
Rcpp: R/C++ Interface Classes

Using C++ Libraries from R

Version 3.1

Dominick Samperi

May 4, 2006

Abstract

A set of C++ classes that facilitate the process of using C++ libraries (like QuantLib) from within
the R statistical software system is described.

1 Introduction

The R system is written in the C language, and it provides a C API for package developers who have
typically coded functions to be called from R in C or FORTRAN. Rcpp provides C++ classes that make
it relatively easy to use C++ libraries from R.

The Rcpp “bare bones” approach is to find a small set of data structures that can be easily passed
between R and C++ in a language-natural way (on both the R and the C++ side), and that is sufficient
for the problem domain under study. Technical details having to do with R API internals are hidden from
the Rcpp user.1 Since the author’s focus was on applications to finance the choice of data structures
was somewhat biased, but it can be extended without much effort.

2 Quick Start Guide

The official reference on writing R extensions is “Writing R Extensions,” available at the R web site
http://cran.r-project.org. It should be consulted for details that we omit below.

The R package RcppTemplate can be used as a template for building R packages that use C++ class
libraries. It includes a working sample function RcppExample that illustrates how to use Rcpp. To run
the sample function install the RcppTemplate package in the usual way, and use:

> library(RcppTemplate)
> example(RcppExample)

There is a binary version of RcppTemplate for Windows. When it is installed it defines the function
RcppExample and places all of the source code into RHOME/library/RcppTemplate/doc. To build from

1This is done in a style similar to the JDBC Java database interface; the R system looks like a “smart database” from
the C++ programmer’s point of view.

1

source under Windows you will have to configure an R development environment.2 At the very least you
will need the MinGW compiler (or Dev-Cpp) and the UNIX tools (see previous footnote).

Under Linux everything should happen automatically. The configure script configure.in (together
with autoconf) sets up the environment under Linux. The script configure.win is used under Windows.

The source file for the function RcppExample is RcppExample.cpp. It is located in the src directory
before the package is installed, and it is placed into the doc directory after installation (for easy reference).
The source files for the Rcpp library are Rcpp.cpp and Rcpp.hpp. They are located in RcppSrc before
installation, and they are placed into the doc directory after installation. The copying is done by code
in configure.in (UNIX) and configure.win (Windows).

During the installation process the Rcpp (static) library libRcpp.a is built in RcppSrc, and the
object files created in src are linked against this library in order to create the package shared library
RcppTemplate.so (DLL under Windows). The RcppSrc directory is not part of the installed package.

To create your own package using RcppTemplate first unpack the source archive (the tar.gz file).
Rename the directory RcppTemplate to your package name, let’s call it MyPackage, and modify MyPack-
age/DESCRIPTION appropriately.

Insert your C++ source files into MyPackage/src, and insert R source files into MyPackage/R that
make calls to your C++ code (using the .Call interface). Follow the pattern in RcppExample.cpp
and RcppExample.R, and be sure to replace the string RcppTemplate with MyPackage wherever it oc-
curs. Similarly, adjust the initialization file MyPackage/R/zzz.R. Add documentation files as needed to
MyPackage/man, following the pattern in RcppExample.Rd.

Remove the cp commands (used to copy sample files to inst/doc) from configure.in and config-
ure.win. It is recommended that you keep the line that copies Rcpp-version.txt from RcppSrc to the
root of the package directory hierarchy. This file keeps track of the version of RcppTemplate that was
used to build your package. Remember to run autoconf under UNIX after modifying configure.in.

To build a test version of your package, change your working directory so that you are above MyPack-
age, and use:

$ R CMD INSTALL -library MyPackage.test MyPackage

Test your code in R using code like this:

> library(MyPackage, lib.loc=’MyPackage.test’)
> myfunc()

You can link against your own C++ libraries by following the pattern used to link against the Rcpp
library, or you can link against external libraries. For an example of the latter case, look at the RQuantLib
package. It uses Rcpp and links against the QuantLib and Boost class libraries.3

3 Important Note

It is important to remember that there is a potential for conflicts when two R packages use the same
C++ library (whether or not this is done with the help of Rcpp). For example, if two R packages use
QuantLib, and if both packages are used at the same time, then the static (singleton) classes of QuantLib
may not be manipulated properly: what singleton object gets modified will depend on the order in which
the packages are loaded!

2This consists of: R, the UNIX tools for R from http://www.murdoch-sutherland.com/Rtools, the MinGW GNU
compiler, ActivePerl from http://www.activestate.com, MikTeX (TeX for Windows), and Microsoft’s HTML help tool.
Under Windows NT4 (and some versions of Windows 2000) you will need to install a patched version of ld.exe, available
at http://www.murdoch-sutherland.com/Rtools.

3If you want to use QuantLib talk with Dirk Eddelbuettel about the possibility of making your code part of RQuantLib.

2

4 Assumptions

We assume that four kinds of objects will be passed between R and C++. On the R side they include
the following:

1. A list of named values of possibly different types

2. A list of named values of numeric type (real or integer)

3. A numeric vector

4. A numeric matrix

An example of the first kind of object would be constructed using the R code

params <- list(method = "BFGS", someDate = c(10,6,2005))

The allowed types are character, real, integer, and vector (of length 3, holding a date in the form:
month, day, year). Note that support for the corresponding Date type on the C++ side depends on
QuantLib and is not available when Rcpp is used without QuantLib.4

An example of the second kind of object is

prices <- list(ibm = 80.50, hp = 53.64, c = 45.41)

Here all values must be numeric.
Finally, examples of the last two kinds of objects are:

vec <- c(1, 2, 3, 4, 5)
mat <- matrix(seq(1,20),4,5)

Objects of the first kind are called parameter lists and are managed using the class RcppParams
(see below), while objects of the second kind are called named lists and are managed using the class
RcppNamedList. Objects of the third kind are managed by RcppVector<type> template classes, and
objects of the last kind are managed by RcppMatrix<type> template classes.

5 User Guide

To call a C++ function named MyFunc, say, the R code would look like:

.Call("MyFunc", p1, p2, p3)

where the parameters (can be more or less than three, of course) can be objects of the kind discussed in
the previous section. Usually this call is made from an intermediate R function so the interactive call
would look like

> MyFunc(p1, p2, p3)

Now let us consider the following code designed to make a call to a C++ function named RcppSample

4There are many C++ date classes available on the Internet, but unfortunately, there is no C++ standard date class.

3

params <- list(method = "BFGS", tolerance = 1.0e-8, startVal = 10)
a <- matrix(seq(1,20), 4, 5)
.Call("RcppSample", params, a)

The corresponding C++ source code for the function RcppSample using the Rcpp interface and
protocol might look like the code in Figure 1.5

#include "Rcpp.hpp"
RcppExtern SEXP RcppSample(SEXP params, SEXP a) {

SEXP rl=0; // return list to be filled in below
char* exceptionMesg=NULL;
try {

RcppParams rp(params);
string name = rp.getStringValue("method");
double tolerance = rp.getDoubleValue("tolerance");
...
RcppMatrix<double> mat(a);
// Use 2D matrix via mat(i,j) in the usual way
...
RcppResultSet rs;
rs.add("name1", result1);
rs.add("name2", result2);
...
rs.add("params", params, false);
rl = rs.getResultList();

} catch(std::exception& ex) {
exceptionMesg = copyMessageToR(ex.what());

}
catch(...) {

exceptionMesg = copyMessageToR("unknown reason");
}
if(exceptionMesg != NULL)

error(exceptionMesg);
return rl;

}

Figure 1: Rcpp use pattern.

Here RcppExtern ensures that the function is callable from R. The SEXP type is an internal type
used by R to represent everything (in particular, our parameter values and the return value). It can be
quite tricky to work with SEXP’s directly, and thanks to Rcpp this is not necessary.

Note that all of the work is done inside of a try/catch block. Exception messages generated by the
C++ code are propagated back to the R user naturally (even though R is not written in C++).

The first object created is of type RcppParams and it encapsulates the params SEXP. Values are
extracted from this object naturally as illustrated here. There are getTypeValue(name) methods for
Type equal to Double, Int, Bool, String, and Date.

5Thanks to Paul Roebuck for pointing out that the memory occupied by the exception object message is not reclaimed
when error() is called inside of a catch block.

4

Rcpp checks that the named value is present and that it has the correct type, and returns an error
message to the R user otherwise. Similarly, the other encapsulation classes described below check that
the underlying R data structures have the correct type (this eliminates the need for a great deal of
checking in the R code that ultimately calls the C++ function).

The matrix parameter a is encapsulated by the mat object of type RcppMatrix<double> (matrix
of double’s). It could also have been encapsulated inside of a matrix of int’s type, in which case non-
integer values would be truncated toward zero. Note that SEXP parameters are read-only, but that these
encapsulating classes work on a copy of the original, so they can be modified in the usual way:

mat(i,j) = whatever

The RcppVector<type> classes work similarly.
In these matrix/vector representations subscripting is range checked. It is possible to get a C/C++

style (unchecked) array copy of an RcppMatrix and RcppVector object by using the methods cMatrix()
and cVector(), respectively. The first method returns a pointer of type type **, and the second returns
a pointer of type type * (where type can be double or int). These pointer-based representations might
be useful when matrices/vectors need to be passed to software that does not know about the Rcpp
classes. No attempt should be made to free the memory pointed to by these pointers as it is managed
by R (it will be freed automatically when .Call returns).

An STL vector copy of an RcppVector object can be obtained by using the stlVector method of the
RcppVector class. An STL matrix, or vector<vector<type> >, copy of an RcppMatrix object can be
obtained by using the stlMatrix method of the RcppMatrix class. See RcppExample.cpp for examples.

Returning to the example, we see that the mat and vec parameters are used to construct RcppVector
and RcppMatrix objects, respectively. These would typically be used to do some computations (not shown
here). When the computations are finished an object of type RcppResultSet is constructed that contains
the data values to be returned to R. Results to be returned are added to the list using the add method
where the first parameter is the name that will be seen by the R user. The second parameter is the
corresponding value—it can be of type double, int, string, vector<double>, vector<vector<double>
>, RcppMatrix<double>, etc.

The last call to add here is used to return the input SEXP parameter params as the last output result
(named ”params”). The boolean flag false here means that the SEXP has not been protected. This will
be the case unless the SEXP has been allocated by the user (not an input parameter).

For examples employing QuantLib see the files discount.cpp and bermudan.cpp from the RQuantLib
package.

6 Quick Reference

In this quick reference “type” can be double or int.

RcppParams constructor and methods
RcppParams::RcppParams(SEXP)
double RcppParams::getDoubleValue(string)
int RcppParams::getIntValue(string)
string RcppParams::getStringValue(string)
bool RcppParams::getBoolValue(string)
Date RcppParams::getDateValue(string) [requires QuantLib]

RcppNamedList constructor and methods
RcppNamedList::RcppNamedList(SEXP)
int RcppNamedList::getLength()
string RcppNamedList::getName(int)
double RcppNamedList::getValue(int)

5

Matrix and vector constructors
RcppMatrix<type>(SEXP a)
RcppMatrix<type>(int nrow, int ncol)
RcppVector<type>(SEXP a)
RcppVector<type>(int len)

Matrix and vector methods
type& RcppMatrix<type>::operator()(int i, int j)
type& RcppVector<type>::operator()(int i)
vector<type> RcppVector<type>::stlVector()
vector<vector<type> > RcppMatrix<type>::stlMatrix()
type* RcppVector<type>::cVector()
type** RcppMatrix<type>::cMatrix()

RcppResultSet constructor and methods
RcppResultSet::RcppResultSet()
void RcppResultSet::add(string,double)
void RcppResultSet::add(string,int)
void RcppResultSet::add(string,string)
void RcppResultSet::add(string,double*,int)
void RcppResultSet::add(string,double**,int,int)
void RcppResultSet::add(string,int*,int)
void RcppResultSet::add(string,int**,int,int)
void RcppResultSet::add(string,vector<type>&)
void RcppResultSet::add(string,vector<vector<type> >&)
void RcppResultSet::add(string,RcppVector<type>&)
void RcppResultSet::add(string,RcppMatrix<type>&)
void RcppResultSet::add(string,SEXP,bool)

The last method here is provided for users who want to work with SEXP’s directly, or when the user
wants to pass one of the input SEXP’s back as a return value, as we did in the example above. The
boolean flag tells Rcpp whether or not the SEXP provided has been protected.

A SEXP that is allocated by the user may be garbage collected by R at any time so it needs to be
protected using the PROTECT function to prevent this. A SEXP that is passed to a C++ function by
R does not need to be protected because R knows that it is in use.

6

