
The sampSurf Package Overview

Jeffrey H. Gove∗

Research Forester
USDA Forest Service

Northern Research Station
271 Mast Road

Durham, New Hampshire 03824 USA
e-mail: jgove@fs.fed.us or e-mail: jhgove@unh.edu

Monday 20th June, 2011
4:52pm

Contents

1 Introduction 1
2 sampSurf Package Classes 3

2.1 The “Stem” class 3
2.1.1 The “downLog” subclass 3

2.2 The “Tract” Class 4
2.3 The “ArealSampling” Class 4

2.4 The “InclusionZone” Class 4

2.5 The “InclusionZoneGrid” Class 5

2.6 The “sampSurf” Class 5
3 Coordinate Reference Systems 5
4 A Simple Example 6
5 Summary 8
6 Appendix: A Brief Introduction to S4 9
Bibliography 10

1 Introduction

The sampSurf package is concerned with generating sampling surfaces as an aid to learning about
new or existing areal sampling methods in natural resources. The sampling surface concept was first
proposed by Williams (2001a,b) as a method for visualizing the variability in sampling methods
and provides an intuitive way to make comparisons among methods. It can be thought of as a
discrete approximation of the continuous or infinite population paradigm and hence is related to
the Monte Carlo exposition in Valentine et al. (2001). Additionally, it has been applied in a number
of studies in addition to those already mentioned, such as Williams and Gove (2003), Gove et al.
(2005), Gove and Van Deusen (2011) and Gove et al. (2012).

In the sampling surface approach, we map an area—a tract—into discrete grid cells of some desired
resolution. Then we take a population of standing trees or down logs (hereafter simply “stems”)

∗Phone: (603) 868-7667; Fax: (603) 868-7604.

1

“sampSurf” Package Overview. . . §1 Introduction Gove 2

whose locations are mapped within the area and apply an areal sampling method to them. Areal
sampling methods, when combined with a stem, form an inclusion zone of known area and perimeter
surrounding the stem1. The inclusion zone is simply the area within which a sample point could
fall and select (include) the stem into the sample. This is true regardless of the areal sampling
method. We coupled the sampling method to the stem because often the size of the inclusion
zone varies with some dimension of the stem—the essence of probability proportional to size (PPS)
sampling. For example, with Bitterlich sampling of standing trees, the circular plot inclusion zone
size is proportional to the tree basal area (or breast height diameter squared). Even with fixed-area
plots, where the size of the plot does not depend on any stem attribute, it is still convenient to
think of the inclusion zone as couple to the stem. To generate a sampling surface then, all of the
grid cells within the inclusion zone of each stem are assigned the per unit area estimates associated
with the sampling method for that stem; these might include cubic and board foot volumes, cross-
sectional areas, biomass, and the like. When inclusion zones for different elements in the population
overlap, the per unit area estimates sum for the intersected grid cells. In this way, we build up a
“sampling surface” individually for each quantity to be estimated. The smaller the grid cell size,
the more accurate the approximation of the surface, and also the more time it takes to generate
the full surface. One can now see that this approach is like a Riemann sum approaching an integral
in one or more dimensions. So just as we expect the Riemann sum approximation to converge
to the integral as the partitions get smaller, so we also expect the same of the sampling surface
approximation to the true continuous surface as the grid cell resolution increases (cell sizes get
smaller).

The sampSurf package automates the above procedure in several steps. It does this using S4 style
classes and methods, which allow strict validity checking of objects. But more importantly, as a
true object-oriented system, S4 has a full inheritance, which allows one to take the full functionality
of the classes and methods that have been written and expand them by creating new classes for
more detailed objects.

At this writing, the package handles the more important fixed-area plot sampling methods for
down logs, plus several other sampling methods for down wood such as point relascope (Gove
et al., 1999), distance limited (Gove et al., 2012), and perpendicular distance methods (Williams
and Gove, 2003; Williams et al., 2005; Ducey et al., 2008). Other sampling methods can be added
to the foundational classes and methods (for different generic functions) that have been established
without a great deal of programming. Finally, even though it may be more reasonable to think
of applying these tools to simulate synthetic populations of individual stems, the facility exists for
using existing data taken from an inventory where one of the supported areal sampling methods was
used. The Extending the sampSurf Package vignette shows how to extend the base functionality
of sampSurf through the S4 paradigm to create routines to handle new sampling methods.

1In most cases this is true, but there are exceptions: the “standup” method has inclusion zone surrounding only
the butt of the log, for example.

“sampSurf” Package Overview. . . §2 sampSurf Package Classes Gove 3

2 sampSurf Package Classes

In this section we introduce the existing sampSurf classes in a progressive way, building towards
generating a sampling surface. Following that, an example is provided showing the process from
start to finish. Many more details are provided in the individual vignettes associated with each
class in the package documentation where, for example, different class constructors are illustrated.

2.1 The“Stem”class

We refer to all trees and down logs as “stems” above for a good reason. In this class, both trees
and down logs are envisioned as being subclasses of an overall conceptual “Stem” class. In R
parlance, the “Stem” class is a virtual class, and specifies all of the attributes that a down log and
standing tree might have in common, such as species. Other attributes that are not shared, are
defined in the individual subclass specifications themselves, while inheriting the functionality of the
superclass, in this case “Stem”. For example, down logs have small- and large-end diameters (well
so do standing trees, but they are rarely measured), while standing trees have diameters at breast
height. Therefore, the subclasses for down logs and standing trees will be somewhat different, while
still inheriting the common “Stem” characteristics from that superclass.

2.1.1 The “downLog” subclass

This subclass is for down logs only. It contains the basic information about the logs, such as diam-
eters and length. It also allows the generation of taper curves for the log if none are available from
measurements. These are generated from a standard taper equation that can model many differ-
ent shapes from neiloid to paraboloid (Gove and Van Deusen, 2011). In addition, the geometrical
information is stored for the log so that it can be represented on a two-dimensional surface. The
log’s center location and a polygonal profile outline are stored in the class slots for the object, using
spatial polygon classes from the sp package. One could easily envision extending this class and its
constructor to handle other taper equations for example through inheritance. In fact, this was a
decision in the design of the class, rather than have the taper equation itself stored as a component
in the object, for example.

The class definitions provide a so-called container class, “downLogs”, that can be used to store
a collection or population of logs for use in sampling surface simulation. (See The “Stem” Class
vignette for more information.)

“sampSurf” Package Overview. . . §2 sampSurf Package Classes Gove 4

2.2 The“Tract”Class

We need a geographic representation of an area in two-dimensions on which to build the sampling
surface. This can be as simple as a simulated one-hectare plot, or perhaps actually corresponds
to some physical geographical location on the ground where measurements have been taken. The
“Tract” class implements this through the raster and sp packages. In fact, the base “Tract” class is
a subclass of “RasterLayer”, found in the raster package. Currently, a “bufferedTract” class exists
that simply adds a buffer region to the “Tract” class, and is therefore a subclass of “Tract”. Using
the “bufferedTract” class for example, we can draw a collection of “Stem” objects from within the
buffer area in such a way that the inclusion zones are fully contained within the tract. In the future,
other subclasses that automatically handle some of the common boundary overlap methods could
be added as well. (See The “Tract” Class vignette for more information.)

2.3 The“ArealSampling”Class

This class allows for the definition of areal sampling methods. In general, each subclass should en-
capsulate at least the minimal requirements for the sampling method needed to be able to calculate
an object’s inclusion zone when associated with a “stem” object. The base class is again virtual,
with branches for special methods used only in sampling standing trees or down logs. Other meth-
ods that can be used for any type of “Stem” object, like fixed-area circular plots, are defined as
direct subclasses of the virtual base class. Sampling methods specific to down woody debris like
perpendicular distance sampling are defined as a subclass under the down log branch. (See The
“ArealSampling” Class vignette for more information.)

2.4 The“InclusionZone”Class

As already mentioned, the combination of a “Stem” object and an “ArealSampling” class object
yields the ability to determine the inclusion zone for the combined objects. The “InclusionZone”
class does this through its subclass definitions and object constructors because the base class is
again virtual. Currently, there are subclasses for several sampling methods used on “downLog”
objects. For example, the “sausageIZ” class combines the sausage sampling protocol (Gove and Van
Deusen, 2011) with a “downLog” object. All attributes for the given combination are stored in the
object, as well as a “SpatialPolygons” (sp package) representation of the perimeter of the inclusion
zone itself.

Like the “Stem” class, we also need a way to store multiple inclusion zones for a collection of stems
in a population. The “downLogIZs” class will store any of the “InclusionZone” subclass objects in
a container object. The restriction is that they all must be the same class of object, so one could
not mix inclusion zones generated from the sausage method with any other method, for example.
(See The “InclusionZone” Class vignette for more information.)

“sampSurf” Package Overview. . . §3 Coordinate Reference Systems Gove 5

2.5 The“InclusionZoneGrid”Class

If we have objects corresponding to a “Tract” and also “InclusionZone” class of one form or another
(which presupposes that we also have an “ArealSampling” object and one or more “downLog”
objects), then we are at the stage were we want to combine the inclusion zone and the tract object
so that we can subsequently build the sampling surface. The “InclusionZoneGrid” class allows us to
do this. It basically takes the background grid attributes from a “Tract” class object and creates a
minimal bounding grid large enough to encompass the inclusion zone of an “InclusionZone” object,
in the correct spatial juxtaposition. Then, forming the intersection of the inclusion zone polygon
with the minimal bounding grid, it assigns the per unit area attributes to all grid cells within the
inclusion zone. For a collection of logs, this is done for each individual log. From here, it is a
small step to then aligning these sub grids to the overall master “Tract” grid, and accumulating the
sampling surface. (See The “InclusionZoneGrid” Class vignette for more information.)

2.6 The“sampSurf”Class

Of course all of the previous classes now form the chain of steps that leads to simple accumulation
of the sampling surface, which is stored in a “sampSurf” class object. The constructors for the
“sampSurf” objects will hide the details to varying degrees. For example, you can construct a
sampling surface for a given sampling method by using the constructor that specifies the number of
logs and a “Tract” object, essentially hiding everything. Other constructors allow different levels of
information to be used in the process. (See The “sampSurf” Class vignette for more information.)

3 Coordinate Reference Systems

One point that was not mentioned anywhere above is that all of the spatial objects have slots for the
definition of the coordinate reference system (CRS) used to take the measurements. If the rgdal
package is available, one can take advantage of these to a greater extent. For now, the package just
does validity checks to make sure the units used in the stem measurements are the same as those
in the projection as best it can without resorting to requiring rgdal to function. Right now that
amounts to making sure the spatial data are not in geographic form, and that all measurements
are either in English or metric—but consistent through all objects that are being worked with at
any given time. Both the raster and sp packages support the use of CRS through class slots and
also support rgdal, so as this package progresses, the base capability is there, and can be utilized
more fully in the future.

“sampSurf” Package Overview. . . §4 A Simple Example Gove 6

4 A Simple Example

Here we use a very simple example showing the steps to creating a sampling surface. It must be
stressed that there is a simpler way to generate the surface, as described above, using one of the
other constructors, but this will help give a feel for how the above classes work together to generate
the final product. We will use a small example, more detailed examples are found in the vignettes.
The results of the following code are found in Figure 1.

R> require(sampSurf)

R> tra = Tract(c(x=25, y=25), cellSize = 0.5, units = 'English',

+ description = 'a small plot')

R> (btr = bufferedTract(bufferWidth=5, tract=tra))

--
a small plot
--
Measurement units = English
Area in square feet = 625 (0.014348026 acres)

class : bufferedTract
dimensions : 50, 50, 1 (nrow, ncol, nlayers)
resolution : 0.5, 0.5 (x, y)
extent : 0, 25, 0, 25 (xmin, xmax, ymin, ymax)
projection : NA
values : in memory
min value : 0
max value : 0

Buffer width = 5

R> dlogs = downLogs(5, btr, units = 'English',

+ buttDiams = c(4,10), logLens = c(2,10))

R> listSUIZ = lapply(dlogs@logs, 'standUpIZ', plotRadius = 2.5)

R> sapply(listSUIZ, class)

log.1 log.2 log.3 log.4 log.5
"standUpIZ" "standUpIZ" "standUpIZ" "standUpIZ" "standUpIZ"

R> izsSU = downLogIZs(listSUIZ)

R> ssSU = sampSurf(izsSU, btr)

“sampSurf” Package Overview. . . §4 A Simple Example Gove 7

Logs in collection = 5
Heaping log: 1,2,3,4,5,

R> summary(ssSU)

Object of class: sampSurf
--
sampling surface object
--

Inclusion zone objects: standUpIZ
Measurement units = English
Number of logs = 5
True log volume = 5.8327921 cubic feet
True log length = 29.91 feet
True log surface area = 45.724113 square feet
True log coverage area = 14.528357 square feet
True log biomass = NA
True log carbon = NA

Estimate attribute: volume
Surface statistics...
mean = 5.8283157
bias = -0.0044764121
bias percent = -0.076745614
sum = 14570.789
var = 295.9002
st. dev. = 17.20175
cv % = 295.14101
surface max = 5140.033
total # grid cells = 2500
grid cell resolution (x & y) = 0.5 feet
of background cells (zero) = 2162
of inclusion zone cells = 338

The above hides the creation of an “ArealSampling” class object—in this case a fixed-area circular
plot—inside the creation of the“standUpIZ”object construction, but it is indeed there, as witnessed
by the required plotRadius argument. The following gives a short explanation of the steps in the
above example.

1. The first line of code just makes sure the sampSurf package has been loaded.

“sampSurf” Package Overview. . . §5 Summary Gove 8

2. In the next two lines of code, an object of class “Tract” is first created. Its dimensions are
25 × 25 feet, with a half-foot resolution. The minimum extent of the bounding box for the
tract will be at (0, 0), and by default the values for all cells are set to zero. The second line
creates a “bufferedTract” object from the “Tract” object, with a buffer width of five feet.

3. The following line makes a collection of “downLog” objects and stores them in a “downLogs”
container class object. We make a collection of short logs to allow everything to fit nicely
into this small plot (tract), and make sure the large-end diameters in inches are something
reasonable. In each case, dimensions are sampled from the limits provided.

4. The next step is to make a collection of “InclusionZone” objects from the collection of “down-
Log” objects using a given “ArealSampling” method—in this case using the so-called stand-up
protocol for circular plots. To do this simply, we use the R lapply command, which takes each
of the individual “downLog” objects that are stored within a list slot in the “downLogs” con-
tainer, and applies the standUpIZ method to them. The result is confirmed in the following
step: each of the resulting objects in the list is of class “standUpIZ”.

5. The penultimate step is to turn the list created in the previous step into a “downLogIZs”
container object. Note that the current and previous steps could have easily been combined
into one R command as: izsSU = downLogIZs(lapply(dlogs@logs, ’standUpIZ’, plo-
tRadius=2.5)), but we have separated them here for clarity in order to clearly show the
outcome of the lapply command.

6. Finally we simply create the “sampSurf” object from the “downLogIZs” collection and the
“bufferedTract” object. And show how the summary generic has been adapted to print some
statistics on the sampling surface (note that the stand-up method is unbiased).

The above example is the long way to create a sampling surface, but allows the most control and
demonstrates the steps discussed above with respect to the individual classes and constructors in
the package. As noted above and in the “sampSurf” class vignette, this can all be done with one
call to an alternative sampSurf constructor function by specifying the desired number of logs, their
attributes, and a “Tract” object.

Finally, the sampling surface object can be plotted simply as. . .

R> plot(ssSU, useImage=FALSE)

5 Summary

The sampSurf package currently has a number of different areal sampling methods available for
down logs. The design of the package through the class structure and the underlying flexibility

“sampSurf” Package Overview. . . §6 Appendix: A Brief Introduction to S4 Gove 9

0 5 10 15 20 25

0
5

10
15

20
25

0

1000

2000

3000

4000

5000

Figure 1: Simple generic “sampSurf” object with some random logs.

of S4, should allow other methods to be added without an inordinate amount of programming,
because the basic foundation is there. More information on each class and associated constructors
are found in the vignettes. The best source for complete documentation of classes, constructors
and other generic functions is in the package help files.

6 Appendix: A Brief Introduction to S4

In the above introduction, we have been speaking of terms that may not be all that familiar to
the casual R user. Every object in R has a class, just like it has a type or mode (for example, try
class(get(’+’)), then substitute typeof or mode for class). But since S4 is a true object-oriented
system, the class structure of objects under S4 can take on a new dimension through inheritance,
which is not found in the more traditional R paradigm (known as S3). Inheritance allows us to
define a general base class and refine it by making subclasses of the base class that share all of its
attributes, plus new ones. For example, maybe someone has defined a class called “Tree” in S4, but

“sampSurf” Package Overview. . . §REFERENCES Gove 10

did not make allowance for more information that you now need, say, degree of lean, for example.
One can simply define a “leaningTree” subclass of “Tree” that inherits all of the attributes of this
base class, but adds a slot for degree of lean. One can think of the inheritance hierarchy as a tree
with different nodes or leaves forming the classes. In the example, the “Tree” class is a superclass of
“leaningTree”; or, if you like, “leaningTree” is a subclass of “Tree”. The subclass is always an object
of its superclass because is shares all the slots of the superclass, but the superclass object is not
an object of the subclass, because more slots, and therefore functionality have been added in the
subclass that an object of class “Tree” would not know how to handle.

Functionality for classes is given through generic functions that have methods defined for the desired
classes. The link between the two—or how the method knows to automatically act on a given class—
is derived via the method’s signature. The signature is composed of one or more arguments to the
function that are used in method dispatch: the act of determining the correct method to apply
to the signature arguments based on their classes (all taken care of behind the scenes by R). To
continue our little example, suppose we want a method to automatically print certain components
of a “Tree” object when one types the object’s name at the command line and hits the enter key,
because the object is quite large and there is no need to print everything. We would define a
method for the generic show function that has a signature argument of class “Tree” encapsulating
exactly what is to be printed when showing the object. Furthermore, because of inheritance, one
can also define a method for “leaningTree” objects which will use the existing functionality of the
show method defined for the “Tree” method, plus whatever other slots added in the subclass. So
subclasses are extensions of superclasses that simply provide more functionality in terms of object
slots and methods.

One last definition concerns the term slot, which we have used above. A slot is a named component
of a class where something is stored. It is somewhat analogous to the components in a list object.
In a list object we can access a component with the $ operator. In S4 objects, slots are accessed
using the @ operator, or the slot function. But this is a trivial difference. Slots in S4 objects are
strongly typed, allowing only objects of a given class (or union of classes), which is determined on
class creation by the class designer, to be associated with the value for each slot. Therefore, the
S4 system can guarantee that the information contained within a slot is in the expected form for a
valid object. Object validity checking is yet another aspect and will not be covered here. There is
far more to know about S4, in fact it is quite a fully functional object-oriented paradigm within R.
Much more information is provided in documents on the web, and in Chambers (2008). The newly
added “Reference” classes, that are evidently built on S4 present another powerful addition to the
object oriented toolkit within R.

References

J. M. Chambers. Software for Data analysis: Programing with R. Springer, 2008. 10

M. J. Ducey, M. S. Williams, J. H. Gove, and H. T. Valentine. Simultaneous unbiased estimates

“sampSurf” Package Overview. . . §REFERENCES Gove 11

of multiple downed wood attributes in perpendicular distance sampling. Canadian Journal of
Forest Research, 38:2044–2051, 2008. 2

J. H. Gove and P. C. Van Deusen. On fixed-area plot sampling for downed coarse woody debris.
Forestry, 84(2):109–117, 2011. 1, 3, 4

J. H. Gove, A. Ringvall, G. St̊ahl, and M. J. Ducey. Point relascope sampling of downed coarse
woody debris. Canadian Journal of Forest Research, 29(11):1718–1726, 1999. 2

J. H. Gove, M. S. Williams, G. St̊ahl, and M. J. Ducey. Critical point relascope sampling for
unbiased volume estimation of downed coarse woody debris. Forestry, 78:417–431, 2005. 1

J. H. Gove, M. J. Ducey, and H. T. Valentine. A distance limited method for sampling downed
coarse woody debris. Journal of Applied Ecology, 2012. (In preparation). 1, 2

H. T. Valentine, J. H. Gove, and T. G. Gregoire. Monte Carlo approaches to sampling forested
tracts with lines or points. Canadian Journal of Forest Research, 31:1410–1424, 2001. 1

M. S. Williams. New approach to areal sampling in ecological surveys. Forest Ecology and Man-
agement, 154:11–22, 2001a. 1

M. S. Williams. Nonuniform random sampling: an alternative method of variance reduction for
forest surveys. Canadian Journal of Forest Research, 31:2080–2088, 2001b. 1

M. S. Williams and J. H. Gove. Perpendicular distance sampling: an alternative method for
sampling downed coarse woody debris. Canadian Journal of Forest Research, 33:1564–1579,
2003. 1, 2

M. S. Williams, M. J. Ducey, and J. H. Gove. Assessing surface area of coarse woody debris with
line intersect and perpendicular distance sampling. Canadian Journal of Forest Research, 35:
949–960, 2005. 2

	Introduction
	sampSurf Package Classes
	The ``Stem'' class
	The ``downLog'' subclass

	The ``Tract'' Class
	The ``ArealSampling'' Class
	The ``InclusionZone'' Class
	The ``InclusionZoneGrid'' Class
	The ``sampSurf'' Class

	Coordinate Reference Systems
	A Simple Example
	Summary
	Appendix: A Brief Introduction to S4
	Bibliography

