A C D F G H I K L M N O P Q R S T V misc
fda.usc-package | Functional Data Analysis and Utilities for Statistical Computing (fda.usc) |
Adot | PCvM statistic for the Functional Linear Model with scalar response |
aemet | aemet data |
AKer.cos | Asymmetric Smoothing Kernel |
AKer.epa | Asymmetric Smoothing Kernel |
AKer.norm | Asymmetric Smoothing Kernel |
AKer.quar | Asymmetric Smoothing Kernel |
AKer.tri | Asymmetric Smoothing Kernel |
AKer.unif | Asymmetric Smoothing Kernel |
anova.hetero | ANOVA for heteroscedastic data |
anova.RPm | Functional ANOVA with Random Project. |
anova.RPm.boot | Functional ANOVA with Random Project. |
argvals | fda.usc internal functions |
c.fdata | fda.usc internal functions |
classif.depth | Classifier from Functional Data |
classif.gkam | Classification Fitting Functional Generalized Kernel Additive Models |
classif.glm | Classification Fitting Functional Generalized Linear Models |
classif.gsam | Classification Fitting Functional Generalized Additive Models |
classif.kernel | Kernel Classifier from Functional Data |
classif.knn | Kernel Classifier from Functional Data |
classif.np | Kernel Classifier from Functional Data |
cond.F | Conditional Distribution Function |
cond.mode | Conditional mode |
cond.quantile | Conditional quantile |
create.fdata.basis | Create Basis Set for Functional Data of fdata class |
create.pc.basis | Create Basis Set for Functional Data of fdata class |
create.pls.basis | Create Basis Set for Functional Data of fdata class |
create.raw.fdata | Create Basis Set for Functional Data of fdata class |
CV.S | The cross-validation (CV) score |
Depth | Provides the depth measure for functional data |
depth.FM | Provides the depth measure for functional data |
depth.HD | Provides the depth measure for multivariate data |
depth.MhD | Provides the depth measure for multivariate data |
depth.mode | Provides the depth measure for functional data |
Depth.Multivariate | Provides the depth measure for multivariate data |
depth.PD | Provides the depth measure for multivariate data |
depth.RP | Provides the depth measure for functional data |
depth.RPD | Provides the depth measure for functional data |
depth.RT | Provides the depth measure for functional data |
depth.SD | Provides the depth measure for multivariate data |
Descriptive | Descriptive measures for functional and multivariate data. |
dev.S | The deviance score . |
dfv.statistic | Delsol, Ferraty and Vieu test for no functional-scalar interaction |
dfv.test | Delsol, Ferraty and Vieu test for no functional-scalar interaction |
dim.fdata | fda.usc internal functions |
dis.cos.cor | Proximities between functional data |
fda.usc | Functional Data Analysis and Utilities for Statistical Computing (fda.usc) |
fdata | Converts raw data or other functional data classes into fdata class. |
fdata.bootstrap | Bootstrap samples of a functional statistic |
fdata.cen | Functional data centred (subtract the mean of each discretization point) |
fdata.deriv | Computes the derivative of functional data object. |
fdata2fd | Converts fdata class object into fd class object |
fdata2pc | Principal components for functional data |
fdata2pls | Partial least squares components for functional data. |
fdata2ppc | Principal components for functional data |
fdata2ppls | Partial least squares components for functional data. |
FDR | False Discorvery Rate (FDR) |
flm.Ftest | F-test for the Functional Linear Model with scalar response |
flm.test | Goodness-of-fit test for the Functional Linear Model with scalar response |
fregre.basis | Functional Regression with scalar response using basis representation. |
fregre.basis.cv | Cross-validation Functional Regression with scalar response using basis representation. |
fregre.bootstrap | Bootstrap regression |
fregre.gkam | Fitting Functional Generalized Kernel Additive Models. |
fregre.glm | Fitting Functional Generalized Linear Models |
fregre.gsam | Fitting Functional Generalized Spectral Additive Models |
fregre.lm | Fitting Functional Linear Models |
fregre.np | Functional regression with scalar response using non-parametric kernel estimation |
fregre.np.cv | Cross-validation functional regression with scalar response using kernel estimation. |
fregre.pc | Functional (Ridge) Regression with scalar response using Principal Components Analysis. |
fregre.pc.cv | Vaidation criteria for Functional Principal Component (and Ridge) Regression using selection of number of Principal Components |
fregre.plm | Semi-functional partially linear model with scalar response. |
fregre.pls | Functional PLS regression with scalar response |
fregre.pls.cv | Functional PLS regression with scalar response using selection of number of PLS components |
fregre.ppc | Functional Penalized PC (or PLS) regression with scalar response |
fregre.ppc.cv | Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components |
fregre.ppls | Functional Penalized PC (or PLS) regression with scalar response |
fregre.ppls.cv | Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components |
Ftest.statistic | F-test for the Functional Linear Model with scalar response |
func.mean | Descriptive measures for functional and multivariate data. |
func.med.FM | Descriptive measures for functional and multivariate data. |
func.med.HD | Descriptive measures for functional and multivariate data. |
func.med.MhD | Descriptive measures for functional and multivariate data. |
func.med.mode | Descriptive measures for functional and multivariate data. |
func.med.PD | Descriptive measures for functional and multivariate data. |
func.med.RP | Descriptive measures for functional and multivariate data. |
func.med.RPD | Descriptive measures for functional and multivariate data. |
func.med.RT | Descriptive measures for functional and multivariate data. |
func.med.SD | Descriptive measures for functional and multivariate data. |
func.trim.FM | Descriptive measures for functional and multivariate data. |
func.trim.HD | Descriptive measures for functional and multivariate data. |
func.trim.MhD | Descriptive measures for functional and multivariate data. |
func.trim.mode | Descriptive measures for functional and multivariate data. |
func.trim.PD | Descriptive measures for functional and multivariate data. |
func.trim.RP | Descriptive measures for functional and multivariate data. |
func.trim.RPD | Descriptive measures for functional and multivariate data. |
func.trim.RT | Descriptive measures for functional and multivariate data. |
func.trim.SD | Descriptive measures for functional and multivariate data. |
func.trimvar.FM | Descriptive measures for functional and multivariate data. |
func.trimvar.mode | Descriptive measures for functional and multivariate data. |
func.trimvar.RP | Descriptive measures for functional and multivariate data. |
func.trimvar.RPD | Descriptive measures for functional and multivariate data. |
func.trimvar.RT | Descriptive measures for functional and multivariate data. |
func.var | Descriptive measures for functional and multivariate data. |
GCV.S | The generalized cross-validation (GCV) score. |
h.default | Calculation of the smoothing parameter (h) for a functional data |
IKer.cos | Integrate Smoothing Kernels. |
IKer.epa | Integrate Smoothing Kernels. |
IKer.norm | Integrate Smoothing Kernels. |
IKer.quar | Integrate Smoothing Kernels. |
IKer.tri | Integrate Smoothing Kernels. |
IKer.unif | Integrate Smoothing Kernels. |
influence.fdata | Functional influence measures |
influence.quan | Quantile for influence measures |
inprod.fdata | Inner products of Functional Data Objects o class (fdata) |
int.simpson | Simpson integration |
is.fdata | fda.usc internal functions |
Ker.cos | Symmetric Smoothing Kernels. |
Ker.epa | Symmetric Smoothing Kernels. |
Ker.norm | Symmetric Smoothing Kernels. |
Ker.quar | Symmetric Smoothing Kernels. |
Ker.tri | Symmetric Smoothing Kernels. |
Ker.unif | Symmetric Smoothing Kernels. |
Kernel | Symmetric Smoothing Kernels. |
Kernel.asymmetric | Asymmetric Smoothing Kernel |
Kernel.integrate | Integrate Smoothing Kernels. |
kgam.H | Fitting Functional Generalized Kernel Additive Models. |
kmeans.assig.groups | K-Means Clustering for functional data |
kmeans.center.ini | K-Means Clustering for functional data |
kmeans.centers.update | K-Means Clustering for functional data |
kmeans.fd | K-Means Clustering for functional data |
lines.fdata | Plot functional data: fdata. |
Math.fdata | fdata S3 Group Generic Functions |
metric.dist | Distance Matrix Computation |
metric.lp | Aproximates Lp-metric distances for functional data. |
min.basis | Select the number of basis using GCV method. |
min.np | Smoothing of functional data using nonparametric kernel estimation |
missing.fdata | fda.usc internal functions |
ncol.fdata | fda.usc internal functions |
norm.fd | Aproximates Lp-norm for functional data. |
norm.fdata | Aproximates Lp-norm for functional data. |
nrow.fdata | fda.usc internal functions |
omit.fdata | fda.usc internal functions |
omit2.fdata | fda.usc internal functions |
Ops.fdata | fdata S3 Group Generic Functions |
order.fdata | A wrapper for the 'order' function |
outliers.depth.pond | Detecting outliers for functional dataset |
outliers.depth.trim | Detecting outliers for functional dataset |
Outliers.fdata | Detecting outliers for functional dataset |
outliers.lrt | Detecting outliers for functional dataset |
outliers.thres.lrt | Detecting outliers for functional dataset |
P.penalty | Penalty matrix for higher order differences |
PCvM.statistic | PCvM statistic for the Functional Linear Model with scalar response |
phoneme | phoneme data |
plot.fdata | Plot functional data: fdata. |
poblenou | poblenou data |
predict.classif | Predicts from a fitted classif object. |
predict.fregre.fd | Predict method for functional linear model (fregre.fd class) |
predict.fregre.gkam | Predict method for functional regression model |
predict.fregre.glm | Predict method for functional regression model |
predict.fregre.gsam | Predict method for functional regression model |
predict.fregre.lm | Predict method for functional regression model |
predict.fregre.plm | Predict method for functional regression model |
print.classif | Summarizes information from kernel classification methods. |
print.fregre.fd | Summarizes information from fregre.fd objects. |
print.fregre.gkam | Summarizes information from fregre.gkam objects. |
pvalue.FDR | False Discorvery Rate (FDR) |
quantile.outliers.pond | Detecting outliers for functional dataset |
quantile.outliers.trim | Detecting outliers for functional dataset |
rangeval | fda.usc internal functions |
rproc2fdata | Generate random process of fdata class. |
rwild | Wild bootstrap residuals |
S.basis | Smoothing matrix with roughness penalties by basis representation. |
S.KNN | Smoothing matrix by nonparametric methods. |
S.LLR | Smoothing matrix by nonparametric methods. |
S.np | Smoothing matrix by nonparametric methods. |
S.NW | Smoothing matrix by nonparametric methods. |
semimetric.basis | Proximities between functional data |
semimetric.deriv | Proximities between functional data (semi-metrics) |
semimetric.fourier | Proximities between functional data (semi-metrics) |
semimetric.hshift | Proximities between functional data (semi-metrics) |
semimetric.mplsr | Proximities between functional data (semi-metrics) |
semimetric.NPFDA | Proximities between functional data (semi-metrics) |
semimetric.pca | Proximities between functional data (semi-metrics) |
summary.anova | Functional ANOVA with Random Project. |
summary.classif | Summarizes information from kernel classification methods. |
Summary.fdata | fdata S3 Group Generic Functions |
summary.fdata.comp | Correlation for functional data by Principal Component Analysis |
summary.fregre.fd | Summarizes information from fregre.fd objects. |
summary.fregre.gkam | Summarizes information from fregre.gkam objects. |
tecator | tecator data |
title.fdata | Plot functional data: fdata. |
Var.e | Sampling Variance estimates |
Var.y | Sampling Variance estimates |
!=.fdata | fda.usc internal functions |
*.fdata | fda.usc internal functions |
+.fdata | fda.usc internal functions |
-.fdata | fda.usc internal functions |
/.fdata | fda.usc internal functions |
==.fdata | fda.usc internal functions |
[.fdata | fda.usc internal functions |
[.fdist | fda.usc internal functions |
^.fdata | fda.usc internal functions |