
Applications of Statistical Simulation in the Case of

EU-SILC: Using the R Package simFrame

Andreas Alfons
K.U.Leuven

Matthias Templ
Vienna University of

Technology,
Statistics Austria

Peter Filzmoser
Vienna University of

Technology

Abstract

This paper demonstrates the use of simFrame for various simulation designs in a prac-
tical application with EU-SILC data. It presents the full functionality of the framework
regarding sampling designs, contamination models, missing data mechanisms and per-
forming simulations separately on different domains. Due to the use of control objects,
switching from one simulation design to another requires only minimal changes in the
code. Using bespoke R code, on the other hand, changing the code to switch between
simulation designs would require much greater effort. Furthermore, parallel computing
with simFrame is demonstrated.

Keywords: R, statistical simulation, EU-SILC.

1. Introduction

This is a supplementary paper to “An Object-Oriented Framework for Statistical Simulation:
The R Package simFrame” (Alfons, Templ, and Filzmoser 2010d) and demonstrates the use of
simFrame (Alfons 2011) in R (R Development Core Team 2010) for various simulation designs
in a practical application. It extends the example for design-based simulation in Alfons et al.
(2010d) (Example 6.1). Different simulation designs in terms of sampling, contamination and
missing data are thereby investigated to present the strengths of the framework.

Note that the paper is supplementary material and is supposed to be read after studying
Alfons et al. (2010d). It does not give a detailed discussion about the motivation for the
framework, nor does it describe the design or implementation of the package. Instead it
is focused on showing its full functionality for design-based simulation in additional code
examples with brief explanations. However, model-based simulation is not considered here.

The European Union Statistics on Income and Living Conditions (EU-SILC) is panel survey
conducted in EU member states and other European countries and serves as basis for measur-
ing risk-of-poverty and social cohesion in Europe. An important indicator calculated from this
survey is the Gini coefficient, which is a well-known measure of inequality. In the following
examples, the standard estimation method (EU-SILC 2004) is compared to two semipara-
metric methods under different simulation designs. The two semiparametric approaches are
based on fitting a Pareto distribution (e.g., Kleiber and Kotz 2003) to the upper tail of the
data. In the first approach, the classical Hill estimator (Hill 1975) is used to estimate the

2 Applications of Statistical Simulation in the Case of EU-SILC

shape parameter of the Pareto distribution, while the second uses the robust partial density
component (PDC) estimator (Vandewalle, Beirlant, Christmann, and Hubert 2007). All these
methods are implemented in the R package laeken (Alfons, Holzer, and Templ 2010a). For
a more detailed discussion on Pareto tail modeling in the case of the Gini coefficient and a
related measure of inequality, the reader is referred to Alfons, Templ, Filzmoser, and Holzer
(2010e).
The example data set of simFrame is used as population data throughout the paper. It
consists of 58 654 observations from 25 000 households and was synthetically generated from
Austrian EU-SILC survey data from 2006 using the data simulation methodology by Alfons,
Kraft, Templ, and Filzmoser (2010b), which is implemented R package simPopulation (Alfons
and Kraft 2010).

2. Application of different simulation designs to EU-SILC

First, the required packages and the data set need to be loaded.

R> library("simFrame")

R> library("laeken")

R> data("eusilcP")

Then, the function to be run in every iteration is defined. Its argument k determines the
number of households whose income is modeled by a Pareto distribution. Since the Gini coef-
ficient is calculated based on an equivalized household income, all individuals of a household
in the upper tail receive the same value.

R> sim <- function(x, k) {

+ x <- x[!is.na(x$eqIncome),]

+ g <- gini(x$eqIncome, x$.weight)$value

+ eqIncHill <- fitPareto(x$eqIncome, k = k, method = "thetaHill",

+ groups = x$hid)

+ gHill <- gini(eqIncHill, x$.weight)$value

+ eqIncPDC <- fitPareto(x$eqIncome, k = k, method = "thetaPDC",

+ groups = x$hid)

+ gPDC <- gini(eqIncPDC, x$.weight)$value

+ c(standard = g, Hill = gHill, PDC = gPDC)

+ }

This function is used in the following examples, which are designed to exhibit the strengths
of the framework. In order to change from one simulation design to another, all there is to
do is to define or modify control objects and supply them to the function runSimulation().

2.1. Basic simulation design

In this basic simulation design, 100 samples of 1500 households are drawn using simple random
sampling. Note that the setup() function is not used to permanently store the samples
in an object. This is simply not necessary, since the population is rather small and the
sampling method is straightforward. Furthermore, the Pareto distribution is fitted to the 175
households with the largest equivalized income.

Andreas Alfons, Matthias Templ, Peter Filzmoser 3

R> set.seed(12345)

R> sc <- SampleControl(grouping = "hid", size = 1500, k = 100)

R> results <- runSimulation(eusilcP, sc, fun = sim, k = 175)

In order to inspect the simulation results, methods for several frequently used generic functions
are implemented. Besides head(), tail() and summary() methods, a method for computing
summary statistics with aggregate() is available. By default, the mean is used as summary
statistic. Moreover, the plot() method selects a suitable graphical representation of the
simulation results automatically. A reference line for the true value can thereby be added as
well.

R> head(results)

Run Sample standard Hill PDC
1 1 1 26.56793 26.48025 25.66614
2 2 2 26.98203 27.73124 26.39318
3 3 3 27.07081 27.11886 25.52524
4 4 4 26.86841 27.70216 25.71355
5 5 5 26.43215 26.49267 25.64191
6 6 6 26.96175 27.13876 27.17536

R> aggregate(results)

standard Hill PDC
26.65621 26.79016 26.89564

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

Figure 1 shows the resulting box plots of the simulation results for the basic simulation design.
While the PDC estimator comes with larger variability, all three methods are on average quite
close to the true population value. This is also an indication that the choice of the number
of households for fitting the Pareto distribution is suitable.

2.2. Using stratified sampling

The most frequently used sampling designs in official statistics are implemented in simFrame.
In order to switch to another sampling design, only the corresponding control object needs
to be changed. In this example, stratified sampling by region is performed. The sample sizes
for the different strata are specified by using a vector for the slot size of the control object.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> results <- runSimulation(eusilcP, sc, fun = sim, k = 175)

4 Applications of Statistical Simulation in the Case of EU-SILC

standard

Hill

PDC

26 28 30 32

●

●

●

●●

● ●

Figure 1: Simulation results for the basic simulation design.

As before, the simulation results are inspected with head() and aggregate(). A plot of the
simulation results is produced as well.

R> head(results)

Run Sample standard Hill PDC
1 1 1 27.08652 27.22293 27.66753
2 2 2 26.80670 27.35874 25.93378
3 3 3 26.68113 27.03964 26.60062
4 4 4 25.84734 26.52346 25.18298
5 5 5 26.05449 26.26848 26.60331
6 6 6 26.98439 27.01396 26.48090

R> aggregate(results)

standard Hill PDC
26.71792 26.85375 26.86248

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

Figure 2 contains the plot of the simulation results for the simulation design with stratified
sampling. The results are very similar to those from the basic simulation design with simple
random sampling. On average, all three investigated methods are quite close to the true
population value.

Andreas Alfons, Matthias Templ, Peter Filzmoser 5

standard

Hill

PDC

25 26 27 28 29 30

●

●

●

●

● ●●

Figure 2: Simulation results for the simulation design with stratified sampling.

2.3. Adding contamination

When evaluating robust methods in simulation studies, contamination needs to be added to
the data to study the influence of these outliers on the robust estimators and their classical
counterparts. In simFrame, contamination is specified by defining a control object. Various
contamination models are thereby implemented in the framework. Keep in mind that the
term contamination is used in a technical sense here (see Alfons et al. 2010d; Alfons, Templ,
and Filzmoser 2010c, for an exact definition) and that contamination is modeled as a two
step process (see also Béguin and Hulliger 2008; Hulliger and Schoch 2009). In this example,
0.5% of the households are selected to be contaminated using simple random sampling. The
equivalized income of the selected households is then drawn from a normal distribution with
mean µ = 500 000 and standard deviation σ = 10 000.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ fun = sim, k = 175)

The head(), aggregate() and plot() methods are again used to take a look at the simulation
results. Note that a column is added that indicates the contamination level used.

R> head(results)

Run Sample Epsilon standard Hill PDC

6 Applications of Statistical Simulation in the Case of EU-SILC

standard

Hill

PDC

25 30 35 40

●

●

●

●

● ●●●

●

Figure 3: Simulation results for the simulation design with stratified sampling and contami-
nation.

1 1 1 0.005 32.71453 29.12110 27.03731
2 2 2 0.005 34.22065 31.62709 26.24857
3 3 3 0.005 33.56878 28.49760 28.00937
4 4 4 0.005 35.26346 29.57160 26.25621
5 5 5 0.005 33.79720 29.15945 25.61514
6 6 6 0.005 34.72069 28.58610 27.22342

R> aggregate(results)

Epsilon standard Hill PDC
1 0.005 34.88922 30.26179 27.02093

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

In Figure 3, the resulting box plots are presented. The figure shows that such a small amount
of contamination is enough to completely corrupt the standard estimation of the Gini coeffi-
cient. Using the classical Hill estimator to fit the Pareto distribution is still highly influenced
by the outliers, whereas the PDC estimator leads to very accurate results.

2.4. Performing simulations separately on different domains

Data sets from official statistics typically contain strong heterogeneities, therefore indicators
are usually computed for subsets of the data as well. Hence it is often of interest to investigate
the behavior of indicators on different subsets in simulation studies. In simFrame, this can

Andreas Alfons, Matthias Templ, Peter Filzmoser 7

be done by simply specifying the design argument of the function runSimulation(). In
the case of extending the example from the previous section, the framework then splits the
samples, inserts contamination into each subset and calls the supplied function for these
subsets automatically. With bespoke R code, the user would need to take care of this with a
loop-like structure such as a for loop or a function from the apply family.

In the following example, the simulations are performed separately for each gender. It should
be noted that the value of k for the Pareto distribution is thus changed to 125. This is the
same as Example 6.1 from Alfons et al. (2010d), except that a control object for sampling is
supplied to runSimulation() instead of setting up the samples beforehand and storing them
in an object.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ design = "gender", fun = sim, k = 125)

Below, the results are inspected using head() and aggregate(). The aggregate() method
thereby computes the summary statistic for each subset automatically. Also the plot()
method displays the results for the different subsets in different panels by taking advantage of
the lattice system (Sarkar 2008, 2010). In order to compute the true values for each subset,
the function simSapply() is used.

R> head(results)

Run Sample Epsilon gender standard Hill PDC
1 1 1 0.005 male 34.58446 29.96658 26.61415
2 1 1 0.005 female 38.82356 33.93700 28.82045
3 2 2 0.005 male 34.34853 29.09325 27.66380
4 2 2 0.005 female 36.38429 30.06097 27.42663
5 3 3 0.005 male 33.39992 30.54211 23.96698
6 3 3 0.005 female 35.12883 30.51336 26.06518

R> aggregate(results)

Epsilon gender standard Hill PDC
1 0.005 male 33.18580 29.00265 26.21119
2 0.005 female 35.61341 31.28984 27.69054

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

8 Applications of Statistical Simulation in the Case of EU-SILC

standard

Hill

PDC

25 30 35 40

●

●

●

●

●●●

●●●●●●

male

25 30 35 40

●

●

●

●

●

●

female

Figure 4: Simulation results for the simulation design with stratified sampling, contamination
and performing the simulations separately for each gender.

The resulting plots are shown in Figure 4, which is the same as Figure 2 in Alfons et al.
(2010d). Clearly, the PDC estimator leads to excellent results for both subsets, while the two
classical approaches are in both cases highly influenced by the outliers.

2.5. Using multiple contamination levels

To get a more complete picture of the behavior of robust methods, more than one level of
contamination is typically investigated in simulation studies. The only necessary modification
of the code is to use a vector of contamination levels as the slot epsilon of the contamination
control object. In this example, the contamination level is varied from 0% to 1% in steps
of 0.25%. With bespoke R code, the user would have to add another loop-like structure to
the code and collect the results in a suitable data structure. In simFrame, this is handled
internally by the framework.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.0025, 0.005, 0.0075, 0.01), dots = list(mean = 5e+05,

+ sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ design = "gender", fun = sim, k = 125)

The simulation results are inspected as usual. Note that the aggregate() method in this
case returns values for each combination of contamination level and gender.

Andreas Alfons, Matthias Templ, Peter Filzmoser 9

R> head(results)

Run Sample Epsilon gender standard Hill PDC
1 1 1 0.0000 male 26.58067 26.50425 26.35969
2 1 1 0.0000 female 27.43355 27.03526 28.16992
3 2 1 0.0025 male 31.63593 29.23365 27.12430
4 2 1 0.0025 female 31.43540 27.77698 26.85896
5 3 1 0.0050 male 33.35950 31.07040 25.97415
6 3 1 0.0050 female 35.68710 34.03560 29.11359

R> aggregate(results)

Epsilon gender standard Hill PDC
1 0.0000 male 25.94937 26.00769 25.85311
2 0.0025 male 30.44448 27.70155 26.01033
3 0.0050 male 33.54929 29.13202 26.16786
4 0.0075 male 36.76641 31.32342 26.49026
5 0.0100 male 39.42281 33.67944 26.53749
6 0.0000 female 27.30171 27.49442 27.41323
7 0.0025 female 31.68505 29.13643 27.61790
8 0.0050 female 35.49976 30.92128 27.91607
9 0.0075 female 38.51819 33.08778 28.09784
10 0.0100 female 41.47137 35.32935 27.97407

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

If multiple contamination levels are used in a simulation study, the plot() method for the
simulation results no longer produces box plots. Instead, the average results are plotted
against the corresponding contamination levels, as shown in Figure 5. The plots show how the
classical estimators move away from the references line as the contamination level increases,
while the values obtained with the PDC estimator remain quite accurate.

2.6. Inserting missing values

Survey data almost always contain a considerable amount of missing values. In close-to-reality
simulation studies, the variability due to missing data therefore needs to be considered. Three
types of missing data mechanisms are commonly distinguished in the literature (e.g., Little
and Rubin 2002): missing completely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). All three missing data mechanisms are implemented in the
framework.

In the following example, missing values are inserted into the equivalized household income of
non-contaminated households with MCAR, i.e., the households whose values are going to be
set to NA are selected using simple random sampling. In order to compare the scenario without
missing values to a scenario with missing values, the missing value rates 0% and 5% are used.
In the latter case, the missing values are simply disregarded for fitting the Pareto distribution

10 Applications of Statistical Simulation in the Case of EU-SILC

Epsilon

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male

0.000 0.002 0.004 0.006 0.008 0.010

female

standard
Hill
PDC

Figure 5: Simulation results for the simulation design with stratified sampling, multiple con-
tamination levels and performing the simulations separately for each gender.

and estimating the Gini coefficient. Furthermore, the number of samples is reduced to 50
and only the contamination levels 0%, 0.5% and 1% are investigated to keep the computation
time of this motivational example low.

With simFrame, only a control object for missing data needs to be defined and supplied to
runSimulation(), the rest is done automatically by the framework. To apply these changes
to a simulation study implemented with bespoke R code, yet another loop-like structure for
the different missing value rates as well as changes in the data structure for the simulation
results would be necessary.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 50)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.005, 0.01), dots = list(mean = 5e+05, sd = 10000))

R> nc <- NAControl(target = "eqIncome", NArate = c(0, 0.05))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ NAControl = nc, design = "gender", fun = sim, k = 125)

As always, the head(), aggregate() and plot() methods are used to take a look at the
simulation results. It should be noted that a column is added to the results that indicates
the missing value rate used and that aggregate() in this example returns a value for each
combination of contamination level, missing value rate and gender.

R> head(results)

Andreas Alfons, Matthias Templ, Peter Filzmoser 11

Run Sample Epsilon NArate gender standard Hill PDC
1 1 1 0.000 0.00 male 26.58067 27.00998 26.26273
2 1 1 0.000 0.00 female 27.43355 27.92305 26.69034
3 2 1 0.000 0.05 male 26.62313 26.54198 26.01043
4 2 1 0.000 0.05 female 27.51209 26.83574 27.25464
5 3 1 0.005 0.00 male 33.71363 28.44824 26.46635
6 3 1 0.005 0.00 female 35.47508 28.48208 27.70783

R> aggregate(results)

Epsilon NArate gender standard Hill PDC
1 0.000 0.00 male 25.89948 25.99777 25.74944
2 0.005 0.00 male 33.52791 29.30477 26.14659
3 0.010 0.00 male 39.45422 32.74672 26.64929
4 0.000 0.05 male 25.88434 25.87824 25.80541
5 0.005 0.05 male 33.87975 29.60079 26.18759
6 0.010 0.05 male 39.99526 33.44462 26.31274
7 0.000 0.00 female 27.17769 27.30586 27.19275
8 0.005 0.00 female 35.46414 31.37099 27.98622
9 0.010 0.00 female 41.28625 35.22113 28.19677
10 0.000 0.05 female 27.16026 27.37710 27.20892
11 0.005 0.05 female 35.85305 31.56317 27.80455
12 0.010 0.05 female 41.86453 35.44025 27.98948

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

If multiple contamination levels and multiple missing value rates are used in the simulation
study, conditional plots are produced by the plot() method for the simulation results. Fig-
ure 6 shows the resulting plots for this example. The bottom panels illustrate the scenario
without missing values, while the scenario with 5% missing values is displayed in the top
panels. In this case, there is not much of a difference in the results for the two scenarios.

2.7. Parallel computing

Statistical simulation is an embarrassingly parallel procedure, hence parallel computing can
drastically reduce the computational costs. In simFrame, parallel computing is implemented
using snow (Rossini, Tierney, and Li 2007; Tierney, Rossini, Li, and Sevcikova 2008). Only
minimal additional programming effort due to the use of snow is required to adapt the code
from the previous example: to initialize the computer cluster, to ensure that all packages and
objects are available on each worker process, to use the function clusterRunSimulation()
instead of runSimulation() and to stop the computer cluster after the simulations. In
addition, random number streams (e.g., L’Ecuyer, Simard, Chen, and Kelton 2002; Sevcikova
and Rossini 2009) should be used instead of the built-in random number generator.

R> cl <- makeCluster(4, type = "SOCK")

R> clusterEvalQ(cl, {

12 Applications of Statistical Simulation in the Case of EU-SILC

Epsilon

25

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male
NArate = 0

female
NArate = 0

male
NArate = 0.05

0.000 0.002 0.004 0.006 0.008 0.010

25

30

35

40

female
NArate = 0.05

standard
Hill
PDC

Figure 6: Simulation results for the simulation design with stratified sampling, multiple con-
tamination levels, multiple missing value rates and performing the simulations separately for
each gender.

+ library("simFrame")

+ library("laeken")

+ data("eusilcP")

+ })

R> clusterSetupRNG(cl, seed = 12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 50)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.005, 0.01), dots = list(mean = 5e+05, sd = 10000))

R> nc <- NAControl(target = "eqIncome", NArate = c(0, 0.05))

R> clusterExport(cl, c("sc", "cc", "nc", "sim"))

R> results <- clusterRunSimulation(cl, eusilcP, sc, contControl = cc,

+ NAControl = nc, design = "gender", fun = sim, k = 125)

R> stopCluster(cl)

When the parallel computations are finished and the simulation results are obtained, they
can be inspected as usual.

Andreas Alfons, Matthias Templ, Peter Filzmoser 13

R> head(results)

Run Sample Epsilon NArate gender standard Hill PDC
1 1 1 0.000 0.00 male 26.20067 27.02017 23.66565
2 1 1 0.000 0.00 female 28.79194 29.23548 27.12933
3 2 1 0.000 0.05 male 26.19328 24.91570 24.07906
4 2 1 0.000 0.05 female 28.86860 27.38585 27.80012
5 3 1 0.005 0.00 male 34.46084 31.74470 24.87023
6 3 1 0.005 0.00 female 36.27429 32.14269 28.06137

R> aggregate(results)

Epsilon NArate gender standard Hill PDC
1 0.000 0.00 male 25.89996 25.98977 25.86451
2 0.005 0.00 male 33.56743 29.36361 26.39515
3 0.010 0.00 male 39.40362 33.05926 26.68715
4 0.000 0.05 male 25.87909 25.86055 26.00109
5 0.005 0.05 male 33.94829 29.65456 26.32813
6 0.010 0.05 male 39.95535 33.24853 26.78947
7 0.000 0.00 female 27.38636 27.52210 27.48816
8 0.005 0.00 female 35.52688 31.30099 28.03385
9 0.010 0.00 female 41.35311 35.81549 28.67901
10 0.000 0.05 female 27.38459 27.51825 27.54063
11 0.005 0.05 female 35.87991 31.74678 28.18308
12 0.010 0.05 female 41.89804 36.21921 28.41367

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

Figure 7 shows the simulation results obtained with parallel computing. The plots are, of
course, very similar to the plots for the previous example in Figure 6, since the design of the
simulation studies is the same.

3. Conclusions

In this paper, the use of the R package simFrame for different simulation designs has been
demonstrated in a practical application. The full functionality of the framework for design-
based simulation has been presented in various code examples. These examples showed that
the framework allows researchers to make use of a wide range of simulation designs with only
a few lines of code. In order to switch from one simulation design to another, only control
objects need to be defined or modified. Even moving from basic to highly complex designs
therefore requires only minimal changes to the code. With bespoke R code, such modifications
would often need a considerable amount of programming. Furthermore, parallel computing
with simFrame can easily be done based on package snow.

Besides the functionality for carrying out simulation studies, methods for several frequently
used generic functions are available for inspecting or summarizing the simulation results. Most

14 Applications of Statistical Simulation in the Case of EU-SILC

Epsilon

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male
NArate = 0

female
NArate = 0

male
NArate = 0.05

0.000 0.002 0.004 0.006 0.008 0.010

30

35

40

female
NArate = 0.05

standard
Hill
PDC

Figure 7: Simulation results obtained by parallel computing for the simulation design with
stratified sampling, multiple contamination levels, multiple missing value rates and performing
the simulations separately for each gender.

notably, a suitable plot method of the simulation results is selected automatically depending
on their structure.
Due to this flexibility, simFrame is widely applicable for gaining insight into the quality of
statistical methods and is a valuable addition to a researcher’s toolbox.

Acknowledgments

This work was partly funded by the European Union (represented by the European Commis-
sion) within the 7th framework programme for research (Theme 8, Socio-Economic Sciences
and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators),
Grant Agreement No. 217322). Visit http://ameli.surveystatistics.net for more infor-
mation on the project.

References

Alfons A (2011). simFrame: Simulation Framework. R package version 0.4.4, URL http:

http://ameli.surveystatistics.net
http://CRAN.R-project.org/package=simFrame

Andreas Alfons, Matthias Templ, Peter Filzmoser 15

//CRAN.R-project.org/package=simFrame.

Alfons A, Holzer J, Templ M (2010a). laeken: Laeken Indicators for Measuring Social
Cohesion. R package version 0.1.3, URL http://CRAN.R-project.org/package=laeken.

Alfons A, Kraft S (2010). simPopulation: Simulation of Synthetic Populations for Sur-
veys based on Sample Data. R package version 0.2, URL http://CRAN.R-project.org/
package=simPopulation.

Alfons A, Kraft S, Templ M, Filzmoser P (2010b). “Simulation of Synthetic Population
Data for Household Surveys with Application to EU-SILC.” Research Report CS-2010-1,
Department of Statistics and Probability Theory, Vienna University of Technology. URL
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf.

Alfons A, Templ M, Filzmoser P (2010c). “Contamination Models in the R Package simFrame
for Statistical Simulation.” In S Aivazian, P Filzmoser, Y Kharin (eds.), “Computer Data
Analysis and Modeling: Complex Stochastic Data and Systems,” volume 2, pp. 178–181.
Minsk. ISBN 978-985-476-848-9.

Alfons A, Templ M, Filzmoser P (2010d). “An Object-Oriented Framework for Statistical
Simulation: The R Package simFrame.” Journal of Statistical Software, 37(3), 1–36. URL
http://www.jstatsoft.org/v37/i03/.

Alfons A, Templ M, Filzmoser P, Holzer J (2010e). “A Comparison of Robust Methods
for Pareto Tail Modeling in the Case of Laeken Indicators.” In C Borgelt, G González-
Rodŕıguez, W Trutschnig, M Lubiano, M Gil, P Grzegorzewski, O Hryniewicz (eds.), “Com-
bining Soft Computing and Statistical Methods in Data Analysis,” volume 77 of Advances
in Intelligent and Soft Computing, pp. 17–24. Springer-Verlag, Heidelberg. ISBN 978-3-
642-14745-6.

Béguin C, Hulliger B (2008). “The BACON-EEM Algorithm for Multivariate Outlier Detec-
tion in Incomplete Survey Data.” Survey Methodology, 34(1), 91–103.

EU-SILC (2004). “Common Cross-Sectional EU Indicators based on EU-SILC; the Gender Pay
Gap.” EU-SILC 131-rev/04, Working group on Statistics on Income and Living Conditions
(EU-SILC), Eurostat, Luxembourg.

Hill B (1975). “A Simple General Approach to Inference about the Tail of a Distribution.”
The Annals of Statistics, 3(5), 1163–1174.

Hulliger B, Schoch T (2009). “Robust Multivariate Imputation with Survey Data.” 57th
Session of the International Statistical Institute, Durban.

Kleiber C, Kotz S (2003). Statistical Size Distributions in Economics and Actuarial Sciences.
John Wiley & Sons, Hoboken. ISBN 0-471-15064-9.

L’Ecuyer P, Simard R, Chen E, Kelton W (2002). “An Object-Oriented Random-Number
Package with Many Long Streams and Substreams.” Operations Research, 50(6), 1073–
1075.

Little R, Rubin D (2002). Statistical Analysis with Missing Data. John Wiley & Sons, New
York, 2nd edition. ISBN 0-471-18386-5.

http://CRAN.R-project.org/package=simFrame
http://CRAN.R-project.org/package=simFrame
http://CRAN.R-project.org/package=laeken
http://CRAN.R-project.org/package=simPopulation
http://CRAN.R-project.org/package=simPopulation
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://www.jstatsoft.org/v37/i03/

16 Applications of Statistical Simulation in the Case of EU-SILC

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Rossini A, Tierney L, Li N (2007). “Simple Parallel Statistical Computing in R.” Journal of
Computational and Graphical Statistics, 16(2), 399–420.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
ISBN 978-0-387-75968-5.

Sarkar D (2010). lattice: Lattice Graphics. R package version 0.19-13, URL http://CRAN.
R-project.org/package=lattice.

Sevcikova H, Rossini T (2009). rlecuyer: R Interface to RNG with Multiple Streams. R
package version 0.3-1, URL http://CRAN.R-project.org/package=rlecuyer.

Tierney L, Rossini A, Li N, Sevcikova H (2008). snow: Simple Network of Workstations. R
package version 0.3-3, URL http://CRAN.R-project.org/package=snow.

Vandewalle B, Beirlant J, Christmann A, Hubert M (2007). “A Robust Estimator for the Tail
Index of Pareto-Type Distributions.” Computational Statistics & Data Analysis, 51(12),
6252–6268.

Affiliation:

Andreas Alfons
Faculty of Business and Economics
K.U.Leuven
Naamsestraat 69
3000 Leuven, Belgium
E-mail: andreas.alfons@econ.kuleuven.be
URL: http://www.econ.kuleuven.be/andreas.alfons/public/

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=rlecuyer
http://CRAN.R-project.org/package=snow
mailto:andreas.alfons@econ.kuleuven.be
http://www.econ.kuleuven.be/andreas.alfons/public/

	Introduction
	Application of different simulation designs to EU-SILC
	Basic simulation design
	Using stratified sampling
	Adding contamination
	Performing simulations separately on different domains
	Using multiple contamination levels
	Inserting missing values
	Parallel computing

	Conclusions

