
The“InclusionZoneGrid”Class

Jeffrey H. Gove∗

Research Forester
USDA Forest Service

Northern Research Station
271 Mast Road

Durham, New Hampshire 03824 USA
e-mail: jgove@fs.fed.us or e-mail: jhgove@unh.edu

Monday 20th June, 2011
4:16pm

Contents

1 Introduction 1
2 The “InclusionZoneGrid” Class 2

2.1 Class slots 2
3 Example: The “standUpIZ” Class 3
4 On Design Motivation 5
5 Example: The “sausageIZ” Class 7
6 Example: The “chainSawIZ” Class 7

6.1 Snapping to the grid 10
7 The “csFullInclusionZoneGrid” Class 12

7.1 Class slots 14

7.2 Object Construction and Plotting 14
8 Example: The “pointRelascopeIZ” Class 17
9 Example: The “perpendicularDistanceIZ”

Class 18
10 Example: The “omnibusPDSIZ” Class 20
11 Example: The “distanceLimitedIZ” Class 22
12 Example: The “distanceLimitedMCIZ”

Class 24
13 Example: The “distanceLimitedPDSIZ”

Class 25
14 Example: The “omnibusDLPDSIZ” Class 28
15 Using plot3D 30
Bibliography 30

1 Introduction

When we think about building a sampling surface piece by piece from the inclusion zones of individ-
ual “Stem” objects, we assign the appropriate attribute value to each grid cell within the inclusion
zone for an object, with zero values elsewhere, and then algebraically add this grid layer to the
overall “Tract” grid. Thus, we “heap up” the inclusion zone density of the grid cells within the tract,
which in the end is a discrete estimate of the sampling surface.

This class allows us to do the geometry associated with the individual “InclusionZone” objects
∗Phone: (603) 868-7667; Fax: (603) 868-7604.

1

The “InclusionZoneGrid” Class. . . §2 The “InclusionZoneGrid” Class Gove 2

for each “Stem” object in the population. Recall that an “InclusionZone” object has both an
“ArealSampling” and “Stem” subclass as slots in its definition. For example, an object of subclass
“standUpIZ” would have both a “circularPlot” class object and a “downLog” object making up the
overall bounding box. There are methods for the “InclusionZoneGrid” class objects that work with
each type of “InclusionZone” object. In general, the methods are all of the name izGrid, whose
signature objects initiate the appropriate method.

In the following, we show some general constructs of the class with respect to individual subclasses
of “InclusionZone” objects they are based on. Graphics play a big role in getting the idea, and
each class is a little different, so several illustrations are presented. Whether a surface within an
inclusion zone is constant or variable height depends on the sampling method. For example, what
we term “canonical” perpendicular distance sampling (PDS) has constant height surfaces, while
“omnibus” PDS has surfaces of varying height. In addition, the somewhat odd, but interesting
“full chainsaw” method where the entire sausage-based inclusion zone is filled with variable-height
individual chainsaw estimates is also shown.

2 The“InclusionZoneGrid”Class

The base class is defined with the slots. . .

R> showClass('InclusionZoneGrid')

Class "InclusionZoneGrid" [package "sampSurf"]

Slots:

Name: description iz grid data bbox
Class: character InclusionZone RasterLayer data.frame matrix

Known Subclasses: "csFullInclusionZoneGrid"

2.1 Class slots

� description: Some descriptive text about this class.

� iz : An object of one of the “InclusionZone” subclasses.

� grid : A “RasterLayer” object.

� data: A data frame holding the values for each of the per unit area estimates available in the
“InclusionZone” object in the columns, with rows for grid cells.

The “InclusionZoneGrid” Class. . . §3 Example: The “standUpIZ” Class Gove 3

� bbox : The overall bounding box for the object, which includes the inclusion zone and the
“Stem” subclass object plus the grid. Sometimes the inclusion zone itself includes the stem,
but other times it does not.

I made a decision when designing this class to go with the slots above. A possible problem with this
design is the very real possiblity of people misunderstanding the class structure. This is because
the grid object has values of just zero and NA. In other words, it does not store the per unit area
estimates within the cells of the grid. These are stored in the data slot of the object and can be
swapped into the grid slot object with a simple command. . .

R> x@grid = setValues(x@grid, x@data[,estimate])

where x is the “InclusionZoneGrid” object. Unfortunately, again this may cause problems with
misunderstanding, down the line as it is going to have to be done whenever one wants an underlying
grid with real per unit area values. An alternative to this would have been (and still could be)
to use a “RasterStack” or “RasterBrick” class for the grid slot. This would obviate the need for
the data slot. But it also has drawbacks, because these objects seem to be designed more for map
layers that are algebraically related. I did not want people unwittingly summing layers within this
object, for example, and thereby adding things like number of stems and cubic volume. I may
reconsider this, however, as the latter approach does have its benefits (even though is takes more
storage). Another potential drawback of the latter is that there seems to be no way to name the
“layers” within a brick or stack, they simply get assigned numbers, so we’d again have to keep track
of this with program code.

When plotting the object, the above substitution gets made automatically, one simply has to specify
the desired attribute to plot in the estimate argument to the plot method. For example, to plot
the coverage area surface, specify estimate = ’coverageArea’ in the plot command. The default
is to plot the surface for volume.

3 Example: The “standUpIZ”Class

Refer to the “InclusionZoneClass” vignette for more information on this class.

Here we demonstrate the construction of an “InclusionZoneGrid” object from an object of class
“standUpIZ”.

R> tra = Tract(c(x=100, y=100), cellSize = 0.5, units = 'metric',

+ description = 'a 1-hectare tract')

R> btr = bufferedTract(10, tra)

R> btr

The “InclusionZoneGrid” Class. . . §3 Example: The “standUpIZ” Class Gove 4

--
a 1-hectare tract
--
Measurement units = metric
Area in square meters = 10000 (1 hectares)

class : bufferedTract
dimensions : 200, 200, 1 (nrow, ncol, nlayers)
resolution : 0.5, 0.5 (x, y)
extent : 0, 100, 0, 100 (xmin, xmax, ymin, ymax)
projection : NA
values : in memory
min value : 0
max value : 0

Buffer width = 10

R> dlogs = downLogs(1, container=btr@bufferRect, buttDiam=c(30,40),

+ logLen=c(6,10), topDiams=c(0,0.5), solidTypes=c(2,4),

+ vol2wgt=20.1, wgt2carbon=0.5)

R> sup = standUpIZ(dlogs@logs$log.1, 3)

R> izgSU = izGrid(sup, btr)

Here we have created a 200 by 200 cell raster grid in the form of a “Tract” object, having resolution
of 0.5 meters, yielding spatial extents of 100 × 100 meters, (i.e., a 1 hectare tract), with origin at
(0, 0) meters. Then we create a buffered tract object with a 10-meter buffer, and drew a single
random “downLog” object within the tract, which we used to create an object of class “standUpIZ”
with a 3 meter radius for the circular plot. Finally, using the“standUpIZ”object and the underlying
buffered tract grid, we create the “InclusionZoneGrid” object that will be aligned to the tract grid.

Now, in the following example we plot this object. . .

R> plot(izgSU)

There are two ways to generate the object which depend on how one wants the underlying grid
developed. The argument wholeIZ determines how this is done, and defaults to TRUE. We can see
in Figure 1 that the underlying grid covers the entire inclusion zone plus the down log object. If
we wanted to just cover the inclusion zone only, with a minimal bounding grid we would do the
following (Figure 2). . .

R> izmbgSU = izGrid(sup, btr, wholeIZ=FALSE)

R> plot(izmbgSU, gridCenters=TRUE)

The “InclusionZoneGrid” Class. . . §4 On Design Motivation Gove 5

68 70 72 74 76 78

30
32

34
36

38
40

0

20

40

60

80

100

120

140

Figure 1: An “InclusionZoneGrid” object based on a “standUpIZ” object.

4 On Design Motivation

Having now seen that we can make the grid object cover more than just the inclusion zone if
applicable (i.e., the stem lies partially outside it), we can delve a little more into the motivation for
this class. First, it is entirely possible to do approach the sampling surface construction in a more
brute-force manner in one of at least two ways. . .

1. Brute-force method 1. . .

� Make an exact duplicate of the tract and assign zeros to all its values.

� Then overlay the inclusion zone onto this to get a mask.

� Assign the per acre values to the cells within the masked inclusion zone and zero outside.

� Algebraically add this layer to the base tract and repeat for all stems.

2. Brute-force method 2. . .

The “InclusionZoneGrid” Class. . . §4 On Design Motivation Gove 6

68 70 72 74 76 78

32
34

36
38

40

0

20

40

60

80

100

120

140

Figure 2: A “InclusionZoneGrid” object based on a “standUpIZ” object where only the actual
inclusion zone is covered by the bounding grid, and grid cell centers are plotted as an option.

� Use the rasterize function within “raster” with overlap=’sum’ on the “InclusionZone”
objects to sum them into the base tract grid.

� Repeat for all stems.

The problem with each of these approaches, even though they work, is the time it takes to implement
them. In each case they are working on the entire tract and take significantly more time to
do the accumulation than overlaying onto the smaller grid within the “InclusionZoneGrid” class.
This is compounded if the tract is large, or the resolution is small, which we want usually for
better estimates. This, along with the thought that perhaps the following approach is simpler to
understand because one can see the individual surface components graphically, is why I elected to
go this route.

In slightly more detail, the steps in accumulating the surface under the “InclusionZoneGrid” scheme
are. . .

The “InclusionZoneGrid” Class. . . §6 Example: The “chainSawIZ” Class Gove 7

1. Create an “InclusionZoneGrid” object.

2. Expand its grid to the extent of the tract.

3. Add this expanded grid to the tract surface.

4. Repeat for all stems.

Conceptually it is similar to the other approaches except that the actual overlay is done on a
minimal bounding grid for the object, and therefore is much faster. Expanding the grid mask in
the “InclusionZoneGrid” object takes little effort, and adding it is the same in all steps.

5 Example: The “sausageIZ”Class

Using the same grid and tree as above for an example with sausage sampling, we have. . .

R> saus = sausageIZ(dlogs@logs$log.1, 3)

R> izgSAUS = izGrid(saus, btr, wholeIZ=FALSE)

R> plot(izgSAUS)

Notice in Figure 3 that whether we specify using the whole inclusion zone or not is immaterial for
sausage sampling, because the entire log is always included within the zone. Also note that the
minimal bounding grid is always calculated to include the entire zone, even if there is an extra cell
padding all around. This is trivial and is necessary for making sure all cells within the zone get
assigned the correct value.

6 Example: The “chainSawIZ”Class

Here are a couple similar examples for the “chainSawIZ” class. Gove and Van Deusen (2011) discuss
how the inclusion zone is really just a point, the center point of the circular plot that intersects
the downed log, rather than the plot itself. Therefore, under this method, we assign the sampling
surface value to only that one grid cell that contains the circular plot center point.

R> csaw = chainSawIZ(dlogs@logs$log.1, plotRadius = 3,

+ plotCenter = coordinates(dlogs@logs$log.1@location)[1,] + c(1,-1))

R> izgCSaw = izGrid(csaw, btr, wholeIZ=FALSE)

R> izgCSaw

The “InclusionZoneGrid” Class. . . §6 Example: The “chainSawIZ” Class Gove 8

66 68 70 72 74 76 78

28
30

32
34

36
38

40

0

10

20

30

40

50

Figure 3: A “InclusionZoneGrid” object based on a “sausageIZ” object showing that the stem and
inclusion zone are covered by the bounding grid.

Object of class: InclusionZoneGrid
--
chainSaw grid point inclusion zone grid object
--

InclusionZone class: chainSawIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 1
Cell dimensions: (nrows=1, ncol=1)
Grid cell values**...
gridValues Freq

1 0 1
**Note: data slot values get swapped with zero-valued grid cells as necessary.

The “InclusionZoneGrid” Class. . . §6 Example: The “chainSawIZ” Class Gove 9

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 87.53 353.7 1932 1562 497.3 1759 879.7
1st Qu. 87.53 353.7 1932 1562 497.3 1759 879.7
Median 87.53 353.7 1932 1562 497.3 1759 879.7
Mean 87.53 353.7 1932 1562 497.3 1759 879.7
3rd Qu. 87.53 353.7 1932 1562 497.3 1759 879.7
Max. 87.53 353.7 1932 1562 497.3 1759 879.7

Encapulating bounding box...
min max

x 69.171709 75.170199
y 29.898866 36.978535

R> plot(izgCSaw, gridCenters=TRUE)

Figure 4 shows the concept for a given circular plot location showing volume in cubic meters per
hectare. This clearly shows that only one grid cell gets assigned a value. Note in the above that
there is only a single grid cell in the object comprising the “InclusionZoneGrid”.

We can also show the minimal bounding grid that includes the whole circular plot plus the log, as
we have done in previous examples. Figure 5 presents this graphically.

R> izgCSaw = izGrid(csaw, btr, wholeIZ=TRUE)

R> plot(izgCSaw, gridCenters=TRUE, estimate='Density',

+ showPlotCenter=TRUE, izCenterColor = 'white')

As with the other figures, the overall minimal bounding grid in Figure 5 has all grid cells other
than the one at the center of the circular plot set to zero. Therefore, doing any subsequent map
algebra will have no effect on the sampling surface using this enlarged grid. Showing this minimal
bounding grid is more an effort to help illustrate the underlying concepts.

It is especially important to recognize that the center point of the circular plot does not necessarily
lie at the center of any given grid cell. Depending upon the cell resolution used, this can make the
placement of this respective cell look “off-center” with respect to the circlular plot’s perimeter itself.
It is only true that the center point falls somewhere within the inclusion zone grid cell, which could
even be right on the edge. This is shown in Figure 5 where we use a white cross for the circular
plot center, and is demonstrated below in terms of actual coordinates. . .

The “InclusionZoneGrid” Class. . . §6 Example: The “chainSawIZ” Class Gove 10

70 72 74 76

30
32

34
36

60

70

80

90

100

110

120

Figure 4: A “InclusionZoneGrid” object based on a “chainSawIZ” object showing that the inclusion
zone is only a single point, and therefore is assigned to just one grid cell.

R> cpt = perimeter(csaw, whatSense='point') #circular plot centerpoint

R> cn = cellFromXY(izgCSaw@grid, cpt) #cell number for plot center point

R> xy = xyFromCell(izgCSaw@grid, cn) #cell center point

R> rbind(coordinates(cpt), xy)

x y
[1,] 72.170199 32.898489
[2,] 72.250000 32.750000

6.1 Snapping to the grid

As another example, suppose we wanted to develop a figure that shows essentially the same depiction
as in Figure 5, but also including the overall sausage inclusion zone, and the plot center exactly

The “InclusionZoneGrid” Class. . . §6 Example: The “chainSawIZ” Class Gove 11

68 70 72 74 76

30
32

34
36

38

0

50

100

150

200

250

300

350

Figure 5: A “InclusionZoneGrid” object based on a “chainSawIZ” object showing the minimal
bounding grid for the entire inclusion zone object; this also illustrates that the inclusion zone is
only a single point, since only one grid cell is non-zero valued in terms of number of stems per unit
area estimate.

aligned to a grid cell center. First we would make a “Tract” object that just holds the sausage
inclusion zone object, the log, and the chainsaw inclusion zone object (complete with plot radius
as in Figure 5). We can use the above steps to advantage to snap the plot centerpoint to the grid
as follows. . .

R> xyExtent = c(x=10, y=10)

R> tra2 = Tract(xyExtent, cellSize=0.5)

R> dl = downLog(buttDiam=40, topDiam=15, logLen=6.5, logAngle=pi/4,

+ centerOffset=xyExtent/2)

R> cn = cellFromXY(tra2, c(x=6.5, y=4.5))

R> (cpt = xyFromCell(tra2, cn)[,,drop=TRUE]) #coerce to vector from matrix

The “InclusionZoneGrid” Class. . . §7 The “csFullInclusionZoneGrid” Class Gove 12

x y
6.75 4.25

R> izCS = chainSawIZ(dl, plotRadius = 2, plotCenter = cpt) #cell-based chainsaw iz

R> izgCS = izGrid(izCS, tra2) #and chainsaw iz grid object

R> hiz = heapIZ(izgCS, tra2) #heap it into the tract object

R> izSaus = sausageIZ(dl, plotRadius=2) #overall sausage inclusion zone

We use the heapIZ method in the above to “heap” the “InclusionZoneGrid” object for the single
grid cell corresponding to the chainsaw method at that point, onto the tract. The rest of the idea
behind this should be fairly standard and is covered in more detail in the vignettes for the respective
objects.

To plot this object, we need to basically build it up from scratch, the result is shown in Figure 6. . .

R> plot(hiz, axes=TRUE, gridLines=TRUE)

R> plot(dl, add=TRUE)

R> plot(izSaus, add=TRUE, izColor=NA, lty='dashed', izBorder='gray40')

R> plot(izCS, add=TRUE, izColor=NA, showPlotCenter=TRUE,

+ izCenterColor='white', ltyBolt='solid')

7 The“csFullInclusionZoneGrid”Class

Gove and Van Deusen (2011) describe a certain protocol for the chainsaw method that leads directly
to the sausage method. They also show by simulation how the chainsaw method is biased for
whole-log attributes, because the full inclusion zone for the log is the sausage zone under this
particular protocol. To show this, every grid point within the sausage inclusion zone has to be
estimated individually with its midpoint acting as the center of the circular plot, and then applying
the chainsaw method to that plot. Again, this is repeated for every grid cell within the sausage
inclusion zone.

This necessitates a new class, actually a subclass of “InclusionZoneGrid” with one extra slot, and
some more validity checking, as well as a new constructor for the objects. The extra slot is just
used to store the result of each “chainSawIZ” object applied to each of the internal inclusion zone
grid cells.

The class is defined with the slots. . .

R> showClass('csFullInclusionZoneGrid')

The “InclusionZoneGrid” Class. . . §7 The “csFullInclusionZoneGrid” Class Gove 13

0 2 4 6 8 10

0
2

4
6

8
10

x

y

Figure 6: A built-up plot showing not only the “InclusionZoneGrid” object for one cell of the
chainsaw method, but also the sausage object inclusion zone as would be determined by protocol 1
of Gove and Van Deusen (2011).

Class "csFullInclusionZoneGrid" [package "sampSurf"]

Slots:

Name: chiz description iz grid data
Class: list character InclusionZone RasterLayer data.frame

Name: bbox
Class: matrix

Extends: "InclusionZoneGrid"

The “InclusionZoneGrid” Class. . . §7 The “csFullInclusionZoneGrid” Class Gove 14

7.1 Class slots

� chiz : This is a list object containing NAs for cells outside the inclusion zone, but containing
the full set of “InclusionZoneGrid” objects corresponding to each grid cell within the inclusion
zone. As mentioned above, the grid cell center is used as the center point of the circular plot
that defines the chainsaw intersection with the log.

The nice thing about the subclass extension for this new object is that only one slot was added;
therefore, all of the functions that work on “InclusionZoneGrid” objects will also work on objects
of this new class “csFullInclusionZoneGrid”. These include the print, show, summary, and plot
routines.

In addition, because each of the componets of the list in chiz is of class “InclusionZoneGrid” (or
NA), we can apply any of the methods for that class on the individual slots. For example, we can
plot them as in Figure 4, and look at how the chainsaw method works as we step from one cell to
the next, showing the intersections of the circular plots with the log.

7.2 Object Construction and Plotting

Now, object construction takes quite a while because it has to compute the chainsaw intersections,
etc., for each internal sausage grid cell. So here we use an existing object to demonstrate the
idea. In the following, we show how to make an object of class “csFullInclusionZoneGrid” using
its constructor, but do not evaluate it (we use the existing object instead); the steps leading to its
creation are also shown. . .

R> btLog = sampleLogs(1, buttDiam=c(30,40), sampleRect=buffTr@bufferRect,

+ logLen=c(4,6), topDiams=c(0, 0.5))

R> btLog = downLogs(btLog)

R> btLog = btLog@logs$log.1

R> btLog.sa = sausageIZ(btLog, 3)

R> btLog.izgsa = izGrid(btLog.sa, buffTr)

R> btLog.izgFCS = izGridCSFull(btLog.izgsa, buffTr)

where buffTr is essentially the same as btr used in the previous examples.

R> btLog.izgFCS

Object of class: csFullInclusionZoneGrid
--

The “InclusionZoneGrid” Class. . . §7 The “csFullInclusionZoneGrid” Class Gove 15

Full chainSaw-sausage inclusion zone grid object
--

InclusionZone class: sausageIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 375
Cell dimensions: (nrows=15, ncol=25)
Grid cell values**...
gridValues Freq

1 0 245
2 <NA> 130
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 0.02701 353.7 2.397 1.758 0.2131 0.5888 0.2944
1st Qu. 27.42000 353.7 498.400 459.900 146.0000 597.7000 298.8000
Median 77.31000 353.7 926.600 929.600 295.9000 1685.0000 842.7000
Mean 85.24000 353.7 942.400 972.500 309.1000 1858.0000 929.2000
3rd Qu. 143.30000 353.7 1387.000 1475.000 469.5000 3124.0000 1562.0000
Max. 186.50000 353.7 1935.000 2120.000 673.7000 4065.0000 2033.0000

Encapulating bounding box...
min max

x 61.0 73.5
y 61.5 69.0

One thing to note in particular, is that in the printed summary of the object above, the summary
statistics vary here because the grid cells are composed of individual chainsaw estimates; this is
not true for methods where the cells internal to the inclusion zone only take a single constant value
(e.g., stand-up, sausage, point relascope, etc.).

And plotting the object is as usual. . .

R> plot(btLog.izgFCS, gridCenters=TRUE, showNeedle=TRUE)

As mentioned above, because the chiz slot contains a list of “InclusionZoneGrid” objects, for each
grid cell within the inclusion zone, or NA for grid cells outside the zone, we can step through the
internal cells one at a time, looking at summaries or plotting them. One way to do this would be
the following. . .

The “InclusionZoneGrid” Class. . . §7 The “csFullInclusionZoneGrid” Class Gove 16

62 64 66 68 70 72 74

60
62

64
66

68
70

72

0

50

100

150

Figure 7: A “csFullInclusionZoneGrid” object based on a “sausageIZ” object.

R> cdx = ifelse(is.na(btLog.izgFCS@chiz), FALSE, TRUE)

R> csl = btLog.izgFCS@chiz[cdx]

R> length(csl)

[1] 245

R> sapply(csl[1:4], class)

izgCS.34 izgCS.35 izgCS.36 izgCS.37
"InclusionZoneGrid" "InclusionZoneGrid" "InclusionZoneGrid" "InclusionZoneGrid"

Again, we could then plot the slivers we are interested in, stepping through to see how the chainsaw
method slices the log up for each individual grid cell.

The “InclusionZoneGrid” Class. . . §8 Example: The “pointRelascopeIZ” Class Gove 17

8 Example: The “pointRelascopeIZ”Class

Here we present an example for the point relascope sampling method (Gove et al. 1999, Gove et al.
2001). . .

R> (angle = .StemEnv$rad2Deg(2*atan(1/2)))

[1] 53.130102

R> prs.as = pointRelascope(angle, units='metric')

R> prs.iz = pointRelascopeIZ(dlogs@logs$log.1, prs=prs.as)

R> (izgPRS = izGrid(prs.iz, btr))

Object of class: InclusionZoneGrid
--
pointRelascopeIZ inclusion zone grid object
--

InclusionZone class: pointRelascopeIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 672
Cell dimensions: (nrows=24, ncol=28)
Grid cell values**...
gridValues Freq

1 0 400
2 <NA> 272
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 39.67 99.21 686.5 578.2 184 797.4 398.7
1st Qu. 39.67 99.21 686.5 578.2 184 797.4 398.7
Median 39.67 99.21 686.5 578.2 184 797.4 398.7
Mean 39.67 99.21 686.5 578.2 184 797.4 398.7
3rd Qu. 39.67 99.21 686.5 578.2 184 797.4 398.7
Max. 39.67 99.21 686.5 578.2 184 797.4 398.7

The “InclusionZoneGrid” Class. . . §9 Example: The “perpendicularDistanceIZ” Class Gove 18

Encapulating bounding box...
min max

x 64 78
y 28 40

R> plot(izgPRS)

64 66 68 70 72 74 76 78

28
30

32
34

36
38

40

0

10

20

30

Figure 8: A “InclusionZoneGrid” object based on a “pointRelascopeIZ” object showing that the
stem and inclusion zone are covered by the bounding grid.

9 Example: The “perpendicularDistanceIZ”Class

Here we present an example for the perpendicular distance sampling method (Williams and Gove
2003, Williams et al. 2005, Ducey et al. 2008), this example happens to be for volume estimation.
Please note that, because we know the log’s true volume from simulation, we can in fact estimate

The “InclusionZoneGrid” Class. . . §9 Example: The “perpendicularDistanceIZ” Class Gove 19

all the other attributes for the log. Normally, however, we do not know the true volume from field
measurements, so we would only be able to estimate volume under “canonical” PDS, and would use
the “omnibus” variant PDS given in the next section to estimate these other quantities. . .

R> pdsmet = perpendicularDistance(kpds=50, units='metric')

R> iz.pdsv = perpendicularDistanceIZ(dlogs@logs$log.1, pdsmet)

R> (izgPDS = izGrid(iz.pdsv, btr))

Object of class: InclusionZoneGrid
--
perpendicularDistanceIZ inclusion zone grid object
--

InclusionZone class: perpendicularDistanceIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 342
Cell dimensions: (nrows=19, ncol=18)
Grid cell values**...
gridValues Freq

1 0 161
2 <NA> 181
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100 250.1 1731 1457 463.9 2010 1005
1st Qu. 100 250.1 1731 1457 463.9 2010 1005
Median 100 250.1 1731 1457 463.9 2010 1005
Mean 100 250.1 1731 1457 463.9 2010 1005
3rd Qu. 100 250.1 1731 1457 463.9 2010 1005
Max. 100 250.1 1731 1457 463.9 2010 1005

Encapulating bounding box...
min max

x 68 77.0
y 30 39.5

R> plot(izgPDS)

The “InclusionZoneGrid” Class. . . §10 Example: The “omnibusPDSIZ” Class Gove 20

68 70 72 74 76

30
32

34
36

38
40

0

20

40

60

80

100

Figure 9: A “InclusionZoneGrid” object based on a “perpendicularDistanceIZ” object showing that
the stem and inclusion zone are covered by the bounding grid.

As noted in The InclusionZone Class vignette, the inclusion zone for PDS is developed directly
from the dataframe in the taper slot of the “downLog” object. It can be seen here that if that
taper approximation is poor because it uses too few points, it has the potential to exclude grid
cells that would otherwise normally be included. This in turn could lead to unexpected “simulation
bias” in the sampling surface result (the same thing can happen from using too large a grid cell).
Thus, it is fairly important to use a good number of log sections in the taper dataframe to avoid
this possibility.

10 Example: The “omnibusPDSIZ”Class

An extension to “canonical” PDS presented in the previous section and given by Ducey et al.
(2008), allows one to estimate any attribute on the log and is sometimes referred to as “omnibus”
PDS. Because this method uses stem measurements perpendicular to the sample point to form the

The “InclusionZoneGrid” Class. . . §10 Example: The “omnibusPDSIZ” Class Gove 21

estimates, it has varying height surface in each case, except that for the variable we use for the
PPS selection of the log1. . .

R> iz.opds = omnibusPDSIZ(dlogs@logs$log.1, pdsmet)

R> (izgOPDS = izGrid(iz.opds, btr))

Object of class: InclusionZoneGrid
--
omnibusPDSIZ inclusion zone grid object
--

InclusionZone class: omnibusPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 342
Cell dimensions: (nrows=19, ncol=18)
Grid cell values**...
gridValues Freq

1 0 161
2 <NA> 181
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100 170.6 1181 1218 387.8 2010 1005
1st Qu. 100 189.7 1313 1284 408.8 2010 1005
Median 100 220.0 1522 1383 440.3 2010 1005
Mean 100 248.1 1717 1452 462.1 2010 1005
3rd Qu. 100 276.5 1913 1551 493.5 2010 1005
Max. 100 663.9 4594 2403 764.8 2010 1005

Encapulating bounding box...
min max

x 68 77.0
y 30 39.5

R> plot(izgOPDS, estimate='coverageArea')

1Note that if log selection is with PP to volume, then since both biomass and carbon are simply scaled versions
of volume, their surfaces will also be constant.

The “InclusionZoneGrid” Class. . . §11 Example: The “distanceLimitedIZ” Class Gove 22

68 70 72 74 76

30
32

34
36

38
40

0

100

200

300

400

500

600

700

Figure 10: A “InclusionZoneGrid” object based on a “omnibusPDSIZ” object showing the variable
height sampling surface for coverage area.

11 Example: The “distanceLimitedIZ”Class

Here we interject a method that is not a PDS variant, but we introduce it now because it is used
in the distance limited PDS method presented below. There are two protocols for distance limited
sampling: (i) a standard/canonical (DLS) with constant surface heights for all attributes, and
(ii) a crude Monte Carlo based protocol (DLMCS) with varying surface height for most, but not
all attributes. The first protocol is discussed here, while DLMCS is discussed in the next section.
The protocols are discussed in detail in Gove et al. (2012). The inclusion zone is covered in The
“InclusionZone” Class vignette.

R> dlsMet = distanceLimited(3, units='metric')

R> iz.dls = distanceLimitedIZ(dlogs@logs$log.1, dls=dlsMet)

R> (izgDLS = izGrid(iz.dls, btr))

The “InclusionZoneGrid” Class. . . §11 Example: The “distanceLimitedIZ” Class Gove 23

Object of class: InclusionZoneGrid
--
distanceLimitedIZ inclusion zone grid object
--

InclusionZone class: distanceLimitedIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 380
Cell dimensions: (nrows=20, ncol=19)
Grid cell values**...
gridValues Freq

1 0 167
2 <NA> 213
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 96.31 240.8 1667 1404 446.7 1936 967.9
1st Qu. 96.31 240.8 1667 1404 446.7 1936 967.9
Median 96.31 240.8 1667 1404 446.7 1936 967.9
Mean 96.31 240.8 1667 1404 446.7 1936 967.9
3rd Qu. 96.31 240.8 1667 1404 446.7 1936 967.9
Max. 96.31 240.8 1667 1404 446.7 1936 967.9

Encapulating bounding box...
min max

x 66.5 76
y 29.0 39

R> plot(izgDLS, estimate='biomass')

The surfaces for log length and log density will be exactly the same under this protocol as the
Monte Carlo variant as can be verified with the results in the following section. All other attribute
surfaces will differ between the two protocols, as is illustrated for biomass in Figure 11.

The “InclusionZoneGrid” Class. . . §12 Example: The “distanceLimitedMCIZ” Class Gove 24

66 68 70 72 74 76

30
32

34
36

38

0

500

1000

1500

Figure 11: A“InclusionZoneGrid”object based on a“distanceLimitedIZ”object showing the variable
height sampling surface for biomass.

12 Example: The “distanceLimitedMCIZ”Class

The Monte Carlo protocol for distance limited sampling is illustrated here. The inclusion zone is
covered in The “InclusionZone” Class vignette, and the surface will be constant only for log length
and density and be exactly the same as for DLS. An example follows. . .

R> dlsMet = distanceLimited(3, units='metric')

R> iz.dlmcs = distanceLimitedMCIZ(dlogs@logs$log.1, dls=dlsMet)

R> (izgDLMCS = izGrid(iz.dlmcs, btr))

Object of class: InclusionZoneGrid
--
distanceLimitedMCIZ inclusion zone grid object

The “InclusionZoneGrid” Class. . . §13 Example: The “distanceLimitedPDSIZ” Class Gove 25

--

InclusionZone class: distanceLimitedMCIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 380
Cell dimensions: (nrows=20, ncol=19)
Grid cell values**...
gridValues Freq

1 0 167
2 <NA> 213
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 36.28 240.8 1667 871.7 277.5 729.2 364.6
1st Qu. 73.92 240.8 1667 1244.0 396.1 1486.0 742.9
Median 98.93 240.8 1667 1439.0 458.2 1989.0 994.3
Mean 96.60 240.8 1667 1406.0 447.4 1942.0 970.8
3rd Qu. 121.00 240.8 1667 1592.0 506.7 2432.0 1216.0
Max. 141.00 240.8 1667 1718.0 547.0 2834.0 1417.0

Encapulating bounding box...
min max

x 66.5 76
y 29.0 39

R> plot(izgDLMCS, estimate='biomass')

Note from the summary output that the surface is indeed variable for all attributes other than
density and Length. This is illustrated for biomass in Figure 12.

13 Example: The “distanceLimitedPDSIZ”Class

This class, as explained in The “InclusionZone” Class vignette, is a hybrid sampling method that
restricts the maximum width of the PDS inclusion zone, effectively truncating the search distance
for logs. The “hybrid” effect comes from the fact that the inclusion zone can have one of three
variations: (i) the inclusion zone is all PDS, (ii) the inclusion zone is all DLS, or (iii) it is a

The “InclusionZoneGrid” Class. . . §13 Example: The “distanceLimitedPDSIZ” Class Gove 26

66 68 70 72 74 76

30
32

34
36

38

0

500

1000

1500

2000

2500

Figure 12: A “InclusionZoneGrid” object based on a “distanceLimitedMCIZ” object showing the
variable height sampling surface for biomass.

combination of the two. This flexibility can make things a bit messy, however. We again define
two different protocols within this method. First, “canonical” DLPDS uses DLS for the truncated
portion of the inclusion zone and canonical PDS for the section that is treated as a normal PDS
sample.2 In the second protocol, we substitute omnibus PDS for any section that is to be sampled
with PDS, while DLMCS is used for the distance limited portion, and refer to this as “omnibus”
DLPDS. Note that the difference is entirely based on the protocols for both the PDS and distance
limited components (if any) for each log. Both components of the inclusion zone can, therefore,
be either constant or variable depending on the PPS selection strategy (volume, surface area or
coverage area) and the particular attribute we are estimating (refer to the last few sections for more
information).

2Of course, in field applications, this method is limited to sampling only for the PPS selection variable in the PDS
component for the same reasons as described above.

The “InclusionZoneGrid” Class. . . §13 Example: The “distanceLimitedPDSIZ” Class Gove 27

R> iz.dlpds = distanceLimitedPDSIZ(dlogs@logs$log.1, pds=pdsmet, dls=dlsMet)

R> (izgDLPDS = izGrid(iz.dlpds, btr))

Object of class: InclusionZoneGrid
--
a distance limited PDSIZ inclusion zone grid object
--

InclusionZone class: distanceLimitedPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 288
Cell dimensions: (nrows=18, ncol=16)
Grid cell values**...
gridValues Freq

1 0 143
2 <NA> 145
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100.0 248.7 1667 1590 506.1 2010 1005
1st Qu. 100.0 248.7 1667 1590 506.1 2010 1005
Median 121.0 248.7 1667 1590 506.1 2432 1216
Mean 111.9 279.7 1935 1630 519.0 2249 1124
3rd Qu. 121.0 320.2 2286 1683 535.8 2432 1216
Max. 121.0 320.2 2286 1683 535.8 2432 1216

Encapulating bounding box...
min max

x 68 76
y 30 39

R> plot(izgDLPDS, estimate='biomass', showPDSPart=TRUE)

Figure 13 shows3 the two inclusion zones in the hybrid region. Since biomass is a scaled version of
volume (the PPS selection variable), the PDS component surface is constant as in Figure 9. The
DLS component is also constant, just as the surface generated in Figure 11. Now we are able to see

3The log is randomly generated with each run of this document, and so differs with each creation, but the
parameters are chosen such that it should show the two zones of case (iii).

The “InclusionZoneGrid” Class. . . §14 Example: The “omnibusDLPDSIZ” Class Gove 28

68 70 72 74 76

30
32

34
36

38

0

500

1000

1500

2000

Figure 13: A “InclusionZoneGrid” object based on a “distanceLimitedPDSIZ” object showing the
variable “stair step” height sampling surface for biomass.

why this is a hybrid scheme more clearly. Note from the object summary that the combination of
the two types of inclusion zone objects makes all of the attributes variable in case (iii), since both
PDS and DLS will always produce constant height surfaces that will, in general, not be the same
height, resulting in the entire surface resembling a “step” function.

14 Example: The “omnibusDLPDSIZ”Class

Omnibus PDS is the final PDS-based method. Again, this is similar to canonical DLPDS with the
exception that omnibus PDS is employed within the PDS component of the inclusion zone, and
DLMCS is used in the distance limited portion, if any. This method will be more appropriate for
most field applications since one is able to estimate any attribute shown in Ducey et al. (2008). The
resulting surface will be variable as described in the sections for the individual component methods
above.

The “InclusionZoneGrid” Class. . . §14 Example: The “omnibusDLPDSIZ” Class Gove 29

R> iz.odlpds = omnibusDLPDSIZ(dlogs@logs$log.1, pds=pdsmet, dls=dlsMet)

R> (izgODLPDS = izGrid(iz.odlpds, btr))

Object of class: InclusionZoneGrid
--
a distance limited PDSIZ inclusion zone grid object
--

InclusionZone class: omnibusDLPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 288
Cell dimensions: (nrows=18, ncol=16)
Grid cell values**...
gridValues Freq

1 0 143
2 <NA> 145
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100.0 233.9 1667 1449 461.1 2010 1005
1st Qu. 100.0 248.7 1667 1522 484.6 2010 1005
Median 105.5 248.7 1667 1600 509.2 2120 1060
Mean 112.1 278.6 1927 1628 518.3 2253 1126
3rd Qu. 124.0 277.5 1981 1683 535.6 2493 1247
Max. 141.0 676.7 4831 2464 784.3 2834 1417

Encapulating bounding box...
min max

x 68 76
y 30 39

R> plot(izgODLPDS, estimate='surfaceArea', showPDSPart=TRUE)

It may be difficult to see in Figure 14, but the surface is actually slightly convex from butt to tip,
because it varies in the reverse sense for each of the two components; i.e., larger near the butt for
DLMCS, but larger near the tip for omnibus PDS.

The “InclusionZoneGrid” Class. . . §15 Using plot3D Gove 30

68 70 72 74 76

30
32

34
36

38

0

500

1000

1500

2000

Figure 14: A “InclusionZoneGrid” object based on a “omnibusDLPDSIZ” object showing the vari-
able height sampling surface for surface area.

15 Using plot3D

The plot3D generic was extended to handle objects of class “InclusionZoneGrid”. Its use is sim-
ple, just remember to use the estimate argument to specify the desired surface attribute to be
rendered. . .

R> plot3D(izgODLPDS, estimate='surfaceArea')

The “InclusionZoneGrid” Class. . . §REFERENCES Gove 31

Figure 15: Representation of the sampling surface (via an “InclusionZoneGrid” object) for a single
log sampled with “omnibusDLPDS”.

References

M. J. Ducey, M. S. Williams, J. H. Gove, and H. T. Valentine. Simultaneous unbiased estimates
of multiple downed wood attributes in perpendicular distance sampling. Canadian Journal of
Forest Research, 38:2044–2051, 2008. 18, 20, 28

J. H. Gove and P. C. Van Deusen. On fixed-area plot sampling for downed coarse woody debris.
Forestry, 84(2):109–117, 2011. 7, 12, 13

J. H. Gove, A. Ringvall, G. St̊ahl, and M. J. Ducey. Point relascope sampling of downed coarse
woody debris. Canadian Journal of Forest Research, 29(11):1718–1726, 1999. 17

J. H. Gove, M. J. Ducey, A. Ringvall, and G. St̊ahl. Point relascope sampling: a new way to assess
down coarse woody debris. Journal of Forestry, 4:4–11, 2001. 17

The “InclusionZoneGrid” Class. . . §REFERENCES Gove 32

J. H. Gove, M. J. Ducey, and H. T. Valentine. A distance limited method for sampling downed
coarse woody debris. Journal of Applied Ecology, 2012. (In preparation). 22

M. S. Williams and J. H. Gove. Perpendicular distance sampling: an alternative method for
sampling downed coarse woody debris. Canadian Journal of Forest Research, 33:1564–1579,
2003. 18

M. S. Williams, M. J. Ducey, and J. H. Gove. Assessing surface area of coarse woody debris with
line intersect and perpendicular distance sampling. Canadian Journal of Forest Research, 35:
949–960, 2005. 18

	Introduction
	The ``InclusionZoneGrid'' Class
	Class slots

	Example: The ``standUpIZ'' Class
	On Design Motivation
	Example: The ``sausageIZ'' Class
	Example: The ``chainSawIZ'' Class
	Snapping to the grid

	The ``csFullInclusionZoneGrid'' Class
	Class slots
	Object Construction and Plotting

	Example: The ``pointRelascopeIZ'' Class
	Example: The ``perpendicularDistanceIZ'' Class
	Example: The ``omnibusPDSIZ'' Class
	Example: The ``distanceLimitedIZ'' Class
	Example: The ``distanceLimitedMCIZ'' Class
	Example: The ``distanceLimitedPDSIZ'' Class
	Example: The ``omnibusDLPDSIZ'' Class
	Using plot3D
	Bibliography

