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Abstract

This vignette demonstrates the use of simPopulation for simulating population data
in an application to the EU-SILC example data from the package. It presents a wrapper
function tailored specifically towards EU-SILC data for convenience and ease of use, as
well as detailed instructions for performing each of the four involved data generation steps
separately. In addition, the generation of diagnostic plots for the simulated population
data is illustrated.
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1. Introduction

This package vignette is a companion to Alfons, Kraft, Templ, and Filzmoser (2011) that
shows how the proposed framework for the simulation of population data can be applied in R
(R Development Core Team 2010) using the package simPopulation (Alfons and Kraft 2011).
The data simulation framework consists of four steps:

1. Setup of the household structure

2. Simulation of categorical variables

3. Simulation of (semi-)continuous variables

4. Splitting (semi-)continuous variables into components

Note that this vignette does not motivate, describe or evaluate the statistical methodology of
the framework. Instead it is focused on the R code to generate synthetic population data and
produce diagnostic plots. For details on the statistical methodology, the reader is referred to
Alfons et al. (2011).

The European Union Statistics on Income and Living Conditions (EU-SILC) is panel survey
conducted in European countries and serves as data basis for the estimation social inclusion
indicators in Europe. EU-SILC data are highly complex and contain detailed information on
the income of the sampled individuals and households. More information on EU-SILC can be
found in Eurostat (2004).
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In Alfons et al. (2011), three methods for the simulation of the net income of the individuals
in the population are proposed and analyzed:

MP Multinomial logistic regression models with random draws from the resulting categories.
For the categories corresponding to the upper tail, the values are drawn from a (trun-
cated) generalized Pareto distribution, for the other categories from a uniform distribu-
tion.

TR Two-step regression models with trimming and random draws from the residuals.

TN Two-step regression models with trimming and random draws from a normal distribu-
tion.

The first two steps of the analysis, namely the simulation of the household structure and
additional categorical variables, are performed in exactly the same manner for the three
scenarios. While the simulation of the income components is carried out with the same
parameter settings, the results of course depend on the simulated net income.

It is important to note that the original Austrian EU-SILC sample provided by Statistics
Austria and used in Alfons et al. (2011) is confidential, hence the results presented there
cannot be reproduced in this vignette. Nevertheless, the code for such an analysis is presented
here using the example data from the package, which has been synthetically generated itself.
In fact, this example data set is a sample drawn from one of the populations generated in
Alfons et al. (2011). However, the sample weights have been modified such that the size
of the resulting populations is about 1% of the real Austrian population in order to keep
the computation time low. Table 1 lists the variables of the example data used in the code
examples.

With the following commands, the package and the example data are loaded. Furthermore,
the numeric value stored in seed will be used as seed for the random number generator in
the examples to make the results reproducible.

R> library("simPopulation")

R> data("eusilcS")

R> seed <- 1234

The rest of this vignette is organized as follows. Section 2 illustrates the use of a convenient
wrapper function for the generation of EU-SILC population data. In Section 3, detailed
instructions are given for each step in the data generation process as well as for the generation
of diagnostic plots. The final Section 4 concludes.

2. Wrapper function for EU-SILC

A convenient way of generating synthetic EU-SILC population data is provided by the wrapper
function simEUSILC(), which performs the four steps of the data simulation procedure at
once. For each step, the names of the variables to be simulated can be supplied. However, the
default values for the respective arguments are given by the variables names used in Alfons
et al. (2011). Since the same names are used in the example data, the complex procedures
for the three different methods can be carried out with very simple commands.
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Table 1: Variables of the EU-SILC example data in simPopulation.

Variable Name Type

Region db040 Categorical 9 levels
Household size hsize Categorical 9 levels
Age age Categorical
Gender rb090 Categorical 2 levels
Economic status pl030 Categorical 7 levels
Citizenship pb220a Categorical 3 levels
Personal net income netIncome Semi-continuous
Employee cash or near cash income py010n Semi-continuous
Cash benefits or losses from self-employment py050n Semi-continuous
Unemployment benefits py090n Semi-continuous
Old-age benefits py100n Semi-continuous
Survivor’s benefits py110n Semi-continuous
Sickness benefits py120n Semi-continuous
Disability benefits py130n Semi-continuous
Education-related allowances py140n Semi-continuous
Household sample weights db090 Continuous
Personal sample weights rb050 Continuous

R> eusilcMP <- simEUSILC(eusilcS, upper = 2e+05, equidist = FALSE,

+ seed = seed)

R> eusilcTR <- simEUSILC(eusilcS, method = "twostep", seed = seed)

R> eusilcTN <- simEUSILC(eusilcS, method = "twostep", residuals = FALSE,

+ seed = seed)

Note that the default is to use the MP procedure. An upper bound for the net income is
supplied using the argument upper, while the argument equidist is set to FALSE so that the
breakpoints for the discretization of the net income are given by quantiles with non-equidistant
probabilities as described in Alfons et al. (2011). The twostep regression approaches are
performed by setting method = "twostep", in which case the logical argument residuals
specifies whether variability should be added by random draws from the residuals (TR method,
the default) or from a normal distribution (TN method). In both cases, the default trimming
parameter alpha = 0.01 is used.

The synthetic populations generated with the wrapper function are not further evaluated
here, instead a detailed illustration of each step along with diagnostic plots is provided in the
following section.

3. Step by step instructions and diagnostics

As for the wrapper function simEUSILC(), the variable names of the example data set are
used as default values for the corresponding arguments of the functions for the different steps
of the procedure. Nevertheless, in order to demonstrate how these arguments are used, the
names of the involved variables are always supplied in the commands shown in this section.
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The first step of the analysis is to set up the basic household structure using the function
simStructure(). Note that a variable named "hsize" giving the household sizes is generated
automatically in this example, but the name of the corresponding variable in the sample data
can also be specified as an argument. Furthermore, the argument additional specifies the
variables that define the household structure in addition to the household size (in this case
age and gender).

R> eusilcP <- simStructure(eusilcS, hid = "db030", w = "db090",

+ strata = "db040", additional = c("age", "rb090"))

For the rest of the procedure, combined age categories are used for the individuals in order
to reduce the computation time of the statistical models.

R> breaks <- c(min(eusilcS$age), seq(15, 80, 5), max(eusilcS$age))

R> eusilcS$ageCat <- as.character(cut(eusilcS$age, breaks = breaks,

+ include.lowest = TRUE))

R> eusilcP$ageCat <- as.character(cut(eusilcP$age, breaks = breaks,

+ include.lowest = TRUE))

Additional categorical variables are then simulated using the function simCategorical().
The argument basic thereby specifies the already generated variables for the basic household
structure (age category, gender and household size), while additional specifies the variables
to be simulated in this step (economic status and citizenship).

R> basic <- c("ageCat", "rb090", "hsize")

R> eusilcP <- simCategorical(eusilcS, eusilcP, w = "rb050", strata = "db040",

+ basic = basic, additional = c("pl030", "pb220a"))

Mosaic plots are available as graphical diagnostic tools for checking whether the structures
of categorical variables are reflected in the synthetic population. They are implemented in
the function spMosaic() based on the package vcd (Meyer, Zeileis, and Hornik 2006, 2010),
which contains extensive functionality for customization.

With the following commands, mosaic plots for the variables gender, region and household
size are created (see Figure 1, top). The function labeling_border() from package vcd is
thereby used to set shorter labels for the different regions and to display more meaningful
labels for the variables.

R> abb <- c("B", "LA", "Vi", "C", "St", "UA", "Sa", "T", "Vo")

R> nam <- c(rb090 = "Gender", db040 = "Region", hsize = "Household size")

R> lab <- labeling_border(set_labels = list(db040 = abb),

+ set_varnames = nam)

R> spMosaic(c("rb090", "db040", "hsize"), "rb050", eusilcS,

+ eusilcP, labeling = lab)

In addition, mosaic plots for the variables gender, economic status and citizenship are pro-
duced (see Figure 1, bottom). Also in this case, labeling_border() is used for some fine
tuning. In particular, the categories of citizenship are abbreviated and again more meaningful
labels for the variables are set.
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Figure 1: Top: Mosaic plots of gender, region and household size. Bottom: Mosaic plots of
gender, economic status and citizenship.

R> nam <- c(rb090 = "Gender", pl030 = "Economic status",

+ pb220a = "Citizenship")

R> lab <- labeling_border(abbreviate = c(FALSE, FALSE, TRUE),

+ set_varnames = nam)

R> spMosaic(c("rb090", "pl030", "pb220a"), "rb050", eusilcS,

+ eusilcP, labeling = lab)

Next, the function simContinuous() is used to simulate the net income according to the three
proposed methods. The same parameter settings as in Section 2 are thereby used for each of
the methods. In any case, the argument basic specifies the predictor variables (age category,
gender, household size, economic status and citizenship), while the argument additional
specifies the variable to be simulated.

Note that the current state of the random number generator is stored beforehand so that the
different methods can all be started with the same seed. Furthermore, the random seed after
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each of the methods has finished is stored so that the simulation of the income components
can later on continue from there.

R> seedP <- .Random.seed

R> basic <- c(basic, "pl030", "pb220a")

R> eusilcMP <- simContinuous(eusilcS, eusilcP, w = "rb050",

+ strata = "db040", basic = basic, additional = "netIncome",

+ upper = 2e+05, equidist = FALSE, seed = seedP)

R> seedMP <- .Random.seed

R> eusilcTR <- simContinuous(eusilcS, eusilcP, w = "rb050",

+ strata = "db040", basic = basic, additional = "netIncome",

+ method = "lm", seed = seedP)

R> seedTR <- .Random.seed

R> eusilcTN <- simContinuous(eusilcS, eusilcP, w = "rb050",

+ strata = "db040", basic = basic, additional = "netIncome",

+ method = "lm", residuals = FALSE, seed = seedP)

R> seedTN <- .Random.seed

Two functions are available as diagnostic tools for (semi-)continuous variables: spCdfplot()
for comparing the cumlative distribution functions, and spBwplot() for comparisons with
box-and-whisker plots. Both are implemented based on the package lattice (Sarkar 2008,
2010).

The following commands are used to produce the two plots in Figure 2. For better visibility
of the differences in the main parts of the cumulative distribution functions, only the parts
between 0 and the weighted 99% quantile of the sample are plotted (see Figure 2, left).
Furthermore, the box-and-whisker plots by default do not display any points outside the
extremes of the whiskers (see Figure 2, right). This is because population data are typically
very large, which almost always would result in a large number of observations ouside the
whiskers. Also note that a list containing the three populations is supplied as the argument
dataP of the plot functions.

R> subset <- which(eusilcS[, "netIncome"] > 0)

R> q <- quantileWt(eusilcS[subset, "netIncome"], eusilcS[subset,

+ "rb050"], probs = 0.99)

R> listP <- list(MP = eusilcMP, TR = eusilcTR, TN = eusilcTN)

R> spCdfplot("netIncome", "rb050", dataS = eusilcS, dataP = listP,

+ xlim = c(0, q))

R> spBwplot("netIncome", "rb050", dataS = eusilcS, dataP = listP,

+ pch = "|")

One of the main requirements in the simulation of population data is that heterogeneities
between subgroups are reflected (see Alfons et al. 2011). Since spCdfplot() and spBwplot()
are based on lattice, this can easily be checked by producing conditional plots. With the
following commands, the box-and-whisker plots in Figure 3 are produced. The conditioning
variables gender (top left), citizenship (top right), region (bottom left) and economic status
(bottom right) are thereby used. For finetuning, the layout of the panels is specified with the
layout argument provided by the lattice framework.
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Figure 2: Left : Cumulative distribution functions of personal net income. For better visibility,
the plot shows only the main parts of the data. Right: Box plots of personal net income.
Points outside the extremes of the whiskers are not plotted.

R> spBwplot("netIncome", "rb050", "rb090", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 2))

R> spBwplot("netIncome", "rb050", "pb220a", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 3))

R> spBwplot("netIncome", "rb050", "db040", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 9))

R> spBwplot("netIncome", "rb050", "pl030", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 7))

The last step of the analysis is to simulate the income components. This is done based on re-
sampling of fractions conditional on net income category and economic status. Therefore, the
net income categories need to be constructed first. With the function getBreaks(), default
breakpoints based on quantiles are computed. In this example, the argument upper is set to
Inf to avoid problems with different maximum values in the three synthetic populations, and
the argument equidist is set to FALSE such that non-equidistant probabilities as described
in Alfons et al. (2011) are used for the calculation of the quantiles.

R> breaks <- getBreaks(eusilcS$netIncome, eusilcS$rb050,

+ upper = Inf, equidist = FALSE)

R> eusilcS$netIncomeCat <- getCat(eusilcS$netIncome, breaks)

R> eusilcMP$netIncomeCat <- getCat(eusilcMP$netIncome, breaks)

R> eusilcTR$netIncomeCat <- getCat(eusilcTR$netIncome, breaks)

R> eusilcTN$netIncomeCat <- getCat(eusilcTN$netIncome, breaks)

Once the net income categories are constructed, the income components are simulated using
the function simComponents(). The arguments total, components and conditional thereby
specify the variable to be split, the variables containing the components, and the conditioning
variables, respectively. In addition, for each of the three populations the seed of the random
number generator is set to the corresponding state after the simulation of the net income.
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Figure 3: Box plots of personal net income split by gender (top left), citizenship (top right),
region (bottom left) and economic status (bottom right). Points outside the extremes of the
whiskers are not plotted.
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Figure 4: Box plots of the income components. Points outside the extremes of the whiskers
are not plotted.

R> components <- c("py010n", "py050n", "py090n", "py100n",

+ "py110n", "py120n", "py130n", "py140n")

R> eusilcMP <- simComponents(eusilcS, eusilcMP, w = "rb050",

+ total = "netIncome", components = components,

+ conditional = c("netIncomeCat", "pl030"), seed = seedMP)

R> eusilcTR <- simComponents(eusilcS, eusilcTR, w = "rb050",

+ total = "netIncome", components = components,

+ conditional = c("netIncomeCat", "pl030"), seed = seedTR)

R> eusilcTN <- simComponents(eusilcS, eusilcTN, w = "rb050",

+ total = "netIncome", components = components,

+ conditional = c("netIncomeCat", "pl030"), seed = seedTN)

Finally, diagnostic box-and-whisker plots of the income components are produced with the
function spBwplot(). Since the box widths correspond to the ratio of non-zero observations
to the total number of observed values and most of the components contain large proportions
of zeros, a minimum box width is specified using the argument minRatio. Figure 4 contains
the resulting plots.

R> listP <- list(MP = eusilcMP, TR = eusilcTR, TN = eusilcTN)

R> spBwplot(components, "rb050", dataS = eusilcS, dataP = listP,

+ pch = "|", minRatio = 0.2, layout = c(2, 4))
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4. Conclusions

In this vignette, the use of simPopulation for simulating population data has been demon-
strated in an application to the EU-SILC example data from the package. Both the simulation
of synthetic population data and the generation of diagnostic plots have been illustrated in a
similar analysis as in Alfons et al. (2011).

The code examples show that the functions are easy to use and that the arguments have
sensible default values. Nevertheless, the behavior of the functions is highly customizable. In
particular the functions for the diagnostic plots benefit from the implementations based on
the packages vcd and lattice.
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