
Visualization of large multivariate datasets with the

tabplot package

Martijn Tennekes and Edwin de Jonge

October 21, 2011
(A later version may be available on CRAN)

Abstract

The tableplot is a powerful visualization method to explore and
analyse large multivariate datasets. In this vignette, the implementa-
tion of tableplots in R is described.

1 Introduction

The tableplot is a visualization method that is used to explore and analyse
large datasets. Tableplots are used to explore the relationships between the
variables, to discover strange data patterns, and to check the occurrence and
selectivity of missing values.

A tableplot applied to the diamonds dataset of the ggplot2 package
(where some missing values were added) is illustrated in Figure 1. Each
column represents a variable. The whole data set is sorted according to one
column (in this case, carat), and then grouped into row bins. Algorithm 1
in Appendix A describes the creation of a tableplot into detail.

Tableplots are aimed to visualize multivariate datasets with several vari-
abels (up tot a dozen) and a large number of records, say at least one
thousand. Tableplots can also be generated for datasets with less records,
but they may be less useful. The maximum size of datasets that can be
visualized with the tabplot package depends on the R’s memory, or, when
using the ff package, on the limitations of that package.

A graphical user interface for generating tableplots is implemented in
the package tabplotGTK.

2 Getting started with the tableplot function

The diamonds dataset is very suitable to demonstrate the tabplot package.
To illustrate the visualization of missing values, we add several NA’s.

1

http://cran.r-project.org/package=tabplot

> require(ggplot2)

> data(diamonds)

> is.na(diamonds$price) <- diamonds$cut == "Ideal"

> is.na(diamonds$cut) <- (runif(nrow(diamonds)) > 0.8)

A tableplot is simply created by the function tableplot:

> tableplot(diamonds)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

depth table price x y z

Figure 1: Tableplot of the diamonds dataset

The result is depicted in Figure 1. By default, all variables of the dataset
are depicted. With the argument colNames, we can specify which variables
are plotted. The dataset is by default sorted according to the values of
the first variable. With the argument sortCol, we can specify on which
variable(s) the data is sorted.

> tableplot(diamonds, colNames = c("carat", "price", "cut", "color",

+ "clarity"), sortCol = "price")

The result is illustrated in Figure 2.
Setting an appropriate number of row bins (by the argument nbins) is

important, like in a histogram. A good number of row bins is a trade of
between good polished but meaningless data, and detailed, but noisy data.

2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat price cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

Figure 2: Tableplot of the diamonds dataset: sorted by price

In practice, we found that the default number of 100 usually is a good
starting point.

The percentages near the vertical axis indicate which subset of the data
in terms of units (rows) is depicted. The range from 0% to 100% in Figure 2
means that all units of the data are plotted.

We can focus our attention to the 5% most expensive diamonds by setting
the from argument to 0 and the to argument to 5:

> tableplot(diamonds, colNames = c("carat", "price", "cut", "color",

+ "clarity"), sortCol = "price", from = 0, to = 5)

Observe that in the obtained tableplot in Figure 3, the number of row
bins is still 100, so that the number of units per row bin is now 27 instead
of 540. Therefore, much more detail can be observed in this tableplot.

The vertical axis contains two sets of tick marks. The small tick marks
correspond with the row bins and the large tick marks correspond with the
percentages between from and to. The latter are determined by R’s base
function pretty.

3

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

row bins:
 100

objects:
 2697

carat price cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

Figure 3: Tableplot of the diamonds dataset: zooming in

3 Customizing the tableplot

3.1 Continuous variables

For each bin of a continuous variable, the mean value is calculated (see
Algorithm 1). When the distribution of these mean values is exponential, it
is useful to apply a logarithmic transformation. The argument scales can
be set to linear mode "lin", logarithmic mode "log", or the default value
"auto", which automatically determines which of the former two modes is
used.

Observe that the x-axes of the variables depth and table in Figure 1 are
broken. The x-axis of a variable i is broken if either

0 < max(mi1,mi2, . . . ,min) and

bias_brokenX ·max(mi1,mi2, . . . ,min) < min(mi1,mi2, . . . ,min)

or

0 > min(mi1,mi2, . . . ,min) and

bias_brokenX ·min(mi1,mi2, . . . ,min) > max(mi1,mi2, . . . ,min),

where bias_brokenX is a bias parameter that should be a number between
0 and 1. If bias_brokenX=1 then the above conditions are always false,

4

which implies that the x-axes are never broken. On the other hand, if
bias_brokenX=0 then the x-axes are always broken. By default, bias_brokenX
=0.8, which mean that an x-axis is broken if (in case of a variable with pos-
itive values) the minimum value is at least 0.8 times the maximum value.
In the diamonds dataset, this applies to the variables depth and table.

3.2 Categorical variables

The color palettes of categorical variables can be customized with the ar-
gument pals. Several qualitative palettes are implemented. They can be
shown by

> tablePalettes()

1 2 3 4 5 6 7 8 9 10 11 12 13
qualitative

Set1
Set2
Set3
Set4
Set5
Set6

Paired
HCL1
HCL2
HCL3

sequential
Blues

Greens
Greys

Figure 4: Color palettes

The default palette is a combination of Set1 and Set2. It has the ad-
vantage that each category has a unique color for variables with up to 16
categories.

Suppose we want a to use the default palette for the variable cut, but
starting with the seventh color, pink. Further we want the fifth palette for
the variable color, but without the first color (black), and a custom palette,
say a rainbow palette, for the variable clarity:

> tableplot(diamonds, pals = list("Set1(7)", "Set5", rainbow(8)))

3.3 Filtering data

The argument filter serves as a filter condition for the data. The following
code generates a tableplot of premium cut diamonds that cost less than
5000$.

> tableplot(diamonds, filter = "price < 5000 & cut=='Premium'")

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 53940

carat cut

Fair
Good
Very Good
Premium
Ideal

missing

color

D
E
F
G
H
I
J

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

depth table price x y z

Figure 5: Tableplot of the diamonds dataset: other colour palettes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

row bins:
 100

objects:
 7272

carat cut

Fair

Good

Very Good

Premium

Ideal

color

D
E
F
G
H
I
J

clarity

I1
SI2
SI1
VS2
VS1
VVS2
VVS1
IF

depth table price x y z

Figure 6: Tableplot of the diamonds dataset: filtered

6

3.4 The tabplot object

The function tableplot returns a tabplot-object, that can be used to make
minor changes to the tableplot, for instance the order of columns or the color
palettes. Of course, these changes can also be made by generating a new
tableplot, such as in the examples above. However, if it takes considerable
time to generate a tableplot, then it is practical to make minor changes
immediately.

The output of the tableplot function can be assigned to a variable. The
graphical output can be omitted by setting the argument plot to FALSE.

> tab <- tableplot(diamonds, plot = FALSE)

The tabplot-object is a list that contains all information to depict a
tableplot. The generic functions summary and plot can be applied to the
tabplot object.

> summary(tab)

general variable1 variable2

dataset :diamonds name :carat name :cut

variables:10 type :numeric type :categorical

objects :53940 sort :decreasing sort :NA

bins :100 scale_init :auto categories:6

from :0% scale_final:lin

to :100%

variable3 variable4 variable5

name :color name :clarity name :depth

type :categorical type :categorical type :numeric

sort :NA sort :NA sort :NA

categories:7 categories:8 scale_init :auto

scale_final:lin

variable6 variable7 variable8

name :table name :price name :x

type :numeric type :numeric type :numeric

sort :NA sort :NA sort :NA

scale_init :auto scale_init :auto scale_init :auto

scale_final:lin scale_final:lin scale_final:lin

variable9 variable10

name :y name :z

type :numeric type :numeric

sort :NA sort :NA

scale_init :auto scale_init :auto

scale_final:lin scale_final:lin

> plot(tab)

7

The function tableChange is used to make minor changes to a tabplot-
object. Suppose we want the columns in the order of 2, and we want to
change all color palettes to default starting with the second color.

> tab2 <- tableChange(tab, colNames = c("carat", "price", "cut",

+ "color", "clarity"), pals = list("Set1(2)"))

> plot(tab2)

4 Resources

� Summary of the package: help(package=tabplot)

� The main help page: ?tabplot

� Project site: http://code.google.com/p/tableplot/

� Publications:

– Tennekes, M., Jonge, E. de, Daas, P.J.H. (2011) Visual profil-
ing of large statistical datasets. Proceedings of the 2011 New
Techniques and Technologies for Statistics conference, Brussels,
Belgium. (paper, presentation)

8

http://code.google.com/p/tableplot/
http://www.von-tijn.nl/tijn/research/publications/Tableplots.pdf
http://www.von-tijn.nl/tijn/research/presentations/NTTS_tableplots.pdf

A Tableplot creation algorithm

A tabplot is basically created by Algorithm 1.

Algorithm 1 Create tableplot

Input: Tabular dataset t, column is of which the distribu-
tion is of interesta, number of row bins n.

1: t′ ← sort t according to the values of column is.
2: Divide t′ into n equally sized row bins according to the

order of t′.
3: for each column i do
4: if i is numeric then
5: mib ← mean value per bin b
6: cib ← fraction of missing values per bin b
7: end if
8: if i is categorical then
9: fijb ← frequency of each category j (including missing values)

per bin b
10: end if
11: end for
12: for each column i do
13: if i is numeric then
14: Plot a bar chart of the mean values {mi1,mi2, . . . ,min}, option-

ally with a logarithmic scale. The fraction of missing values {ci1,
ci2, . . . , cin} determines the lightness of the bar colour. The light-
er the colour, the more missing values occur in bin b. If all values
are missing, a light red bar of full length is drawn.

15: end if
16: if i is categorical then
17: Plot a stacked bar chart according to the frequencies {fi1b, fi2b,

. . .} for each bin b. Each category is shown is a distinct colour.
If there are missing values, they are depicted by a red colour.

18: end if
19: end for
Output: Tableplot

aThe dataset t can also be sorted according to multiple columns.

9

	Introduction
	Getting started with the tableplot function
	Customizing the tableplot
	Continuous variables
	Categorical variables
	Filtering data
	The tabplot object

	Resources
	Tableplot creation algorithm

