
3.2 Classes

The package schwartz97 provides the class schwartz2f. This class contains
all parameters which are needed to define the dynamics of the state variables
spot price and convenience yield under the objective measure P. The class
schwartz2f has the following slots:

Slot name Class Symbol Description

s0 numeric s0 Initial spot price.
delta0 numeric δ0 Initial convenience yield.
mu numeric µ Drift parameter of the spot price process.
sigmaS numeric σS Diffusion parameter of the spot price process.
kappaE numeric κ Speed of mean-reversion of the convenience yield process.
alpha numeric α Mean-level of the convenience yield process.
sigmaE numeric σε Diffusion parameter of the convenience yield process.
rhoSE numeric ρ Correlation between the two Brownian motions.
call call The function call.

The above set of parameters contains the symbols appearing in (1) and (2) as
well as the initial values s0 and δ0. To create an object of class schwartz2f
the constructor with the same name can be used (see section 4).

The function fit.schwartz2f, which estimates parameters of the two-
factor model, returns an object of class schwartz2f.fit. This class inherits
from the class schwartz2f and adds the following slots.

Slot name Class Symbol Description

r numeric r Risk-free interest rate.
alphaT numeric α̃ Mean-value of the convenience yield process under Q.
lambda numeric λ Market price of convenience yield risk.
deltat numeric Time-increment of the transition equation.
n.iter numeric Number of iterations.
llh numeric Log-likelihood value.
converged logical States whether the fit converged or not.
error.code numeric An error code or 0.
error.message character Contains the error message if any.
fitted.params logical States which parameters were fitted.
trace.pars matrix Contains the parameter evolution during the estimation.
meas.sd numeric Standard deviation of the measurement equation.

These slots together with the ones contained in the class schwartz2f fully
determine the dynamics of the model under both, the objective measure and
the pricing measure. Notice that one of the parameters lambda and alphaT

is redundant according to equation 5.
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3.3 Object Orientation

As mentioned earlier most of the functions dealing with the state variables
and futures prices are set to generic. The idea is to leave some freedom to the
user, who can decide whether he wants to use an object-oriented approach
or provide a fairly large set of arguments for each function-call.

Consider the function dfutures for example. The function headers for
different signatures are:

## S4 method for signature 'ANY,ANY,ANY,numeric':
dfutures(x, time = 0.1, ttm = 1, s0 = 50, delta0 = 0,

mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0,

sigmaE = 0.5, rho = 0.75, r = 0.05, lambda = 0,

alphaT = NULL, measure = c("P", "Q"), ...)

## S4 method for signature 'ANY,ANY,ANY,schwartz2f':
dfutures(x, time = 0.1, ttm = 1, s0, r = 0.05,

lambda = 0, alphaT = NULL, measure = c("P", "Q"), ...)

## S4 method for signature 'ANY,ANY,ANY,schwartz2f.fit':
dfutures(x, time = 0.1, ttm = 1, s0, measure = c("P", "Q"), ...)

Without object-orientation (first header) the function has 15 arguments.
Ten parameters are needed to describe the dynamics under both measures.

If a schwartz2f.fit object is provided for s0 the only additional ar-
guments required are x (quantiles), time (time where the futures process is
evaluated), and ttm (time to maturity of the futures contract).

4 Object Initialization

A schwartz2f object with reasonable parameters is constructed in the fol-
lowing code chunk.

> s0 <- 100

> delta0 <- 0

> mu <- 0.1

> sigmaS <- 0.2

> kappa <- 1

> alpha <- 0.1

> sigmaE <- 0.3

> rho <- 0.4

> obj <- schwartz2f(s0 = s0, delta0 = delta0, alpha = alpha,

+ mu = mu, sigmaS = sigmaS, sigmaE = sigmaE,

+ rho = rho, kappa = kappa)

> obj
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(α) is 5%. The mean return (µ) of corn is 10% and the volatility is 30%. The
speed of mean-reversion of the convenience yield (κ) is 1.5 and its volatility
is 40%. Correlation is assumed to be 60%. The risk-free rate is 3% and the
market price of convenience yield risk (λ) is zero.

First the object is initialized. Next a trajectory is generated based on a
weekly sampling over five years. Then futures prices are calculated with time
to maturities ranging from zero (which is the spot) to two years. Finally,
a call option which matures in one year written on a futures contract with
time to maturity of two years is priced. Fig. 2 plots forward curves.

> s0 <- 80

> delta0 <- 0.05

> mu <- 0.1

> sigmaS <- 0.3

> kappa <- 1.5

> alpha <- 0.05

> sigmaE <- 0.4

> rho <- 0.6

> lambda <- 0.04

> r <- 0.03

> set.seed(1)

> obj <- schwartz2f(s0, delta0, mu, sigmaS, kappa,

+ alpha, sigmaE, rho)

> state.traj <- simstate(n = 52 * time, time, obj)

> pricefutures(seq(0, 2, by = 0.4), obj, lambda = lambda,

+ r = r)

[1] 80.00000 79.28309 78.64870 78.17279 77.81715 77.53741

> priceoption(type = "call", time = 1, Time = 2,

+ K = 85, obj, r = r, lambda = lambda)

[1] 4.991482

7 Contango, Backwardation, and Hump Shapes

Fig. 2 shows the ability of the Schwartz two-factor model to generate con-
tango and backwardation situations. Mixed shapes (humps and “inverse”
humps) are possible too. E.g. an upwards sloping forward curve at the
short end which points downwards at the long end.

Looking at the Q-dynamics in equations (3) and (4) it is obvious that,
locally, the drift of the spot price is positive when δt < r. This corresponds
to a (local) contango situation. However, the long-term mean of δt is α̃. This
means that short and long-term futures can point in different directions.
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Figure 2: Forward curves with time to maturity up to two years are plotted
for the trajectory state.traj. The “closest to maturity contract” is in fact
the spot price because the time to maturity is zero. The forward curves are
steeper (stronger contango) the lower the convenience yield is.

Four different shapes are generated in the following example and plotted
in fig. 3:

Pure contango: If δ0 < r and α̃ < r.

Short end backwardation, long end contango: If δ0 > r and α̃ < r.

Pure backwardation: If δ0 > r and α̃ > r.

Short end contango, long end backwardation: If δ0 < r and α̃ > r.

> s0 <- 1

> delta0 <- 0

> sigmaS <- 0.3

> kappa <- 1

> sigmaE <- 0.4

> rho <- 0.5

> r <- 0.03
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8 Parameter Estimation

As mentioned in section 1, we believe that the package’s most valuable piece
of code is the function fit.schwartz2f. This function estimates the param-
eters involved in equations (1) - (4) including the initial values of the state
variables s0 and δ0. Because log-futures prices linearly depend on a bivariate
Gaussian random vector (the log-spot price and the convenience yield), it
is most straightforward to use a linear state-space model. Therefore, the
estimation procedure is based on the Kalman filter as proposed in Schwartz
(1997).

The header of the function fit.schwartz2f looks like

> args(fit.schwartz2f)

function (data, ttm, deltat = 1/260, s0 = data[1, 1], delta0 = 0,

mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0, sigmaE = 0.3,

rho = 0.7, lambda = 0, meas.sd = rep(0.1, ncol(data)), opt.pars = c(s0 = FALSE,

delta0 = FALSE, mu = TRUE, sigmaS = TRUE, kappa = TRUE,

alpha = TRUE, sigmaE = TRUE, rho = TRUE, lambda = FALSE),

opt.meas.sd = c("scalar", "all", "none"), r = 0.03, silent = FALSE,

...)

NULL

The data inputs are data and ttm. data must be a regularly spaced
time-series matrix of futures prices and ttm a matrix giving the time-to-
maturity.

The time-to-maturity matrix admits the following interpretation: data[i,j]
denotes the futures price whose time to maturity was ttm[i,j] when it was
observed. The unit is defined by deltat which is the time between obser-
vations data[i,j] and data[i+1,j].

The arguments from s0 to lambda are initial values of the parameters.
meas.sd gives (initial) values of the measurement error standard devi-

ations. Note that the off-diagonals of the measurement error covariance
matrix are assumed to be zero.

opt.pars states which parameters shall be estimated. Note that some
parameters are held constant by default.

opt.meas.sd specifies how measurement uncertainty is treated in the
fit: According to the model there should be a one-to-one correspondance
between the spot and the futures price. In reality, the term structure does
not fully match for any set of parameters. This is reflected in the measure-
ment uncertainty-vector meas.sd. All components of meas.sd can be fitted.
However, it might be sufficient to fit only a scalar where the measurement
uncertainty is parametrized by scalar * meas.sd. In this case define the
vector meas.sd and set opt.meas.sd to “scalar”. meas.sd can be set to a
vector with each component set to, e.g., 2%, giving each point in the term
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structure equal weight. Another reasonable specification takes open interest
or volumes into account: The higher the volume, the higher the weight and
therefore the lower the corresponding component of meas.sd. If all compo-
nents of meas.sd shall be fitted choose“all”. If the measurement uncertainty
is known set meas.sd to “none”. Note that the measurement errors are as-
sumed to be independent in this implementation (even though the model
and the filter do not require independence).

Finally, the risk-free rate r must be given.

8.1 Statistical and Computational Considerations

Estimation of the Schwartz two-factor model parameters is statistically frag-
ile and computationally demanding. Multiple local maxima of the likelihood
may exist which can result in absurd parameter estimates as, e.g., a yearly
drift of 300% and or a market price of convenience yield risk of -200%.
Therefore, a reasonable parameter estimation is most likely an iteration
where several initial values are used and different combinations of parame-
ters are held constant during estimation. Also, simulation studies showed
that a fairly large sample is required to get adequate estimates (e.g. 20000
daily observations, depending on the number of parameters which shall be
estimated). For this reason the default is to hold s0, delta0, and lambda

constant.
Several utility functions as fitted, resid, plot, and coef may help to

investigate the quality of the fit (see example below).
The fitting procedure generally requires a large number of iterations to

achieve a reasonable tolerance level. Each optimization iteration involves
the filtering of the data set by the Kalman filter. Therefore, an efficient
implementation of the Kalman filter is key.

8.2 Example: Estimating Wheat Parameters

This section takes you through a “real-world” example of a Schwartz two-
factor parameter estimation. There are daily observations of the five closest
to maturity wheat futures prices from Jan. 1995 to April 2010 (approx.
4000 observations).

The default parameters of fit.schwartz are used, i.e., all parameters
except the initial values of the state variables and the market price of conve-
nience yield risk lambda are estimated. The maximum number of iterations
is limited to 300 to save (build) time. Then the object is printed and the
parameter evolution is plotted.

> data(futures)

> wheat.fit <- fit.schwartz2f(futures$wheat$price,

+ futures$wheat$ttm/260, deltat = 1/260, control = list(maxit = 300),

12



----------------------------------------------------------------

Fitted Schwartz97 two-factor model:

SDE (P-dynamcis)

d S_t = S_t * (mu - delta_t) * dt + S_t * sigmaS * dW_1

d delta_t = kappa * (alpha - delta_t) * dt + sigmaE * dW_2

E(dW_1 * dW_2) = rho * dt

SDE (Q-dynamcis)

d S_t = S_t * (r - delta_t) * dt + S_t * sigmaS * dW*_1

d delta_t = kappa * (alphaT - delta_t) * dt + sigmaE * dW*_2

alphaT = alpha - lambda/kappa

Parameters

s0 : 395.5

delta0: 0

mu : 0.0973917026862455

sigmaS: 0.315675278006413

kappa : 1

alpha : 0.0439034736965505

sigmaE: 0.280503762575782

rho : 0.543979631300489

r : 0.03

lambda: 0

alphaT: 0.0439034736965505

----------------------------------------------------------------

Optimization information

Converged: FALSE

Fitted parameters: mu, sigmaS, alpha, sigmaE, rho, meas.sd1; (Number: 6)

log-Likelihood: -3927591873

Nbr. of iterations: 301

----------------------------------------------------------------

> plot(wheat.fit.constr, type = "trace.pars")

Parameters are more reasonable now: µ, α, and ρ seem to be fine at 10%,
4.3%, and 54%, respectively. Also, as a quick check, simulated trajectories in
fig. 6 look plausible. Real term structures are compared to model generated
term structures in fig. 7.

> wheat.2007 <- lapply(futures$wheat, function(x) x[as.Date(rownames(x)) >

+ "2007-01-01" & as.Date(rownames(x)) < "2008-07-01",

+ ])

> par(mfrow = c(1, 2))
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Figure 5: This figure shows the parameter evolution of the first 300 iterations
of the constrained parameter estimation of wheat. The relative tolerance
gets below 10−6 after 150 iterations the parameter values get more and
more stationary.

> futuresplot(wheat.2007, type = "forward.curve")

> plot(wheat.fit.constr, type = "forward.curve",

+ data = wheat.2007$price, ttm = wheat.2007$ttm/260)
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8.2.1 Residual Analysis

Hands-on model validation is done here via graphical residual analysis.
“Residuals” refer to prediction errors of the Kalman filter’s measurement
equation. According to the model residuals should be serially independent
Gaussian random variables.

Different types of residulas can be obtained by the generic resid function
and the specific argument type, which can be “filter” (raw filter residuals),
“filter.std” (standardized filter residuals), and “real” (observed minus fitted
prices). Standardized residuals are of interest here, hence the argument
is “filter.std”. First, serial independence is checked and then normality of
residuals. Both assumptions are violated as shown in fig. 8 and fig. 9.

Before rejecting the two-factor model one could try different settings for
the measurement error standard deviations (argument meas.sd), e.g. “all”.
Beside that different parameters could be hold constant.

> model.resid <- resid(wheat.fit.constr, data = futures$wheat$price,

+ ttm = futures$wheat$ttm/260, type = "filter.std")

> acf(model.resid, na.action = na.pass)

> par(mfrow = c(3, 2))

> invisible(apply(model.resid, 2, function(x) plot(density(na.omit(x)))))
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Figure 8: Residual’s auto- and crosscorrelation estimates. Recall that off-
diagonals of the measurement error covariance matrix are not estimated,
hence the crosscorrelation is not relevant. Residuals of the closest to ma-
turity futures show insignificant autocorrelation. However, residuals of all
other futures are heavily autocorrelated. As the measurement error standard
deviations are set proportional to the average traded volumes of the wheat
futures, the two closest to maturity futures clearly get highest weights.
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Figure 10: Current observed futures prices and one week ahead confidence
intervals for the Sept. 2010, Dec. 2010, Mar. 2011, May 2011, and July
2011 wheat constracts as of Sept. 7, 2010.
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