of the predicted county means

> plot(pr)
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another plot, but with lines; here the predicted means are sorted in ascending order

> plot(pr, type = "l", sort = "means")
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Once the area-specific random effects have been predicted (by means of robust meth-
ods), we can have a look at the residuals. Note that the residuals are given by

ri,j = yi,j − xT
i,jβ̂

R − ûRi , (2)

where the superscript R highlights the fact that robust estimates/predictions are used.
Obviously, since the residuals depend on ûRi (which is depends itself on the user-specified
robustness-tuning constant), a residual analysis can only take place subsequent to robustly
predicting ui. This is contrast to the standard ML (or REML) case where ûi is readily
availabe having estimated the fixed- and random-effects parameters.

The residualy may be used for an QQ-plot. (Note that bhfmodel is not optimal in
terms of the tail behavior of the residuals)

> res <- residuals(pr)

> qqnorm(res)

> qqline(res)
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6 Utility functions

6.1 Synthetic data generation

The rsae package is shipped with a device to generate synthetic data (balanced and
unbalanced) of basic unit-level model. This tool is particularly useful when comparing the
behavior of different methods (e.g., in simulation studies) because it enables the user to
generate data tailored for specific problems. In particular, makedata is able to generate
outlier-contaminated data.

6.1.1 Uncontaminated data

The core model is given by

yi,j = α+ xT
i,jβ + ui + ei,j , j = 1, . . . , ni, i = 1, . . . , g, (3)

where yi,j is the response variable, xi,j is a p-vector of design variables, ui is an area-specific
random effect, and ei,j is a model error. The total number of observations is n =

∑g
i=1 ni.

Moreover, we assume that ui and ei,j are independent and that

xi,j ∼MVN(0, Ip), (4)
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and

ei,j ∼ N(0, ve), ui ∼ N(0, vu), (5)

where Ii is the (p× p) identity matrix, j = 1, . . . , ni; i = 1, . . . , g.
The default values of makedata for balanced data, i.e., ni = n, ∀i = 1, . . . , g are

reported in Table 1.

Table 1: Default setup of makedata (balanced data)

n g ve vu α β

4 20 1 1 1 1

Now, call the makedata function

> mymodel <- makedata()

to generate the data. Note that makedata has been called without arguments, implying
that all arguments are given by the default value. However, you are well advised to specify
the random seed (default: seed=1024) to meet our needs. Otherwise, your computer
generates the same random numbers every time makedata() is called.

By typing the name of the generated model (here mymodel) in the console, we obtain
(trough the print method) some characteristics of the synthetic data. This feature is
particularly useful if we have several different models in the workspace (and have some
troubles figuring out what the models actually do).

> mymodel

SAE MODEL TYPE: B (J.N.K. Rao's classification)

DATA: Synthetic, simulated data

MODEL:

y_ij = intercept + sum_k[ beta_k * x_kij] + v_i + e_ij

with

each x_kij ~ N(0, 1), k=1,...,2

v_i ~ N(0, 1)

e_ij ~ N(0, 1)

In addition, there is a summary method.

> summary(mymodel)

Model summary:

makedata()

---

No. of areas: 20

No. of obs.: 80

Balanced data, each area has 4 units
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6.1.2 Contaminated data

The makedata allows to draw the model errors ei,j and/or random effects ui from a (con-
tamination) mixture distribution.
Contamination of the law of ei,j

> makedata(ve.epsilon = 0.1)

SAE MODEL TYPE: B (J.N.K. Rao's classification)

DATA: Synthetic, simulated data

MODEL:

y_ij = intercept + sum_k[ beta_k * x_kij] + v_i + e_ij

with

each x_kij ~ N(0, 1), k=1,...,2

v_i ~ N(0, 1)

e_ij ~ (0.9)*N(0, 1) + 0.1*N(0, 41)

Contamination of the law of uj

> makedata(vu.epsilon = 0.1)

SAE MODEL TYPE: B (J.N.K. Rao's classification)

DATA: Synthetic, simulated data

MODEL:

y_ij = intercept + sum_k[ beta_k * x_kij] + v_i + e_ij

with

each x_kij ~ N(0, 1), k=1,...,2

v_i ~ (0.9)*N(0, 1) + 0.1*N(0, 41)

e_ij ~ N(0, 1)

and both

> makedata(vu.epsilon = 0.1, ve.epsilon = 0.1)

SAE MODEL TYPE: B (J.N.K. Rao's classification)

DATA: Synthetic, simulated data

MODEL:

y_ij = intercept + sum_k[ beta_k * x_kij] + v_i + e_ij

with

each x_kij ~ N(0, 1), k=1,...,2

v_i ~ (0.9)*N(0, 1) + 0.1*N(0, 41)

e_ij ~ (0.9)*N(0, 1) + 0.1*N(0, 41)

It goes without saying that we may change other parameters of the makedata function.
For instance, we may generate contaminated, unbalanced data; see below.
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6.1.3 Unbalanced data

Further, we can generate unbalanced data very easily. First, we have to set both arguments
n and g in makedata equal to NULL (since n is not a constant for unbalanced data). Next,
we have to tell makedata to produce unbalanced data on grounds of a vector of area
idetifiers (ID; all units in a particular area are assigned an area-specific identifier code).
By way of example, suppose we want to generate 16 units that reside in 5 areas. The
following code snippet defines the vector identifiers.

> my_area_id = c(1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5)

Thus, the vector of area size is nsizeT = (n1, . . . , n5) = (5, 2, 3, 4, 1)T . (Note that the
IDs do not have to be sorted (as in the display); any permutation of the IDs is a valid
argument. The number of areas is determined from the number of unique elements.)

The data are generated by the following command.

> mymodelub <- makedata(n = NULL, g = NULL, areaID = my_area_id)

A About rsae

> citation("rsae")

To cite package 'rsae' in publications use:

Tobias Schoch (2011). rsae: Robust Small Area Estimation. R package

version 0.1-3.

A BibTeX entry for LaTeX users is

@Manual{,

title = {rsae: Robust Small Area Estimation},

author = {Tobias Schoch},

year = {2011},

note = {R package version 0.1-3},

}

B Comparing the ML estimates of rsae with those of nlme

For ease of comparability, we report (again) the maximum likelihood estimates obtained
by fitsaemodel.

> fitsaemodel("ml", bhfmodel)

ESTIMATES OF SAE-MODEL (model type B)

Method: Maximum likelihood estimation

---

Fixed effects
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Model: HACorn ~ (Intercept) + PixelsCorn + PixelsSoybeans

Coefficients:

(Intercept) PixelsCorn PixelsSoybeans

50.968 0.329 -0.134

---

Random effects

Model: ~1|

(Intercept) Residual

Std. Dev. 11.0 11.7

---

Number of Observations: 36

Number of Areas: 12

These results are equal to those of the lme function in the nlme package (which may be
called the industrial standard).

> require(nlme)

> nlme::lme(HACorn ~ PixelsCorn + PixelsSoybeans, random = ~1 |

+ CountyName, data = subset(landsat, subset = (outlier == FALSE)),

+ method = "ML")

Linear mixed-effects model fit by maximum likelihood

Data: subset(landsat, subset = (outlier == FALSE))

Log-likelihood: -147.0126

Fixed: HACorn ~ PixelsCorn + PixelsSoybeans

(Intercept) PixelsCorn PixelsSoybeans

50.9675892 0.3285805 -0.1337102

Random effects:

Formula: ~1 | CountyName

(Intercept) Residual

StdDev: 11.00298 11.71806

Number of Observations: 36

Number of Groups: 12

C Package installation on Linux systems

In this section, I give some details on the installation of rsae on a Linux powered system.
These details essentially summarize my experience with openSUSE 11.4 on a x86_64 plat-
form. Some of the details carry directly over to other (mostly-) POSIX-compliant systems,
others do not. It is up to the user to modify these hints to fit on his/her system. Note the
following:

• Make sure that you have installed R-devel (or r-base-dev) in addition to R-base;
see R-admin (2011, chapters 2, 6 and Appendix A.1)
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• The rsae package contains FORTRAN 90 code that must be compiled (and linked
to R’s BLAS and LAPACK) at installation. The code has been written and tested
for gfortran (v. 4.5-1). The code does not use (to the best of my knowledge)
any compiler-specific code. See R-admin (2011, Appendix B.8) for more details
on FORTRAN compilers supported by R, and in what order they are selected if you
have several compilers. Therefore, any compatible FORTRAN compiler should work.
However, I highly recommend to use gfortran. (Note that if the C compiler that your
current R installation knows of is gcc 4 [the command R CMD config CC tells you
what R uses; then check the version gcc -v], it will automatically choose gfortran)

• you need the system tool GNU make. By default, most Linux distributions are deliv-
ered with a copy of make, whereas openSUSE 11.4 is not. You thus have to grab a
version from the internet. See R-admin (2011, Appendix B.5) for more on make.
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