
Extending the sampSurf Package

Jeffrey H. Gove∗

Research Forester
USDA Forest Service

Northern Research Station
271 Mast Road

Durham, New Hampshire 03824 USA
e-mail: jgove@fs.fed.us or e-mail: jhgove@unh.edu

Friday 15th April, 2011
5:00pm

Contents

1 Introduction 1
2 The Major Components of sampSurf 2

2.1 General Steps in Package Extension . . . 2
2.1.1 “ArealSampling” subclass 3
2.1.2 “ArealSampling” constructor . . . 4
2.1.3 “InclusionZone” subclass 5
2.1.4 “downLogIZs” container class con-

structor 6
2.1.5 “InclusionZoneGrid” constructor . 7

2.1.6 “sampSurf” constructor 8
3 Other Generics Requiring Methods 9

3.1 The plot and perimeter methods 9

3.2 The summary and show methods 9
4 R Documentation 10

4.1 PDF Files 10

4.2 Rd Files 11

4.2.1 New Rd files 11

4.2.2 Additions to existing Rd files . . . 11
5 Other 12
6 Adding A New Estimate Variable 12

1 Introduction

By now, if you are at this point, it is pretty evident that sampSurf was designed (using the term
loosely) with a class-constructor structure that should allow it to be extended fairly (again loosely
applied) easily to incorporate other sampling methods. In what follows we will look at how one
might add the PRS sampling method for down woody debris to the package. Only an outline of the
procedure will be given here. For the details, please look at the code in the files mentioned below
for PRS and PDS (or other method) to get a “model” of what to do.

If you’ve gotten this far, you undoubtedly have read in the vignettes or the code where the package
is basically all written using the S4 paradigm. We will not belabor this, and the assumption will be

∗Phone: (603) 868-7667; Fax: (603) 868-7604.

1

sampSurf Extensions. . . §2 The Major Components of sampSurf Gove 2

made that if you are looking to extend sampSurf by adding a new sampling method, you understand
the basics of S4 classes and methods. The package code is a good place to get more information
as mentioned above. The S4 paradigm was chosen for a reason: it is a truly flexible and extensible
object-oriented way to program in R. For example, the use of inheritance in both classes and the
extension of methods (i.e., callNextmethod) for generic functions is very powerful and will save
much in the way of programming time when done correctly. We give a little example of this in the
S4 section of The sampSurf Package Overview. I have read where S4 is considered slow, or was
when it first came out. This really is not a valid argument when one considers the huge benefits
it brings for package integrity (e.g., validity checking) and source code reuse; our computers get
faster all the time, and the small amount of extra time S4 might take is minimal compared to the
benefits it brings to coding in R.

If you add an extension to sampSurf that ends up being something that could be valuable to other
users, it is possible to contribute the code to the R-Forge site, and this would be most appreciated.

If you follow the steps below, and follow along with existing code, then your extension should
integrate seamlessly with the rest of the package. For example, the container classes should “just
work” as long as you have maintained the correct class inheritance structure.

2 The Major Components of sampSurf

The major components of sampSurf are discussed in the The sampSurf Package Overview vignette.
Please refer to that document for a quick refresher if needed. There are several ways one could
extend the package. First, one could add new subclasses to the “Stem” class for further refinement
of either down logs or standing trees—or perhaps add a whole new category like woody shrubs.
Another possibility would be to add a new subclass to the “Tract” class, perhaps for a different
definition of a buffered tract; options here might be subclasses that automatically know how to
do mirage or walkthrough boundary overlap correction. These are certainly possible, but are not
discussed here at present. Please see the code for examples on how this might be done. In the
following we restrict our attention to adding new sampling methods, as this is the most common
extension that will be made to the package.

2.1 General Steps in Package Extension

Below are the general steps that are required in adding a new sampling method to sampSurf.

1. Add the class definition as a subclass of “ArealSampling”.

2. Add a constructor method to construct objects of the class rather than having the user rely
on new, which is too generic and error-prone.

sampSurf Extensions. . . §2 The Major Components of sampSurf Gove 3

3. Add the class definition for the inclusion zone as a subclass of “InclusionZone”. If we are
dealing with down logs, for example, this will actually be a subclass of “downLogIZ”.

4. Add the InclusionZoneGrid method; note that there is nothing to modify in the class def-
inition for inclusion areas that are constant height, as in PRS. In fact, most variable height
sampling methods like omnibus PDS and DLMCS will require no class modification either.
The “csFullInclusionZoneGrid” is the exception because the individual chainsaw “Inclusion-
ZoneGrid” objects get stored within a suasage inclusion zone for reference, and it becomes
something resembling a container object as a result.

5. Add the name of the “InclusionZone” object to the sampSurf constructor that has a numeric
signature as the first argument.

2.1.1 “ArealSampling” subclass

Each new sampling method needs its own class definition. The “ArealSampling” class was setup to
be the source of these definitions. It is a virtual class which forms the basis for all of the sampling
methods that are available in sampSurf. To extend this one must define a new subclass with the
contains = ’ArealSampling’ argument in the class definition given to setClass. That’s the
main constraint; after this, it is up to you to determine what makes sense to include in the class
definition for a given method. For example, in PRS, we have the relascope angle and the squared-
length factor among other slots. Generally, anything you include here should be easily calculated
within the constructor without too much extra input.

R> showClass('pointRelascope')

Class "pointRelascope" [package "sampSurf"]

Slots:

Name: angleDegrees angleRadians phi slFactor rwFactor
Class: numeric numeric numeric numeric numeric

Name: description units
Class: character character

Extends: "ArealSampling"

A very important point to keep in mind is that the “ArealSampling” class is not the place to
have any information about a method that relies on knowing anything about the individuals to be
sampled. For instance, in the case of PRS, we would not put any slots in the class definition that

sampSurf Extensions. . . §2 The Major Components of sampSurf Gove 4

rely on knowing the log length. This is why the “ArealSampling” and “InclusionZone” classes were
separated. The inclusion zone does depend on both the sampling method and the measurements
on the individual log or tree in question, so the “InclusionZone” subclass is where one would put,
e.g., the area of the inclusion zone and its perimeter under PRS and PDS.

Finally, here and in the following, it is extremely important to include as many validity checks in
the class definition as possible. This can not be overstated. If the object created by the constructor
is bad to begin with, then there is no telling what will happen afterwards. The validity =
function(object) section of the setClass call is the place to do as much of this as possible
because people still might try to use new to construct and object, and problems will be caught
here if they do. Some checking might also have to be done in the object constructor to make sure
arguments passed are valid before use, and may even be redundent, but this is fine, there can’t
really be too much of this.

2.1.2 “ArealSampling” constructor

As mentioned above, it really is helpful to the end user to have a constructor—preferably of the same
name as the class for the resultant object—rather than rely on the use of new. The latter is frought
with possible misapplication, especially for complex objects. The constructor should operate on
the minimal necessary arguments, offering defaults where possible, to construct a valid object. As
mentioned above, some pre-checking of the validity of arguments passed may be necessary and is
encouraged.

The following example shows how the PRS constructor can be used to construct a list of multiple
objects at one time, based on the reach:width ratios for the angles in question1. . .

R> lprs = lapply(sapply(1:4, function(nu).StemEnv$rad2Deg(2*atan(1/nu))),

+ function(x) pointRelascope(x, units='English'))

R> sapply(lprs, class)

[1] "pointRelascope" "pointRelascope" "pointRelascope" "pointRelascope"

R> t(sapply(lprs, function(x) c(x@rwFactor, x@angleDegrees, x@slFactor)))

[,1] [,2] [,3]
[1,] 1 90.000000 55462.315
[2,] 2 53.130102 20694.374
[3,] 3 36.869898 10531.308
[4,] 4 28.072487 6290.802

1See ?.StemEnv; the function rad2Deg that resides there simply converts from radians to degrees.

sampSurf Extensions. . . §2 The Major Components of sampSurf Gove 5

The constructor is quite basic. It is advisable to make each constructor a generic function and add
a method to construct the object. In this way, others could add subclasses or other methods to
simply extend the constructor, making life easier. In addition, someone might have a different way
to construct the object which could be coded based on a change in signature, and the opportunity
to do so should be available.

R> isGeneric('pointRelascope')

[1] TRUE

R> showMethods('pointRelascope')

Function: pointRelascope (package sampSurf)
angleDegrees="numeric"

In the above example, we used the signature argument angleDegrees, as there is probably little
likelihood that anyone will want to extend this constructor using a different type of signature argu-
ment. In general, if this is not the case and multiple constructors (see the “downLogs” constructors)
are more likely, then it might be wise to make the signature argument(s) more generic in its name,
such as object.

2.1.3 “InclusionZone” subclass

This is where we develop the class configuration necessary to have an object that acts like an
inclusion zone. These objects all are very similar regardless of whether the zone will eventually
contain a constant or variable surface. We want a class definition and associated constructor that
defines the zone geometrically so it can be subsequently overlayed onto the “Tract” grid for the
assignment of the individual grid cells within the zone. Therefore, in most cases, the object and
constructor will be very similar to what we have defined for PRS below.

The newly generated class for PRS looks like the following. . .

R> showClass('pointRelascopeIZ')

Class "pointRelascopeIZ" [package "sampSurf"]

Slots:

sampSurf Extensions. . . §2 The Major Components of sampSurf Gove 6

Name: prs dualCircle radius area
Class: pointRelascope matrix numeric numeric

Name: perimeter pgDualArea dualCenters downLog
Class: SpatialPolygons numeric matrix downLog

Name: description units bbox spUnits
Class: character character matrix CRS

Name: puaBlowup puaEstimates userExtra
Class: numeric list ANY

Extends:
Class "downLogIZ", directly
Class "InclusionZone", by class "downLogIZ", distance 2

As usual, a constuctor must be written for this class, preferably with the same name. For PRS we
have the following as an example. . .

R> etract = Tract(c(x=100,y=100), cellSize=0.5, units='English')

R> ebuffTr = bufferedTract(15, etract)

R> dlgs = downLogs(10, ebuffTr, units='English', buttDiam=c(10,20), logLens=c(5,10))

R> iz.prs = pointRelascopeIZ(dlgs@logs$log.1, lprs[[1]])

In the above, and in some of the other earlier class definitions, I have used slot names specific to
the sampling method. For example, the dualCircle slot contains the matrix representation of the
inclusion zone perimeter. When writing the PRS code, however, I decided it would be much better
to try to make some of these shared slot names more standard. So for example, the above slot
now becomes izPerim in a PRS object. In addition, the names for polygons within the perimeter
slot have been standardized, rather than reflecting the sampling method. Please see the code for
examples. The older classes (prior to PDS) will remain as they are, but future classes should follow
this more consistent approach if possible.

2.1.4 “downLogIZs” container class constructor

There is nothing that requires changing in this class or its constructor, it should be able to handle
all existing and new “InclusionZone” class objects as long as there is a perimeter function available
for the class.

sampSurf Extensions. . . §2 The Major Components of sampSurf Gove 7

R> lprs.izs = lapply(dlgs@logs, function(x) pointRelascopeIZ(x, prs=lprs[[1]]))

R> dl.izs = downLogIZs(lprs.izs)

R> dl.izs

Object of class: downLogIZs
--

--
Container class object...
There are 10 inclusion zones in the population
Inclusion zones are of class: pointRelascopeIZ
Units of measurement: English

Encapulating bounding box...
min max

x 17.507979 85.982220
y 12.256415 86.893463

2.1.5 “InclusionZoneGrid” constructor

This is where the actual per unit area estimates get assigned to each grid cell within the inclusion
zone. The base constructors for this class are methods of the izGrid generic.2 There are two
possible situations that might arise. . .

1. Constant sampling surface within each object’s inclusion zone: In this case simply copy one of
the methods that is similar here and make your changes, any method that generates constant
inclusion zone height will do, such as the sausage method, and modify the signature for the
new class: in this case “pointRelascopeIZ”.

2. Variable sampling surface within each object’s inclusion zone: This case is a bit more involved.
Each method will have a different way of assigning the per unit area estimates to the individual
grid cells. Examples are shown for a number of methods such as omnibus PDS and distance
limited PDS (DLPDS) or distance limited Monte Carlo (DLMCS). The extreme is the full
chainsaw method, but the way this was set up was quite different from the other variable-
height methods because I elected to keep track of the intersection objects in this method,
and because the inclusion zone is actually a “SausageIZ” object, so it is perhaps not a good
model to follow in general. Sampling methods that generate variable height surfaces are more
work to code for sure, but in all cases so far encountered, the information reqired to generate
estimates for each grid cell is readily extractable. For example, with regard to functions of
perpendicular log diameters (variants of PDS and DLMCS), the diameters are all available

2The exception being izGridCSFull for the full chainsaw method.

sampSurf Extensions. . . §3 Other Generics Requiring Methods Gove 8

through the taper function (either in default or spline form). The code presents examples
of back-transforming logs to the “canonical” position, to make it simpler to get at certain
attributes like perpendicular diameters. There is undoubtedly a simpler way to do this, but
these examples can be used as guides.

In the end, we should arrive at a constructor function that can be called as, e.g.,. . .

R> prsIZG = izGrid(iz.prs, ebuffTr)

2.1.6 “sampSurf” constructor

At present, there are two constructors for class “sampSurf” and neither requires any modification
(unless you come up with something resembling the full chainsaw method). Remember, you must
pass along other required arguments to underlying constructors as shown in the following, where
both constructors are demonstrated with the new PRS addition. . .

R> prs.ss = sampSurf(dliz, ebuffTr)

R> prs.ss2 = sampSurf(4, ebuffTr, iZone='pointRelascopeIZ',

+ units='English', prs=lprs[[1]])

Note in the last constructor that we must pass along the “ArealSampling” point relascope object
so that the pointRelascopeIZ constructor has this information to work with. We also must pass
along the units, as ’metric’ is the default in generating sample trees with downLogs.

3 Other Generics Requiring Methods

There are other generics like plot, summary, and perimeter that also has to be updated for classes
where extensions have been made.

3.1 The plot and perimeter methods

In order to visualize new extentions correctly, the plot generic must have a method for each class
of object that we want to display graphically. These include the following, related to the special
classes in sampSurf. . .

1. “ArealSampling”: The only time this would require a new plot method for an extension is in
th case of something like the circular plot (say a rectangular plot), where the size of the plot

sampSurf Extensions. . . §4 R Documentation Gove 9

does not depend on some attribute of the downed log. This would be true for both plot and
perimeter.

2. “InclusionZone”: The methods for protocols other than, e.g., chainsaw, are all very similar.
Just duplicate from say, sausageIZ, and make any additions. This is what was done for
pointRelascopeIZ. This would be true for both plot and perimeter. Please note above
that for the “downLogIZs” container to work, there must already be an associated perimeter
method for the “InclusionZone” objects to be stored.

Plot methods for “InclusionZoneGrid” and “sampSurf” classes should work without modification,
providing one has correctly filled each of the class slots as expected.

3.2 The summary and show methods

The summary and show generics may require methods for the new classes; for example. . .

1. “ArealSampling”: One should extend the base class functionality to print relevant information
from the class object. Regard the methods for “pointRelascope” or any other for an example
of how this was extened. As a default, the show method simply calls the summary method, so
it does not require any additions or changes.

2. “InclusionZone”: Again, we want to extend the base method by adding information that is
relevant to the class. See the code for examples. Again, as a default, the show method simply
calls the summary method, so it does not require any additions or changes.

Finally, in case it is not obvious, when you print and object at the command line, print simply
calls the show method by default, so everything will work correctly here.

4 R Documentation

If a new method makes it into the sampSurf package, then there will be documentation changes
that are required. If one is simply extending the methods above for one’s own use, this step is not
required.

The documentation comes in two flavors: PDF vignettes and Rd help files. We go over each of
these below. . .

sampSurf Extensions. . . §4 R Documentation Gove 10

4.1 PDF Files

It is probably a good idea to put examples of any new methods into the vignettes. Undoubtedly,
the new methods will have their own arguments that differ from extant methods that would require
a little example. And in general, having an example available is just a good idea so people can use
it to go by when writing their own code. The following PDF vignettes should be modified for new
sampling methods. . .

1. The “Areal Sampling” Class should have an example of the new subclass. For example see the
“pointRelascope” class addition to the original document. The documentation should include
an explanation of the class slots and an example of creating an object at a minimum.

2. The “InclusionZone” Class should also have examples showing the class slots, how to create
an object from the class, and then how to plot this object. Again, see the “pointRelascopeIZ”
class addition to the original document.

3. The “InclusionZoneGrid” Class should have a simple example for the new class of “Inclusion-
Zone” object that has been added. There are plenty of examples in the documentation to go
by for this.

4. The “sampSurf” Class additions are optional. In the case of PRS, an example was added
to show what needs to be passed along to one of the constructors as detailed above just so
people would understand the extra requirements.

The other vignettes do not require additions. One might add something for a new technique to
these, but that is not necessary.

4.2 Rd Files

This is the laborious part. For each of the changes made in the “Major Components Of sampSurf”
and “Other Generics. . . ” sections above, we will need new or augmented Rd documentation. There
is no way around this, it just has to be done for a complete package.

4.2.1 New Rd files

Several new Rd files will be required. . .

1. The new “ArealSampling” class definition, the new generic that creates the class, and the
new method for object construction. For example, for PRS the Rd files that require creation

sampSurf Extensions. . . §6 Adding A New Estimate Variable Gove 11

are: pointRelascope-class, pointRelascope and pointRelascope-methods, for the class
definition, generic, and constructor method, respectively.

2. The new “InclusionZone” class definition, the new generic that creates the class, and the
new method for object construction. For example, for PRS the Rd files that require creation
are: pointRelascopeIZ-class, pointRelascopeIZ and pointRelascopeIZ-methods, for the
class definition, generic, and constructor method, respectively.

4.2.2 Additions to existing Rd files

Additions to existing Rd files will be required for. . .

1. The ArealSampling-class file should be modified to link to the new method.

2. The sampSurf-package file should be modified to contain links to all of the documentation
files added above in the same model as what is already in that file for other methods.

3. The downLogIZs, downLogIZs-class and InclusionZone-class files require mention of the
new sampling method as a link in the “See Also” section.

4. The perimeter-methods and plot-methods files require information on the new sampling
method.

5. The izGrid-methods file must have the appropriate addition.

5 Other

Again, if the new method is to be added to the package, then we must make the appropriate
changes to the DESCRIPTION and NAMESPACE files. If code has been added to existing files,
then nothing needs to be done to the former. However, all classes and methods must be explicitly
exported from the package namespace in the NAMESPACE file, or they will be unavailable to
users.

6 Adding A New Estimate Variable

In this case, we want to add a new attribute or quantity to be estimated like volume or carbon.
This is most easily done in the package environment, rather than in an individual’s own workspace.
Hopefully what is provided will meet the needs of most users and future additions will not be
required. The following steps should be used to add the new variable. . .

sampSurf Extensions. . . §6 Adding A New Estimate Variable Gove 12

1. Add the new variable to the puaEstimates vector in the .StemEnv environment.

2. The appropriate “Stem” subclass definition should be modified (e.g., “downLog”) to have a
slot for the new information. Please also modify the associated validity and initialize routines
as required.

3. The constructor(s) for the above object needs to handle the new input. This will probably,
but not always, require a new argument and some code.

4. The summary method for the above class, and associated container class should be modified.

5. The .statsDownLogs function will require addition of the new variable for the “downLogs”
container class.

6. All “InclusionZone” constructor methods will need to add the new variable—not a trivial
undertaking.

7. The associated inclusion zone summary method will need modification for the “downLogIZ”
class and for the chainsaw method.

8. The “InclusionZoneGrid” constructor for methods that have non-constant surface will require
modification. These include omnibus PDS (see its izGrid method) and the chainsaw method
(see the chainsawSliver routine).

9. The main “sampSurf” constructor will require addition of the new “truth” value for this
variable estimate.

10. The “sampSurf” summary method will also require the “True” value in cat statements and in
the truth = switch statement.

	Introduction
	The Major Components of sampSurf
	General Steps in Package Extension
	``ArealSampling'' subclass
	``ArealSampling'' constructor
	``InclusionZone'' subclass
	``downLogIZs'' container class constructor
	``InclusionZoneGrid'' constructor
	``sampSurf'' constructor

	Other Generics Requiring Methods
	The plot and perimeter methods
	The summary and show methods

	R Documentation
	PDF Files
	Rd Files
	New Rd files
	Additions to existing Rd files

	Other
	Adding A New Estimate Variable

