Power Analysis and Sample Size Calculation


[Up] [Top]

Documentation for package ‘ESPRESSO’ version 1.1

Help Pages

empirical.power.calc Calculates empirical power
env.params Parameters to simulate environmental exposures data
ESPRESSO Package for power analysis and sample size calculation
gen.params Parameters to simulate genetic data
general.params Main parameters of the simulations
get.critical.results Summarizes the main results
get.observed.data Generates exposure data with with some error
init.data Simulated genotypes, phenotypes and enviromental exposure data
is.posdef Tells if a matrix is positive definite
make.cov.mat Generates the covariance matrix required to achieved the desired LD
make.obs.env Adds some error to environmental exposure data
make.obs.geno Adds some error to genotype data
make.posdef Turns a matrix into a positive definite one
misclassify Adds some misclassification error to binary data
model.power.calc Calculates theoretical power
obs.data Simulated genotypes, phenotypes and enviromental exposure data
regr.analysis carries out regression analysis
samplsize.calc Calculates the sample size required to achieved the desired power
sim.CC.data Simulates cases and controls
sim.env.data Simulates data for an environmental exposure
sim.env.sesp Simulates sensitivity and specificity for environmental exposure assessment
sim.geno.data Simulates genotypes for a genetic variant
sim.geno.sesp Simulates sensitivity and specificity for genotype assessment
sim.interact.data Generates data for the interaction term
sim.LDgeno.data Simulates genotypes for two genetic variants in LD
sim.LDsnps Simulates alleles for two biallelic SNPs in Linkage Disequilibrium
sim.pheno.bin Simulates binary outcome data
sim.pheno.qtl Simulates continuous outcome data
sim.QTL.data Simulates subjects for a continuous outcome
sim.sesp.params Table of paramaters to simulate sensitivity and specificity values
sim.subject.data Simulates the individual effect related to heterogeneity in disease risk
skew.rnorm Allows to generate right or left-skewed normal distribution