A B C D E F G I K L M N O P R S T V W
adjust | Change an element in 'SimMatrix', 'SymMatrix', or 'SimVector'. |
adjust-method | Change an element in 'SimMatrix', 'SymMatrix', or 'SimVector'. |
adjust-methods | Change an element in 'SimMatrix', 'SymMatrix', or 'SimVector'. |
anova-method | Provide a comparison of nested models and nonnested models across replications |
blankParameters | Change all elements in the non-null objects to be all NAs. |
centralMoment | Calculate central moments of a variable |
checkInputValue | Check the value argument in the matrix, symmetric matrix, or vector objects |
checkInputValueVector | Check the value argument in the matrix, symmetric matrix, or vector objects |
clean | Extract only converged replications in the result objects |
cleanSimResult | Extract only converged replications in the result object |
collapseExo | Collapse all exogenous variables and put all in endogenous side only. |
combineLatentCorExoEndo | Combine exogenous factor correlation and endogenous factor correlation into a single matrix |
combineLoadingExoEndo | Combine factor loading from the exogenous and endogenous sides into a single matrix |
combineMeasurementErrorExoEndo | Combine measurement error correlation from the exogenous and endogenous sides into a single matrix |
combineObject | Combine by summing or binding two objects together. |
combineObject-method | Combine by summing or binding two objects together. |
combineObject-methods | Combine by summing or binding two objects together. |
combinePathExoEndo | Combine the regression coefficient matrices |
constantVector | Create a constant vector object |
constrainMatrices | Impose an equality constraint in an object |
constrainMatrices-method | Impose an equality constraint in an object |
constrainMatrices-methods | Impose an equality constraint in an object |
continuousPower | Find power of model parameters when simulations have randomly varying parameters |
countFreeParameters | Count how many free parameters in the target object |
countFreeParameters-method | Count how many free parameters in the target object |
countFreeParameters-methods | Count how many free parameters in the target object |
countMACS | Count the number of elements in the sufficient statistics |
cov2corMod | Convert a covariance matrix to a correlation matrix |
createData | Create data from model parameters |
createFreeParameters | Create a free parameters object from a model specification |
createImpliedMACS | Create model implied mean vector and covariance matrix |
createImpliedMACS-method | Class '"SimDataOut"' |
createImpliedMACS-method | Class '"SimModelOut"' |
createImpliedMACS-method | Create model implied mean vector and covariance matrix |
createImpliedMACS-methods | Create model implied mean vector and covariance matrix |
defaultStartingValues | Make ad hoc starting values |
divideObject | Make a division on each element of the object |
divideObject-method | Make a division on each element of the object |
divideObject-methods | Make a division on each element of the object |
drawParameters | Create parameter sets (with or without model misspecification) from the data object |
drawParametersMisspec | Create parameter sets (with or without model misspecification) from the parameter with or without misspecification set |
expandMatrices | Expand the set of intercept and covariance matrices into the set of intercept/mean and covariance/correlation/variance objects |
extract | Extract a part of an object |
extract-method | Class '"SimDataDist"' |
extract-method | Matrix object: Random parameters matrix |
extract-method | Class '"SimSet"' |
extract-method | Vector object: Random parameters vector |
extract-method | Extract a part of an object |
extract-methods | Extract a part of an object |
extractLavaanFit | Extract fit indices from the lavaan object |
extractMatrixNames | Extract a vector of parameter names based on specified rows and columns |
extractOpenMxFit | Extract the fit indices reported by the 'OpenMx' result |
extractVectorNames | Extract a vector of parameter names based on specified elements |
fillParam | Fill in other objects based on the parameter values of current objects |
find2Dhist | Fit the 2D Kernel Density Estimate |
findFactorIntercept | Find factor intercept from regression coefficient matrix and factor total means |
findFactorMean | Find factor total means from regression coefficient matrix and factor intercept |
findFactorResidualVar | Find factor residual variances from regression coefficient matrix, factor (residual) correlations, and total factor variances |
findFactorTotalCov | Find factor total covariance from regression coefficient matrix, factor residual covariance |
findFactorTotalVar | Find factor total variances from regression coefficient matrix, factor (residual) correlations, and factor residual variances |
findIndIntercept | Find indicator intercepts from factor loading matrix, total factor mean, and indicator mean. |
findIndMean | Find indicator total means from factor loading matrix, total factor mean, and indicator intercept. |
findIndResidualVar | Find indicator residual variances from factor loading matrix, total factor covariance, and total indicator variances. |
findIndTotalVar | Find indicator total variances from factor loading matrix, total factor covariance, and indicator residual variances. |
findphist | Find the density (likelihood) of a pair value in 2D Kernel Density Estimate |
findPossibleFactorCor | Find the appropriate position for freely estimated correlation (or covariance) given a regression coefficient matrix |
findPower | Find a value of independent variables that provides a given value of power. |
findRecursiveSet | Group variables regarding the position in mediation chain |
findRowZero | Find rows in a matrix that all elements are zero in non-fixed subset rows and columns. |
findTargetPower | Find a value of varying parameters that provides a given value of power. |
fitMeasuresChi | Find fit indices from the discrepancy values of the target model and null models. |
freeVector | Create a free parameters vector with a starting values in a vector object |
getCondQtile | Get a quantile of a variable given values of predictors |
getCutoff | Find fit indices cutoff given a priori alpha level |
getCutoff-method | Find fit indices cutoff given a priori alpha level |
getCutoff-methods | Find fit indices cutoff given a priori alpha level |
getCutoffNested | Find fit indices cutoff for nested model comparison given a priori alpha level |
getCutoffNonNested | Find fit indices cutoff for non-nested model comparison given a priori alpha level |
getKeywords | List of all keywords used in the 'simsem' package |
getPopulation | Extract the data generation population model underlying an object |
getPopulation-method | Class '"SimDataOut"' |
getPopulation-method | Class '"SimModelOut"' |
getPopulation-method | Class '"SimResult"' |
getPopulation-method | Extract the data generation population model underlying an object |
getPopulation-methods | Extract the data generation population model underlying an object |
getPower | Find power of model parameters |
getPowerFit | Find power in rejecting alternative models based on fit indices criteria |
getPowerFit-method | Find power in rejecting alternative models based on fit indices criteria |
getPowerFit-methods | Find power in rejecting alternative models based on fit indices criteria |
getPowerFitNested | Find power in rejecting nested models based on the differences in fit indices |
getPowerFitNested-method | Find power in rejecting nested models based on the differences in fit indices |
getPowerFitNested-methods | Find power in rejecting nested models based on the differences in fit indices |
getPowerFitNonNested | Find power in rejecting non-nested models based on the differences in fit indices |
getPowerFitNonNested-method | Find power in rejecting non-nested models based on the differences in fit indices |
getPowerFitNonNested-methods | Find power in rejecting non-nested models based on the differences in fit indices |
imposeMissing | Impose MAR, MCAR, planned missingness, or attrition on a data set |
interpolate | Find the value of one vector relative to a value of another vector by interpolation |
isCorMatrix | Check whether a 'matrix' is a possible correlation matrix |
isDefault | Check whether a vector object is default |
isMeanConstraint | Check whether all rownames in a constraint matrix containing symbols of means vectors |
isNullObject | Check whether the object is the 'NULL' type of that class |
isNullObject-method | Check whether the object is the 'NULL' type of that class |
isNullObject-methods | Check whether the object is the 'NULL' type of that class |
isRandom | Check whether the object contains any random parameters |
isRandom-method | Check whether the object contains any random parameters |
isRandom-methods | Check whether the object contains any random parameters |
isVarianceConstraint | Check whether all rownames in a constraint matrix containing symbols of variance vectors |
kStat | Calculate the _k_-statistic of a variable |
kurtosis | Finding excessive kurtosis |
kurtosis-method | Distribution Objects |
kurtosis-method | Finding excessive kurtosis |
kurtosis-methods | Finding excessive kurtosis |
likRatioFit | Find the likelihood ratio (or Bayes factor) based on the bivariate distribution of fit indices |
loadingFromAlpha | Find standardized factor loading from coefficient alpha |
makeLabels | Make parameter names for each element in matrices or vectors or the name for the whole object |
makeLabels-method | Make parameter names for each element in matrices or vectors or the name for the whole object |
makeLabels-methods | Make parameter names for each element in matrices or vectors or the name for the whole object |
matchKeywords | Search for the keywords and check whether the specified text match one in the name vector |
MatrixSet-class | Class '"MatrixSet"' |
miPool | Function to pool imputed results |
miPoolChi | Function to pool chi-square statistics from the result from multiple imputation |
miPoolVector | Function to pool imputed results that saved in a matrix format |
MisspecSet-class | Class '"MatrixSet"' |
multipleAllEqual | Test whether all objects are equal |
NullDataFrame-class | Null Objects |
NullMatrix-class | Null Objects |
NullRSet-class | Null Objects |
NullSimDataDist-class | Null Objects |
NullSimEqualCon-class | Null Objects |
NullSimFunction-class | Null Objects |
NullSimMatrix-class | Null Objects |
NullSimMissing-class | Null Objects |
NullSimMisspec-class | Null Objects |
NullSimREqualCon-class | Null Objects |
NullSimSet-class | Null Objects |
NullSimVector-class | Null Objects |
NullSymMatrix-class | Null Objects |
NullVector-class | Null Objects |
overlapHist | Plot overlapping histograms |
plot3DQtile | Build a persepctive plot or contour plot of a quantile of predicted values |
plotCutoff | Plot sampling distributions of fit indices with fit indices cutoffs |
plotCutoff-method | Plot sampling distributions of fit indices with fit indices cutoffs |
plotCutoff-methods | Plot sampling distributions of fit indices with fit indices cutoffs |
plotCutoffNested | Plot sampling distributions of the differences in fit indices between nested models with fit indices cutoffs |
plotCutoffNonNested | Plot sampling distributions of the differences in fit indices between non-nested models with fit indices cutoffs |
plotDist | Plot a distribution of a distribution object or data distribution object |
plotDist-method | Class '"SimDataDist"' |
plotDist-method | Distribution Objects |
plotDist-methods | Plot a distribution of a distribution object or data distribution object |
plotIndividualScatter | Plot an overlaying scatter plot visualizing the power of rejecting misspecified models |
plotLogisticFit | Plot multiple logistic curves for predicting whether rejecting a misspecified model |
plotMisfit | Plot the population misfit in parameter result object |
plotOverHist | Plot multiple overlapping histograms |
plotPower | Make a power plot of a parameter given varying parameters |
plotPowerFit | Plot sampling distributions of fit indices that visualize power of rejecting datasets underlying misspecified models |
plotPowerFitDf | Plot sampling distributions of fit indices that visualize power of rejecting datasets underlying misspecified models |
plotPowerFitNested | Plot power of rejecting a nested model in a nested model comparison by each fit index |
plotPowerFitNonNested | Plot power of rejecting a non-nested model based on a difference in fit index |
plotPowerSig | Plot multiple logistic curves given a significance result matrix |
plotQtile | Build a scatterplot with overlaying line of quantiles of predicted values |
plotScatter | Plot overlaying scatter plots visualizing the power of rejecting misspecified models |
popDiscrepancy | Find the discrepancy value between two means and covariance matrices |
popMisfit | Calculate population misfit |
popMisfit-method | Calculate population misfit |
popMisfit-methods | Calculate population misfit |
popMisfitMACS | Find population misfit by sufficient statistics |
predProb | Function to get predicted probabilities from logistic regression |
printIfNotNull | Provide basic summary of each object if that object is not NULL. |
pValue | Find p-values (1 - percentile) |
pValue-method | Find p-values (1 - percentile) |
pValue-methods | Find p-values (1 - percentile) |
pValueCondCutoff | Find a p value when the target is conditional (valid) on a specific value of a predictor |
pValueNested | Find p-values (1 - percentile) for a nested model comparison |
pValueNonNested | Find p-values (1 - percentile) for a non-nested model comparison |
pValueVariedCutoff | Find a p value when the cutoff is specified as a vector given the values of predictors |
reassignNames | Reassign the name of equality constraint |
reduceConstraint | Reduce the model constraint to data generation parameterization to analysis model parameterization. |
reduceMatrices | Reduce the model constraint to data generation parameterization to analysis model parameterization. |
revText | Reverse the proportion value by subtracting it from 1 |
run | Run a particular object in 'simsem' package. |
run-method | Class '"SimData"' |
run-method | Class '"SimDataDist"' |
run-method | Class '"SimFunction"' |
run-method | Class '"SimGenLabels"' |
run-method | Matrix object: Random parameters matrix |
run-method | Class '"SimMissing"' |
run-method | Class '"SimMisspec"' |
run-method | Class '"SimModel"' |
run-method | Class '"SimSet"' |
run-method | Vector object: Random parameters vector |
run-method | Symmetric matrix object: Random parameters symmetric matrix |
run-method | Distribution Objects |
run-method | Run a particular object in 'simsem' package. |
run-methods | Run a particular object in 'simsem' package. |
runFit | Build a Monte Carlo simulation that the data-generation parameters are from the result of analyzing real data |
runFit-method | Build a Monte Carlo simulation that the data-generation parameters are from the result of analyzing real data |
runFit-methods | Build a Monte Carlo simulation that the data-generation parameters are from the result of analyzing real data |
runFitParam | Build a parameter result object that the data-generation parameters are from the result of analyzing real data |
runFitParam-method | Build a parameter result object that the data-generation parameters are from the result of analyzing real data |
runFitParam-methods | Build a parameter result object that the data-generation parameters are from the result of analyzing real data |
runLavaan | Run data by the model object by the 'lavaan' package |
runMI | Multiply impute and analyze data using lavaan |
runMisspec | Draw actual parameters and model misspecification |
runRep | Run one replication within a big simulation study |
setOpenMxObject | Rearrange starting values for 'OpenMx' |
setOpenMxObject-method | Rearrange starting values for 'OpenMx' |
setOpenMxObject-methods | Rearrange starting values for 'OpenMx' |
setPopulation | Set the data generation population model underlying an object |
setPopulation-method | Class '"SimModelOut"' |
setPopulation-method | Class '"SimResult"' |
setPopulation-method | Set the data generation population model underlying an object |
setPopulation-methods | Set the data generation population model underlying an object |
simBeta | Create random beta distribution object |
SimBeta-class | Distribution Objects |
simBinom | Create random binomial distribution object |
SimBinom-class | Distribution Objects |
simCauchy | Create random Cauchy distribution object |
SimCauchy-class | Distribution Objects |
simChisq | Create random chi-squared distribution object |
SimChisq-class | Distribution Objects |
simData | Create a Data object |
SimData-class | Class '"SimData"' |
simData-method | Create a Data object |
simData-methods | Create a Data object |
simDataDist | Create a data distribution object. |
SimDataDist-class | Class '"SimDataDist"' |
SimDataOut-class | Class '"SimDataOut"' |
simEqualCon | Equality Constraint Object |
SimEqualCon-class | Class '"SimEqualCon"' |
simExp | Create random exponential distribution object |
SimExp-class | Distribution Objects |
simF | Create random F distribution object |
SimF-class | Distribution Objects |
simFunction | Create function object |
SimFunction-class | Class '"SimFunction"' |
simGamma | Create random gamma distribution object |
SimGamma-class | Distribution Objects |
SimGenLabels-class | Class '"SimGenLabels"' |
simGeom | Create random geometric distribution object |
SimGeom-class | Distribution Objects |
simHyper | Create random hypergeometric distribution object |
SimHyper-class | Distribution Objects |
SimLabels-class | Class '"VirtualRSet"', '"SimLabels"' and '"SimRSet"' |
simLnorm | Create random log normal distribution object |
SimLnorm-class | Distribution Objects |
simLogis | Create random logistic distribution object |
SimLogis-class | Distribution Objects |
simMatrix | Create simMatrix that save free parameters and starting values, as well as fixed values |
SimMatrix-class | Matrix object: Random parameters matrix |
simMissing | Construct a SimMissing object to create data with missingness and analyze missing data. |
SimMissing-class | Class '"SimMissing"' |
SimMisspec-class | Class '"SimMisspec"' |
simMisspecCFA | Set of model misspecification for CFA model. |
simMisspecPath | Set of model misspecification for Path analysis model. |
simMisspecSEM | Set of model misspecification for SEM model. |
simModel | Create a model object |
SimModel-class | Class '"SimModel"' |
simModel-method | Create a model object |
simModel-methods | Create a model object |
SimModelMIOut-class | Class '"SimModelMIOut"' |
SimModelOut-class | Class '"SimModelOut"' |
simNbinom | Create random negative binomial distribution object |
SimNbinom-class | Distribution Objects |
simNorm | Create random normal distribution object |
SimNorm-class | Distribution Objects |
SimParam-class | Class '"SimParam"' |
simParamCFA | Create a set of matrices of parameters for analyzing data that belongs to CFA model. |
simParamPath | Create a set of matrices of parameters for analyzing data that belongs to Path analysis model |
simParamSEM | Create a set of matrices of parameters for analyzing data that belongs to SEM model |
simPois | Create random Poisson distribution object |
SimPois-class | Distribution Objects |
SimREqualCon-class | Class '"SimREqualCon"' |
simResult | Create simResult. |
SimResult-class | Class '"SimResult"' |
simResultParam | The constructor of the parameter result object |
SimResultParam-class | Class '"SimResultParam"' |
SimRSet-class | Class '"VirtualRSet"', '"SimLabels"' and '"SimRSet"' |
SimSet-class | Class '"SimSet"' |
simSetCFA | Create a set of matrices of parameter and parameter values to generate and analyze data that belongs to CFA model. |
simSetPath | Create a set of matrices of parameter and parameter values to generate and analyze data that belongs to Path analysis model |
simSetSEM | Create a set of matrices of parameter and parameter values to generate and analyze data that belongs to SEM model |
simT | Create random t distribution object |
SimT-class | Distribution Objects |
simUnif | Create random uniform distribution object |
SimUnif-class | Distribution Objects |
simVector | Create simVector that save free parameters and starting values, as well as fixed values |
SimVector-class | Vector object: Random parameters vector |
simWeibull | Create random Weibull distribution object |
SimWeibull-class | Distribution Objects |
skew | Find skewness |
skew-method | Distribution Objects |
skew-method | Find skewness |
skew-methods | Find skewness |
sortList | Sort two objects in a list |
standardize | Standardize the parameter estimates within an object |
standardize-method | Standardize the parameter estimates within an object |
standardize-methods | Standardize the parameter estimates within an object |
startingValues | Find starting values by averaging random numbers |
startingValues-method | Find starting values by averaging random numbers |
startingValues-methods | Find starting values by averaging random numbers |
subtractObject | Make a subtraction of each element in an object |
subtractObject-method | Make a subtraction of each element in an object |
subtractObject-methods | Make a subtraction of each element in an object |
summary-method | Class '"MatrixSet"' |
summary-method | Class '"SimData"' |
summary-method | Class '"SimDataDist"' |
summary-method | Class '"SimDataOut"' |
summary-method | Class '"SimEqualCon"' |
summary-method | Class '"SimFunction"' |
summary-method | Matrix object: Random parameters matrix |
summary-method | Class '"SimMissing"' |
summary-method | Class '"SimMisspec"' |
summary-method | Class '"SimModel"' |
summary-method | Class '"SimModelOut"' |
summary-method | Class '"SimParam"' |
summary-method | Class '"SimREqualCon"' |
summary-method | Class '"SimResult"' |
summary-method | Class '"SimResultParam"' |
summary-method | Class '"SimSet"' |
summary-method | Vector object: Random parameters vector |
summary-method | Symmetric matrix object: Random parameters symmetric matrix |
summary-method | Distribution Objects |
summary-method | Class '"VirtualRSet"', '"SimLabels"' and '"SimRSet"' |
summaryFit | Provide summary of model fit across replications |
summaryFit-method | Provide summary of model fit across replications |
summaryFit-methods | Provide summary of model fit across replications |
summaryMisspec | Provide summary of model misspecification imposed across replications |
summaryMisspec-method | Provide summary of model misspecification imposed across replications |
summaryMisspec-methods | Provide summary of model misspecification imposed across replications |
summaryParam | Provide summary of parameter estimates and standard error across replications |
summaryParam-method | Class '"SimResultParam"' |
summaryParam-method | Provide summary of parameter estimates and standard error across replications |
summaryParam-methods | Provide summary of parameter estimates and standard error across replications |
summaryPopulation | Summarize the data generation population model underlying an object |
summaryPopulation-method | Class '"SimDataOut"' |
summaryPopulation-method | Class '"SimModelOut"' |
summaryPopulation-method | Class '"SimResult"' |
summaryPopulation-method | Summarize the data generation population model underlying an object |
summaryPopulation-methods | Summarize the data generation population model underlying an object |
summaryShort | Provide short summary of an object. |
summaryShort-method | Matrix object: Random parameters matrix |
summaryShort-method | Vector object: Random parameters vector |
summaryShort-method | Distribution Objects |
summaryShort-method | Provide short summary of an object. |
summaryShort-methods | Provide short summary of an object. |
symMatrix | Create symmetric simMatrix that save free parameters and starting values, as well as fixed values |
SymMatrix-class | Symmetric matrix object: Random parameters symmetric matrix |
tagHeaders | Tag names to each element |
tagHeaders-method | Tag names to each element |
tagHeaders-methods | Tag names to each element |
toFunction | Export the distribution object to a function command in text that can be evaluated directly. |
toFunction-method | Distribution Objects |
toFunction-method | Export the distribution object to a function command in text that can be evaluated directly. |
toFunction-methods | Export the distribution object to a function command in text that can be evaluated directly. |
toSimSet | Transform the analysis model object into the object for data generation |
toSimSet-method | Transform the analysis model object into the object for data generation |
toSimSet-methods | Transform the analysis model object into the object for data generation |
twoTailedPValue | Find two-tailed _p_ value from one-tailed _p_ value |
validateCovariance | Validate whether all elements provides a good covariance matrix |
validateObject | Validate whether the drawn parameters are good. |
validatePath | Validate whether the regression coefficient (or loading) matrix is good |
vectorizeObject | Change an object to a vector with labels |
vectorizeObject-method | Change an object to a vector with labels |
vectorizeObject-methods | Change an object to a vector with labels |
VirtualDist-class | Distribution Objects |
VirtualRSet-class | Class '"VirtualRSet"', '"SimLabels"' and '"SimRSet"' |
weightedMean | Calculate the weighted mean of a variable |
whichMonotonic | Extract a part of a vector that is monotonically increasing or decreasing |
writeLavaanCode | Write a lavaan code given the matrices of free parameter |
writeLavaanConstraint | Write a lavaan code for a given set of equality constraints |
writeLavaanIndividualConstraint | Write a lavaan code for a given equality constraint for each parameter |
writeLavaanNullCode | Write a lavaan code for a null model |