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1 Brief Description

Haplo Stats is a suite of S-PLUS/R routines for the analysis of indirectly measured haplotypes.
The statistical methods assume that all subjects are unrelated and that haplotypes are ambiguous
(due to unknown linkage phase of the genetic markers). The genetic markers are assumed to be
codominant (i.e., one-to-one correspondence between their genotypes and their phenotypes), and
so we refer to the measurements of genetic markers as genotypes. The primary functions in Haplo
Stats are:

• haplo.em: for the estimation of haplotype frequencies, and posterior probabilities of haplotype
pairs for a subject, conditional on the observed marker data

• haplo.glm: glm’s for the regression of a trait on haplotypes, with the option of including
covariates and interactions

• haplo.score: score statistics to test associations between haplotypes and a variety of traits,
including binary, ordinal, quantitative, and Poisson.

For those users who have used the previously distributed haplo.score package, it is important
to note that the haplo.score function has changed dramatically from the previous distribution,
including the parameters passed to this function. Please follow the examples provided in this
document to see how to use this function.

2 Operating System and Installation

Haplo Stats version 1.2.1 package is written for both S-PLUS (version 6.2.1) and R (version 2.1.0)
for Unix. It has been placed on the Comprehensive R Archive Network (CRAN), and is made
available on other systems through CRAN. Installation procedures for S-PLUS and R systems will
vary; the Unix installations are explained in the README.haplo.stats text file, located at the top
level of the haplo.stats directory. The procedures for running analyses are the same for S-PLUS
and R, following instructions in this document.

3 Getting Started

After installing the Haplo Stats package, the routines and an example data set are available by
starting an S-PLUS or R session and attaching the appropriate directory. The easiest way to get
started is by following an example. An experienced user may want to skip the example and simply
view the details in the help files.

For users who are new to the S-PLUS or R environments, note the following basic concepts. In
the following examples, a user enters the indented text following the prompt ”>”, and the output
results follow. Later, when executing a function in the session, the general syntax will appear like
’myresult <- myfunction(x)’ where the results of myfunction, operating on x, are saved in myresult.
Then a user may print myresult or make use of it in a calculation.
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3.1 Example Data

First load the haplo.stats library and the example data set (hla.demo). If haplo.stats is installed
for global use, load the library as done below. If installed as a local library, specify its location in
the lib.loc parameter as shown in comments(##).

## if local library, use:
## library(haplo.stats, lib.loc="/local/install/path/")

> library(haplo.stats)
> setupData(hla.demo)

[1] "hla.demo"

> attach(hla.demo)
> names(hla.demo)

[1] "resp" "resp.cat" "male" "age" "DPB.a1"
[6] "DPB.a2" "DPA.a1" "DPA.a2" "DMA.a1" "DMA.a2"

[11] "DMB.a1" "DMB.a2" "TAP1.a1" "TAP1.a2" "TAP2.a1"
[16] "TAP2.a2" "DQB.a1" "DQB.a2" "DQA.a1" "DQA.a2"
[21] "DRB.a1" "DRB.a2" "B.a1" "B.a2" "A.a1"
[26] "A.a2"

The column names of hla.demo are shown above. They are defined as follows:

• resp: quantitative antibody response to measles vaccination

• resp.cat: a factor with levels ”low”, ”normal”, ”high”, for categorical antibody response

• male: gender code with 1=”male” , 0=”female”

• age: age (in months) at immunization

The remaining columns are genotypes for 11 HLA loci, with a prefix name (e.g., ”DQB”) and a
suffix for each of two alleles (”.a1” and ”.a2”). The variables in hla.demo can be accessed by typing
hla.demo$ before their names, such as hla.demo$resp. Alternatively, it is easier for these examples
to attach hla.demo, (as shown above with attach()) so the variables can be accessed by simply
typing their names.
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3.2 Creating a Genotype Matrix

Many of the functions require a matrix of genotypes, denoted here as geno. This matrix is arranged
such that each locus has a pair of adjacent columns of alleles, and the order of columns corresponds
to the order of loci on a chromosome. If there are K loci, then the number of columns of geno is
2K. Rows represent the alleles for each subject. For example, if there are three loci, in the order
A-B-C, then the 6 columns of geno would be arranged as A.a1, A.a2, B.a1, B.a2, C.a1, C.a2. For
illustration, three of the loci in hla.demo will be used to demonstrate some of the functions. Create
a separate data frame for 3 of the loci, and call this geno. Then create a vector of labels for the
loci.

> geno <- hla.demo[, c(17, 18, 21:24)]
> label <- c("DQB", "DRB", "B")

3.3 Random Numbers and Setting Seed

Random numbers are used in several of the functions (e.g., to determine random starting values for
haplo.em, and to compute permutation p-values in haplo.score). In order to reproduce the exact
results in this user guide, you must set the .Random.seed before any function which uses random
numbers (haplo.em, haplo.score, haplo.glm, haplo.group, haplo.cc) using these steps. We illustrate
this below, and invisibly reset the seed to the same vector in making the rest of this document. In
practice, however, the user would not ordinarily reset the seed.

> seed <- c(17, 53, 1, 40, 37, 0, 62, 56, 5, 52,
+ 12, 1)
> set.seed(seed)

The above mechanism for controlling .Random.seed makes results reproducible in the respective
S-PLUS and R platforms. However, the random number generators for S-PLUS and R use the
seeds differently, so results will not completely agree across platforms. Because the results in this
document were generated by R version 2.1.0 on a Unix platform, results from S-PLUS that depend
on random numbers will not exactly match the results in this document. Nonetheless, results can be
forced to agree across platforms by omitting the randomness within haplo.em (and its results used
in haplo.score and haplo.glm) by setting the control parameter n.try=1 within haplo.em.control
(see section 4.4).

3.4 Preview Missing Data: summaryGeno

Before computing haplotype statistics, the user may want to look for missing genotype data to
determine the completeness of the data. If many genotypes are missing, the functions may take a
long time to compute results, and the user may want to remove some of the subjects with a lot of
missing data. This can be accomplished with the summaryGeno function, which checks for missing
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allele information and counts the number of potential haplotype pairs that are consistent with the
observed data (see the Appendix for a description of this counting algorithm).

The codes for missing values of alleles are defined by the parameter miss.val, which may be a
vector to define multiple missing value codes. Because it has been common practice to use a zero to
code for missing alleles, the default values for miss.val are 0 and NA. The saved result, geno.desc
is a data frame, so individual rows may be printed. Here we show the results for subjects 1-10,
80-85, and 135-140.

> geno.desc <- summaryGeno(geno, miss.val = c(0,
+ NA))
> print(geno.desc[c(1:10, 80:85, 135:140), ])

loc miss-0 loc miss-1 loc miss-2 num_enum_rows
1 3 0 0 4
2 3 0 0 4
3 3 0 0 4
4 3 0 0 2
5 3 0 0 4
6 3 0 0 2
7 3 0 0 4
8 3 0 0 2
9 3 0 0 2
10 3 0 0 1
80 3 0 0 4
81 2 0 1 1800
82 3 0 0 2
83 3 0 0 1
84 3 0 0 2
85 3 0 0 4
135 3 0 0 4
136 3 0 0 2
137 1 0 2 129600
138 3 0 0 4
139 3 0 0 4
140 3 0 0 4

The columns with ’loc miss-’ illustrate the number of loci missing either 0, 1, or 2 alleles, and
the last column, num enum rows, illustrates the number of haplotype pairs that are consistent with
the observed data. In the example above, subjects indexed by rows 81 and 137 have missing alleles.
Subject #81 has one locus missing two alleles, while subject #137 has two loci missing two alleles.
As indicated by num enum rows, subject #81 has 1,800 potential haplotype pairs, while subject
#137 has nearly 130,000.
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Because of the missing data, the number of possible haplotype pairs is quite large, which in-
creases computation time of haplo.em in section 4.2. With geno rows #81 and #137 included,
haplo.em requires about 4 minutes of CPU time, while without those two rows it takes just over 1
second. It is best to use the information provided by subjects with missing alleles, but the results
from summaryGeno can guide which subjects could be removed if computation issues arise.

4 Haplotype Frequency Estimation: haplo.em

4.1 Algorithm

For genetic markers measured on unrelated subjects, with linkage phase unknown, haplo.em com-
putes maximum likelihood estimates of haplotype probabilities. Because there may be more than
one pair of haplotypes that are consistent with the observed marker phenotypes, posterior probabil-
ities of haplotype pairs for each subject are also computed. Unlike the usual EM which attempts to
enumerate all possible haplotype pairs before iterating over the EM steps, our progressive insertion
algorithm progressively inserts batches of loci into haplotypes of growing lengths, runs the EM
steps, trims off pairs of haplotypes per subject when the posterior probability of the pair is below
a specified threshold, and then continues these insertion, EM, and trimming steps until all loci are
inserted into the haplotype. The user can choose the batch size. If the batch size is chosen to be
all loci, and the threshold for trimming is set to 0, then this reduces to the usual EM algorithm.
The basis of this progressive insertion algorithm is from the ”snphap” software by David Clayton[4].
Although some of the features and control parameters of haplo.em are modeled after snphap, there
are substantial differences, such as extension to allow for more than two alleles per locus, and some
other nuances on how the algorithm is implemented.

4.2 Example Usage

Use haplo.em on geno for the 3 loci defined above, then view the results stored in save.em. In this
example we show just a quick glance of the output by using the option nlines=10, which prints
only the first 10 haplotypes of the full results. (The nlines parameter has been employed in some
of the print methods in the Haplo Stats package to shorten the lengthy results for this user guide.
In practice, it is best to exclude this parameter so that the default will print all results.)

> save.em <- haplo.em(geno = geno, locus.label = label,
+ miss.val = c(0, NA))
> print(save.em, nlines = 10)

============================================================
Haplotypes

============================================================

DQB DRB B hap.freq
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1 21 1 8 0.00232
2 21 2 7 0.00227
3 21 2 18 0.00227
4 21 3 8 0.10408
5 21 3 18 0.00229
6 21 3 35 0.00570
7 21 3 44 0.00378
8 21 3 45 0.00227
9 21 3 49 0.00227
10 21 3 57 0.00227
============================================================

Details
============================================================

lnlike = -1847.675
lr stat for no LD = 632.8897 , df = 125 , p-val = 0

Explanation of Results

The haplotypes and their estimated frequencies are listed, as well as a few details. The lr stat for
no LD is the likelihood ratio statistic contrasting the lnlike for the estimated haplotype frequencies
versus the lnlike assuming that alleles from all loci are in linkage equilibrium. Trimming by the
progressive insertion algorithm can invalidate the lr stat and the degrees of freedom (df).

4.3 Summary Method

The summary on save.em shows the list of haplotypes per subject, and their posterior probabilities:

> summary(save.em, nlines = 7)

============================================================
Subjects: Haplotype Codes and Posterior

Probabilities
============================================================

subj.id hap1code hap2code posterior
1 1 78 58 1.00000
2 2 13 143 0.12532
3 2 138 17 0.87468
4 3 25 168 1.00000
5 4 13 39 0.28621
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6 4 17 38 0.71379
7 5 94 55 1.00000
============================================================

Number of haplotype pairs: max vs used
============================================================

x 1 2 3 72 135
1 18 0 0 0 0
2 50 4 0 0 0
4 116 29 1 0 0
1800 0 0 0 1 0
129600 0 0 0 0 1

Explanation of Results

The first part of summary lists the subject id (row number of input geno matrix), the codes for
the haplotypes of each pair, and the posterior probabilities of the haplotype pairs. The second part
gives a table of the maximum number of pairs of haplotypes per subject, versus the number of pairs
used in the final posterior probabilities. The haplotype codes remove the clutter of illustrating all
the alleles of the haplotypes, but may not be as informative as the actual haplotypes themselves.
To see the actual haplotypes, use the show.haplo=TRUE option:

> summary(save.em, show.haplo = TRUE, nlines = 7)

============================================================
Subjects: Haplotype Codes and Posterior

Probabilities
============================================================

subj.id hap1.DQB hap1.DRB hap1.B hap2.DQB hap2.DRB
78 1 32 4 62 31 11
13 2 21 7 7 62 2
138 2 62 2 7 21 7
25 3 31 1 27 63 13
13.1 4 21 7 7 31 7
17 4 21 7 44 31 7
94 5 42 8 55 31 11

hap2.B posterior
78 61 1.00000
13 44 0.12532
138 44 0.87468
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25 62 1.00000
13.1 44 0.28621
17 7 0.71379
94 51 1.00000
============================================================

Number of haplotype pairs: max vs used
============================================================

x 1 2 3 72 135
1 18 0 0 0 0
2 50 4 0 0 0
4 116 29 1 0 0
1800 0 0 0 1 0
129600 0 0 0 0 1

4.4 Control Parameters for haplo.em

An additional argument can be passed to haplo.em, called ”control”. This is a list of parameters
that control the EM algorithm based on progressive insertion of loci. The default values are set
by a function called haplo.em.control (see the help(haplo.em.control) for a complete description).
Although the user can accept the default values, there are times when control parameters may
need to be adjusted. For example, for small sample sizes and many possible haplotypes, finding
the global maximum of the log-likelihood can be difficult. The algorithm uses multiple attempts
to maximize the log-likelihood, starting each attempt with random starting values. If the results
from haplo.em, haplo.score, or haplo.glm change when rerunning the analyses, this may be due
to different maximizations of the log-likelihood. To avoid this, the user can increase the number
of attempts (n.try) to maximize the log-likelihood, increase the batch size (insert.batch.size), or
decrease the trimming threshold for posterior probabilities (min.posterior). These parameters are
defined below:

• insert.batch.size: Number of loci to be inserted in a single batch.

• min.posterior: Minimum posterior probability of haplotype pair, conditional on observed
marker genotypes. Posteriors below this minimum value will have their pair of haplotypes
”trimmed” off the list of possible pairs.

• max.iter: Maximum number of iterations allowed for the EM algorithm before it stops and
prints an error.

• n.try: Number of times to try to maximize the lnlike by the EM algorithm. The first try
will use, as initial starting values for the posteriors, either equal values or uniform random
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variables, as determined by random.start. All subsequent tries will use uniform random values
as initial starting values for the posterior probabilities.

The example below illustrates the syntax for setting the number of tries to 20, and the batch
size to 2.

> save.em <- haplo.em(geno = geno, locus.label = label,
+ miss.val = c(0, NA), control = haplo.em.control(n.try = 20,
+ insert.batch.size = 2))

4.5 Haplotype Frequencies by Group Subsets

To compute the haplotype frequencies for each level of a grouping variable, use the function
haplo.group. The following example illustrates the use of a binomial response based on resp.cat,
y.bin, that splits the subjects into two groups.

> y.bin <- 1 * (hla.demo$resp.cat == "low")
> group.bin <- haplo.group(y.bin, geno, locus.label = label,
+ miss.val = 0)
> print(group.bin, nlines = 15)

------------------------------------------------------------
Counts per Grouping Variable Value

------------------------------------------------------------

group
0 1

157 63

------------------------------------------------------------
Haplotype Frequencies By Group

------------------------------------------------------------

DQB DRB B Total y.bin.0 y.bin.1
1 21 1 8 0.00232 0.00335 NA
2 21 10 8 0.00181 0.00318 NA
3 21 13 8 0.00274 NA NA
4 21 2 18 0.00227 0.00318 NA
5 21 2 7 0.00227 0.00318 NA
6 21 3 18 0.00229 0.00637 NA
7 21 3 35 0.00570 0.00639 NA
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8 21 3 44 0.00378 0.00333 0.01587
9 21 3 45 0.00227 NA NA
10 21 3 49 0.00227 NA NA
11 21 3 57 0.00227 NA NA
12 21 3 70 0.00227 NA NA
13 21 3 8 0.10408 0.06974 0.19048
14 21 4 62 0.00455 0.00637 NA
15 21 7 13 0.01072 NA 0.02381

Explanation of Results

The group.bin object can be very large, depending on the number of possible haplotypes, so only
a portion of the output is illustrated above. The first section gives a short summary of how many
subjects appear in each of the groups. The second section is a table with the following columns:

• The first column gives row numbers.

• The next columns (3 in this example) illustrate the alleles of the haplotypes.

• Total are the estimated haplotype frequencies for the entire data set.

• The last columns are the estimated haplotype frequencies for the subjects in the levels of the
group variable (y.bin=0 and y.bin=1 in this example). Note that some haplotype frequencies
have an ”NA”, which occurs when the haplotypes do not occur in the subgroups.

5 Haplotype Score Tests: haplo.score

The function haplo.score is used to compute score statistics to test associations between haplotypes
and a wide variety of traits, including binary, ordinal, quantitative, and Poisson. This function
provides several different global and haplotype-specific tests for association, allows for adjustment
for non-genetic covariates, and optionally allows computation of permutation p-values (which may
be needed for sparse data). Details on the background and theory of the score statistics can be
found in Schaid et al.[8].

5.1 Quantitative Trait Analysis

First, analyze the quantitative trait called resp. A quantitative trait is identified in haplo.score
by the parameter trait.type=”gaussian” (a reminder that a gaussian distribution is assumed for
the distribution of the error terms). The other arguments, all set to default values, are defined in
the help file, viewed by typing help(haplo.score). Note that rare haplotypes can result in unstable
variance estimates, and hence unreliable test statistics for the rare haplotypes. For hints on handling
rare haplotypes, see section 5.5. Execute the function then view the results using the print method
(again, output shortened by nlines).
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> score.gaus <- haplo.score(resp, geno, trait.type = "gaussian",
+ skip.haplo = 5/(2 * nrow(geno)), locus.label = label,
+ simulate = FALSE)
> print(score.gaus, nlines = 10)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 30.6353, df = 18, p-val = 0.03171

------------------------------------------------------------
Haplotype-specific Scores

------------------------------------------------------------

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 21 3 8 0.10408 -2.39631 0.01656
[2,] 31 4 44 0.02849 -2.24273 0.02491
[3,] 51 1 44 0.01731 -0.99357 0.32043
[4,] 63 13 44 0.01606 -0.84453 0.39837
[5,] 63 2 7 0.01333 -0.50736 0.6119
[6,] 32 4 60 0.0306 -0.46606 0.64118
[7,] 21 7 44 0.02332 -0.41942 0.67491
[8,] 62 2 44 0.01367 -0.26221 0.79316
[9,] 62 2 18 0.01545 -0.21493 0.82982

[10,] 51 1 27 0.01505 0.01539 0.98772

Explanation of Results

The section Global Score Statistics prints results for testing an overall association between haplo-
types and the response. The global-stat has an asymptotic χ2 distribution, with degrees of freedom
(df) and p-value as indicated. Haplotype-specific scores are given in a table format. The column
descriptions are as follows:

• The first column gives row numbers.

• The next columns (3 in this example) illustrate the alleles of the haplotypes.

• Hap-Freq is the estimated frequency of the haplotype in the pool of all subjects.

• Hap-Score is the score for the haplotype, the results are sorted by this value. Note, the score
statistic should not be interpreted as a measure of the haplotype effect.
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• p-val is the asymptotic chi-square (1 df) p-value, calculated from the square of the score
statistic.

5.2 Ordinal Trait Analysis

To create an ordinal trait, convert resp.cat (described above) to numeric values, y.ord (with levels
1, 2, 3). For haplo.score, use y.ord as the response variable, and set the parameter trait.type =
”ordinal”.

> y.ord <- as.numeric(resp.cat)
> score.ord <- haplo.score(y.ord, geno, trait.type = "ordinal",
+ offset = NA, x.adj = NA, skip.haplo = 5/(2 *
+ nrow(geno)), locus.label = label, miss.val = 0,
+ simulate = FALSE)
> print(score.ord, nlines = 7)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 35.06701, df = 18, p-val = 0.00927

------------------------------------------------------------
Haplotype-specific Scores

------------------------------------------------------------

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 21 3 8 0.10408 -2.79247 0.00523
[2,] 31 4 44 0.02849 -2.61319 0.00897
[3,] 63 13 44 0.01606 -0.69172 0.48911
[4,] 51 1 44 0.01731 -0.62185 0.53404
[5,] 62 2 18 0.01545 -0.51357 0.60755
[6,] 21 7 44 0.02332 -0.28576 0.77506
[7,] 32 4 60 0.0306 -0.18264 0.85508

Warning for Ordinal Traits

When analyzing an ordinal trait with adjustment for covariates (using the x.adj option), the
software requires the libraries Design and Hmisc, distributed by Frank Harrell, Ph.D.[6]. If the user
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does not have these libraries installed, then it will not be possible to use the x.adj option. However,
the unadjusted scores for an ordinal trait (using the default option x.adj=NA) do not require these
libraries. Check the list of your local libraries in the list shown from entering library() in your
prompt.

5.3 Binary Trait Analysis

Let us assume that ”low” responders are of primary interest, so we create a binary trait that has
values of 1 when resp.cat is ”low”, and 0 otherwise. Then in haplo.score specify the parameter
trait.type=”binomial”.

> y.bin <- 1 * (hla.demo$resp.cat == "low")
> score.bin <- haplo.score(y.bin, geno, trait.type = "binomial",
+ offset = NA, x.adj = NA, skip.haplo = 5/(2 *
+ nrow(geno)), locus.label = label, miss.val = 0,
+ simulate = FALSE)
> print(score.bin, nlines = 10)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 33.70125, df = 18, p-val = 0.01371

------------------------------------------------------------
Haplotype-specific Scores

------------------------------------------------------------

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 62 2 7 0.05098 -2.19387 0.02824
[2,] 51 1 35 0.03018 -1.58421 0.11315
[3,] 63 13 7 0.01655 -1.56008 0.11874
[4,] 21 7 7 0.01246 -1.47495 0.14023
[5,] 32 4 7 0.01678 -1.00091 0.31687
[6,] 32 4 62 0.02349 -0.6799 0.49657
[7,] 51 1 27 0.01505 -0.66509 0.50599
[8,] 31 11 35 0.01754 -0.5838 0.55936
[9,] 31 11 51 0.01137 -0.43721 0.66196

[10,] 51 1 44 0.01731 0.00826 0.99341
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5.4 Plots and Haplotype Labels

A convenient way to view results from haplo.score is a plot of the haplotype frequencies (Hap-Freq)
versus the haplotype score statistics (Hap-Score). This plot, and the syntax for creating it, are
shown in Figure 1 at the end of this manual.

Some points on the plot may be of interest. To identify individual points on the plot, use
locator.haplo(score.gaus), which is similar to locator(). Use the mouse to select points on the plot.
After points are chosen, click on the middle mouse button, and the points are labeled with their
haplotype labels. Note, in contructing Figure 1, we had to define which points to label, and then
assign labels in the same way as done within the locator.haplo function.

5.5 Skipping Rare Haplotypes

For the quantitative trait analyses, the skip.haplo parameter controls which rare haplotypes are
pooled into a common group. As a guideline, you may wish to set skip.haplo to calculate scores
for haplotypes with expected haplotype counts of 5 or greater. We concentrate on this expected
count because it adjusts to the size of the input data. If N is the number of subjects and f the
haplotype frequency, then the expected haplotype count is count = 2×N × f . So you can choose
skip.haplo = count

2×N . Here we try a different cut-off than before, skip.haplo=.02, which corresponds
to expected haplotype counts of 2× 220× .02 = 8.8. In the output, notice the global statistic and
its p-value change because of the fewer haplotypes, while the haplotype-specific scores change only
slightly.

> score.gaus.02 <- haplo.score(resp, geno, trait.type = "gaussian",
+ offset = NA, x.adj = NA, skip.haplo = 0.02,
+ locus.label = label, miss.val = 0, simulate = FALSE)
> print(score.gaus.02)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 20.66451, df = 7, p-val = 0.0043

------------------------------------------------------------
Haplotype-specific Scores

------------------------------------------------------------

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 21 3 8 0.10408 -2.39631 0.01656
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[2,] 31 4 44 0.02849 -2.24273 0.02491
[3,] 32 4 60 0.0306 -0.46606 0.64118
[4,] 21 7 44 0.02332 -0.41942 0.67491
[5,] 51 1 35 0.03018 0.69696 0.48583
[6,] 32 4 62 0.02349 2.37619 0.01749
[7,] 62 2 7 0.05098 2.39795 0.01649

5.6 Haplotype Scores, Adjusted for Covariates

First set up a matrix of covariates, with the first column for male (1 if male; 0 if female), and the
second column for age (in months). Then use the matrix as an argument to haplo.score. When
adjusting for covariates, all score statistics can change, though not by much in this example.

> x.ma <- cbind(male, age)
> score.gaus.adj <- haplo.score(resp, geno, trait.type = "gaussian",
+ offset = NA, x.adj = x.ma, skip.haplo = 5/(2 *
+ nrow(geno)), locus.label = label, miss.val = 0,
+ simulate = FALSE)
> print(score.gaus.adj, nlines = 10)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 31.02908, df = 18, p-val = 0.02857

------------------------------------------------------------
Haplotype-specific Scores

------------------------------------------------------------

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 21 3 8 0.10408 -2.4097 0.01597
[2,] 31 4 44 0.02849 -2.25293 0.02426
[3,] 51 1 44 0.01731 -0.98763 0.32333
[4,] 63 13 44 0.01606 -0.83952 0.40118
[5,] 63 2 7 0.01333 -0.48483 0.6278
[6,] 32 4 60 0.0306 -0.46476 0.64211
[7,] 21 7 44 0.02332 -0.41249 0.67998
[8,] 62 2 44 0.01367 -0.26443 0.79145
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[9,] 62 2 18 0.01545 -0.20425 0.83816
[10,] 51 1 27 0.01505 0.02243 0.9821

5.7 Simulation p-values

When simulate=TRUE, haplo.score gives simulated p-values. Simulated haplotype score statistics
are the re-calculated score statistics from a permuted re-ordering of the trait and covariates and
the original ordering of the genotype matrix. The simulated p-value for the global score statistic
(Global sim. p-val) is the number of times the simulated global score statistic exceeds the observed,
divided by the total number of simulations. Likewise, simulated p-value for the maximum score
statistic (Max-stat sim. p-val) is the number of times the simulated maximum haplotype score
statistic exceeds the observed maximum score statistic, divided by the total number of simulations.
The maximum score statistic is the maximum of the square of the haplotype-specific score statistics,
which has an unknown distribution, so its significance can only be given by the simulated p-value.
Intuitively, if only one or two haplotypes are associated with the trait, the maximum score statistic
should have greater power to detect association than the global statistic.

The score.sim.control function manages control parameters for simulations. The haplo.score
function employs the simulation p-value precision criteria of Besag and Clifford[1]. These criteria
ensure that the simulated p-values for both the global and the maximum score statistics are pre-
cise for small p-values. The algorithm performs a user-defined minimum number of permutations
(min.sim) to guarantee sufficient precision for the simulated p-values for score statistics of individ-
ual haplotypes. Permutations beyond this minimum are then conducted until the sample standard
errors for simulated p-values for both the global-stat and max-stat score statistics are less than a
threshold (p.threshold * p-value). The default value for p.threshold= 1

4 provides a two-sided 95%
confidence interval for the p-value with a width that is approximately as wide as the p-value itself.
Effectively, simulations are more precise for smaller p-values. The following example illustrates
computation of simulation p-values with min.sim=1000.

> score.bin.sim <- haplo.score(y.bin, geno, trait.type = "binomial",
+ offset = NA, x.adj = NA, locus.label = label,
+ miss.val = 0, simulate = TRUE, sim.control = score.sim.control())
> print(score.bin.sim)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 33.70125, df = 18, p-val = 0.01371

------------------------------------------------------------
Global Simulation p-value Results

------------------------------------------------------------
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Global sim. p-val = 0.0095
Max-Stat sim. p-val = 0.00563
Number of Simulations, Global: 2842 , Max-Stat: 2842

------------------------------------------------------------
Haplotype-specific Scores

------------------------------------------------------------

DQB DRB B Hap-Freq Hap-Score p-val sim p-val
[1,] 62 2 7 0.05098 -2.19387 0.02824 0.03272
[2,] 51 1 35 0.03018 -1.58421 0.11315 0.13476
[3,] 63 13 7 0.01655 -1.56008 0.11874 0.19177
[4,] 21 7 7 0.01246 -1.47495 0.14023 0.15588
[5,] 32 4 7 0.01678 -1.00091 0.31687 0.26882
[6,] 32 4 62 0.02349 -0.6799 0.49657 0.53624
[7,] 51 1 27 0.01505 -0.66509 0.50599 0.64286
[8,] 31 11 35 0.01754 -0.5838 0.55936 0.59078
[9,] 31 11 51 0.01137 -0.43721 0.66196 0.91872

[10,] 51 1 44 0.01731 0.00826 0.99341 1
[11,] 32 4 60 0.0306 0.03181 0.97462 0.95215
[12,] 62 2 44 0.01367 0.16582 0.8683 0.91661
[13,] 63 13 44 0.01606 0.22059 0.82541 0.73962
[14,] 63 2 7 0.01333 0.2982 0.76555 0.77164
[15,] 62 2 18 0.01545 0.78854 0.43038 0.6608
[16,] 21 7 44 0.02332 0.84562 0.39776 0.3962
[17,] 31 4 44 0.02849 2.50767 0.01215 0.01196
[18,] 21 3 8 0.10408 3.77763 0.00016 0.00035

6 Regression Models: haplo.glm

The haplo.glm function computes the regression of a trait on haplotypes, and possibly other covari-
ates and their interactions with haplotypes. Although this function is based on a generalized linear
model, only two types of traits are currently supported: 1) quantitative traits with a normal (gaus-
sian) distribution and identity link, and 2) binomial traits with a logit-link function. The effects
of haplotypes on the link function can be modeled as either additive, dominant (heterozygotes and
homozygotes for a particular haplotype assumed to have equivalent effects), or recessive (homozy-
gotes of a particular haplotype considered to have an alternative effect on the trait). The basis of
the algorithm is a two-step iteration process; the posterior probabilities of pairs of haplotypes per
subject are used as weights to update the regression coefficients, and the regression coefficients are
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used to update the haplotype posterior probabilities. See Lake et al.[7] for details.

6.1 Preparing the data.frame for haplo.glm

A critical distinction between haplo.glm and all other functions in Haplo Stats is that the definition
of the regression model follows the S-PLUS/R formula standard (see lm glm). So, a data.frame
must be defined, and this object must contain the trait, a special kind of genotype matrix (geno.glm
for this example) that contains the genotypes of the marker loci, and optionally other covariates
and weights. The key features of this data.frame are in how we set up a genotype matrix specific
for use in haplo.glm. We prepare geno.glm using setupGeno, which handles character, numeric, or
factor alleles, and keeps the columns of the genotype matrix as a single unit when inserting into
(and extracting from) a data.frame. The setupGeno function also recodes alleles to integer values
(the initial allele codes become an attribute of the returned object), and returns a model.matrix,
which can then be included in a data.frame. In the example below we prepare geno.glm, then create
a data.frame object (my.data) for use in haplo.glm.

> geno <- as.matrix(hla.demo[, c(17, 18, 21:24)])
> geno.glm <- setupGeno(geno, miss.val = c(0, NA))
> y.bin <- 1 * (hla.demo$resp.cat == "low")
> my.data <- data.frame(geno.glm, age = age, male = male,
+ y = resp, y.bin = y.bin)

6.2 Handling Rare Haplotypes

An issue in haplo.glm is to decide which haplotypes to put in the model. We have used the
haplo.freq.min parameter as a cut-off for the haplotypes to be modeled based on their frequency.
However, we have found both haplotype effect and corresponding standard errors to be unreliable
for a haplotype with a low frequency in the sample. Therefore, a cut-off should be chosen based on
the expected count of the haplotype in the sample. The default for choosing a cut-off is the same
for setting skip.haplo in haplo.score, where the minimum haplotype frequency f = count

2×N , where
N is the number of subjects, and count the expected count of haplotypes in the sample. This
calculation is based on the formula for the expected count, count = f × 2×N .

The default minimum frequency cut-off in haplo.glm is based on a minimum expected count of
5. Two control parameters may be used to control this setting. The previously used haplo.freq.min
may be set to a different minimum haplotype frequency. Alternatively, the haplo.min.count control
parameter can be set by the user to select the cut-off minimum expected haplotype count.

6.3 Regression for a Quantitative Trait

The following illustrates how to fit a regression of a quantitative trait y on the haplotypes estimated
from the geno.glm matrix, and the covariate male. For na.action, we use na.geno.keep, which allows
missing values in the genotype matrix, but removes a subject with missing values (NA) in either
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the response or covariate. The setupGeno function recoded alleles to numeric values in geno.glm
numbered starting with 1, but we can preserve the original allele values by setting the allele.lev
parameter to be the unique.alleles attribute from geno.glm.

> fit.gaus <- haplo.glm(y ~ male + geno.glm, family = gaussian,
+ data = my.data, na.action = "na.geno.keep",
+ locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
+ control = haplo.glm.control(haplo.min.count = 5))
> print(fit.gaus)

Call:
haplo.glm(formula = y ~ male + geno.glm,

family = gaussian, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
control = haplo.glm.control(haplo.min.count = 5))

Coefficients:
coef se t.stat pval

(Intercept) 0.9918 0.349 2.8393 0.00499
male 0.1281 0.161 0.7962 0.42684
geno.glm.13 1.1208 0.539 2.0791 0.03889
geno.glm.17 0.2713 0.441 0.6155 0.53895
geno.glm.34 -0.2573 0.347 -0.7408 0.45970
geno.glm.50 0.7687 0.485 1.5846 0.11463
geno.glm.55 0.4538 0.566 0.8018 0.42364
geno.glm.69 1.1080 0.552 2.0057 0.04624
geno.glm.77 0.2336 0.355 0.6572 0.51178
geno.glm.78 1.2370 0.387 3.1928 0.00164
geno.glm.99 0.4800 0.501 0.9573 0.33957
geno.glm.100 0.6125 0.375 1.6342 0.10378
geno.glm.102 -0.1097 0.447 -0.2453 0.80650
geno.glm.138 0.9849 0.305 3.2342 0.00143
geno.glm.140 0.4224 0.482 0.8756 0.38228
geno.glm.143 0.0215 0.500 0.0430 0.96571
geno.glm.155 0.3706 0.522 0.7104 0.47830
geno.glm.162 1.3679 0.472 2.8974 0.00418
geno.glm.165 0.1172 0.460 0.2550 0.79896
geno.glm.rare 0.3936 0.189 2.0837 0.03846

Haplotypes:
DQB DRB B hap.freq
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geno.glm.13 21 7 7 0.0124
geno.glm.17 21 7 44 0.0229
geno.glm.34 31 4 44 0.0286
geno.glm.50 31 11 35 0.0170
geno.glm.55 31 11 51 0.0114
geno.glm.69 32 4 7 0.0150
geno.glm.77 32 4 60 0.0319
geno.glm.78 32 4 62 0.0239
geno.glm.99 51 1 27 0.0150
geno.glm.100 51 1 35 0.0300
geno.glm.102 51 1 44 0.0176
geno.glm.138 62 2 7 0.0510
geno.glm.140 62 2 18 0.0154
geno.glm.143 62 2 44 0.0141
geno.glm.155 63 2 7 0.0136
geno.glm.162 63 13 7 0.0161
geno.glm.165 63 13 44 0.0165
geno.glm.rare * * * 0.5434
haplo.base 21 3 8 0.1041

Explanation of Results

The above table for Coefficients lists the estimated regression coefficient (coef), its standard error
(se), the corresponding t-statistic (t.stat), and p-value (pval). The labels for haplotype coefficients
are a concatenation of the name of the genotype matrix (geno.glm) and unique haplotype codes
assigned within haplo.glm. The haplotypes corresponding to these haplotype codes are listed in the
Haplotypes table, along with the estimates of the haplotype frequencies (hap.freq). The rare hap-
lotypes, those with expected counts less than haplo.min.count=5 (equivalent to having frequencies
less than haplo.freq.min = 0.01136 in the above example), are pooled into a single category labeled
geno.glm.rare. The haplotype chosen as the baseline category for the design matrix (most frequent
haplotype is the default) is labeled as haplo.base; more information on the baseline may be found
in section 6.6.2.

6.4 Fitting Haplotype x Covariate Interactions

Interactions are fit by the standard S-language model syntax, using a ’∗’ in the model formula to
indicate main effects and interactions.

> fit.inter <- haplo.glm(y ~ male * geno.glm, family = gaussian,
+ data = my.data, na.action = "na.geno.keep",
+ locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
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+ control = haplo.glm.control(haplo.min.count = 5))
> print(fit.inter)

Call:
haplo.glm(formula = y ~ male * geno.glm,

family = gaussian, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
control = haplo.glm.control(haplo.min.count = 5))

Coefficients:
coef se t.stat pval

(Intercept) 0.6807 0.290 2.347 2.00e-02
male 0.5003 0.318 1.575 1.17e-01
geno.glm.13 0.5473 0.390 1.403 1.62e-01
geno.glm.17 0.3003 0.469 0.640 5.23e-01
geno.glm.34 -0.0409 0.593 -0.069 9.45e-01
geno.glm.50 1.0612 0.451 2.355 1.96e-02
geno.glm.55 0.8761 0.505 1.735 8.44e-02
geno.glm.69 0.9983 0.337 2.965 3.43e-03
geno.glm.77 0.9384 0.591 1.588 1.14e-01
geno.glm.78 0.6302 0.506 1.244 2.15e-01
geno.glm.99 0.5981 0.462 1.293 1.97e-01
geno.glm.100 0.7198 0.399 1.803 7.31e-02
geno.glm.102 -0.1355 0.501 -0.271 7.87e-01
geno.glm.138 1.3569 0.357 3.801 1.96e-04
geno.glm.140 0.3777 0.447 0.846 3.99e-01
geno.glm.143 -0.8084 0.580 -1.394 1.65e-01
geno.glm.155 1.4905 0.551 2.706 7.45e-03
geno.glm.162 1.4008 0.453 3.090 2.31e-03
geno.glm.165 0.0519 0.296 0.175 8.61e-01
geno.glm.rare 0.6155 0.197 3.131 2.03e-03
male:geno.glm.13 1.1326 0.308 3.681 3.06e-04
male:geno.glm.17 0.4201 0.746 0.563 5.74e-01
male:geno.glm.34 -0.3481 0.676 -0.515 6.07e-01
male:geno.glm.50 -1.2600 0.134 -9.374 0.00e+00
male:geno.glm.55 -1.2429 0.177 -7.008 4.56e-11
male:geno.glm.69 0.4219 0.314 1.342 1.81e-01
male:geno.glm.77 -1.0033 0.694 -1.445 1.50e-01
male:geno.glm.78 1.1132 0.697 1.596 1.12e-01
male:geno.glm.99 -0.2310 0.292 -0.792 4.29e-01
male:geno.glm.100 -0.0882 0.631 -0.140 8.89e-01
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male:geno.glm.102 0.2329 0.668 0.349 7.28e-01
male:geno.glm.138 -0.6347 0.511 -1.241 2.16e-01
male:geno.glm.140 1.2916 0.120 10.765 0.00e+00
male:geno.glm.143 1.6021 0.828 1.934 5.46e-02
male:geno.glm.155 -2.0260 0.725 -2.795 5.74e-03
male:geno.glm.162 -0.2029 0.392 -0.518 6.05e-01
male:geno.glm.165 0.1541 0.259 0.596 5.52e-01
male:geno.glm.rare -0.2787 0.236 -1.183 2.38e-01

Haplotypes:
DQB DRB B hap.freq

geno.glm.13 21 7 7 0.0127
geno.glm.17 21 7 44 0.0232
geno.glm.34 31 4 44 0.0285
geno.glm.50 31 11 35 0.0168
geno.glm.55 31 11 51 0.0114
geno.glm.69 32 4 7 0.0140
geno.glm.77 32 4 60 0.0320
geno.glm.78 32 4 62 0.0243
geno.glm.99 51 1 27 0.0149
geno.glm.100 51 1 35 0.0300
geno.glm.102 51 1 44 0.0178
geno.glm.138 62 2 7 0.0514
geno.glm.140 62 2 18 0.0154
geno.glm.143 62 2 44 0.0144
geno.glm.155 63 2 7 0.0136
geno.glm.162 63 13 7 0.0161
geno.glm.165 63 13 44 0.0166
geno.glm.rare * * * 0.5427
haplo.base 21 3 8 0.1042

Explanation of Results

The listed results are as explained under section 6.3. The only difference is that the interaction
coefficients are labeled as a concatenation of the covariate (male in this example) and the name of
the haplotype as described above.

6.5 Regression for a Binomial Trait

Next we illustrate the fitting of a binomial trait with the same genotype matrix and covariate.
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> fit.bin <- haplo.glm(y.bin ~ male + geno.glm,
+ family = binomial, data = my.data, na.action = "na.geno.keep",
+ locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
+ control = haplo.glm.control(haplo.min.count = 5))
> print(fit.bin)

Call:
haplo.glm(formula = y.bin ~ male + geno.glm,

family = binomial, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
control = haplo.glm.control(haplo.min.count = 5))

Coefficients:
coef se t.stat pval

(Intercept) 1.740 3.35e-01 5.19e+00 5.22e-07
male -0.558 3.39e-01 -1.65e+00 1.01e-01
geno.glm.13 -17.975 1.50e-08 -1.20e+09 0.00e+00
geno.glm.17 -0.761 7.25e-01 -1.05e+00 2.95e-01
geno.glm.34 0.250 6.22e-01 4.02e-01 6.88e-01
geno.glm.50 -2.283 2.22e-01 -1.03e+01 0.00e+00
geno.glm.55 -1.772 2.63e-01 -6.75e+00 1.61e-10
geno.glm.69 -2.533 2.85e-01 -8.87e+00 4.44e-16
geno.glm.77 -1.124 6.72e-01 -1.67e+00 9.58e-02
geno.glm.78 -1.651 8.02e-01 -2.06e+00 4.10e-02
geno.glm.99 -1.838 4.05e-01 -4.54e+00 9.78e-06
geno.glm.100 -2.750 5.13e-01 -5.36e+00 2.33e-07
geno.glm.102 -0.974 8.49e-01 -1.15e+00 2.52e-01
geno.glm.138 -2.847 7.69e-01 -3.70e+00 2.79e-04
geno.glm.140 -0.827 8.27e-01 -1.00e+00 3.18e-01
geno.glm.143 -0.633 9.31e-01 -6.80e-01 4.97e-01
geno.glm.155 -1.588 8.48e-01 -1.87e+00 6.27e-02
geno.glm.162 -17.572 1.75e-08 -1.00e+09 0.00e+00
geno.glm.165 -1.040 8.54e-01 -1.22e+00 2.24e-01
geno.glm.rare -1.241 2.45e-01 -5.08e+00 8.83e-07

Haplotypes:
DQB DRB B hap.freq

geno.glm.13 21 7 7 0.0129
geno.glm.17 21 7 44 0.0226
geno.glm.34 31 4 44 0.0286
geno.glm.50 31 11 35 0.0170
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geno.glm.55 31 11 51 0.0115
geno.glm.69 32 4 7 0.0169
geno.glm.77 32 4 60 0.0305
geno.glm.78 32 4 62 0.0236
geno.glm.99 51 1 27 0.0152
geno.glm.100 51 1 35 0.0298
geno.glm.102 51 1 44 0.0175
geno.glm.138 62 2 7 0.0515
geno.glm.140 62 2 18 0.0155
geno.glm.143 62 2 44 0.0140
geno.glm.155 63 2 7 0.0129
geno.glm.162 63 13 7 0.0159
geno.glm.165 63 13 44 0.0164
geno.glm.rare * * * 0.5440
haplo.base 21 3 8 0.1041

Explanation of Results

The underlying methods for haplo.glm are based on a prospective likelihood. Normally, this
type of likelihood works well for case-control studies with standard covariates. For ambiguous
haplotypes, however, one needs to be careful when interpreting the results from fitting haplo.glm
to case-control data. Because cases are over-sampled, relative to the population prevalence (or
incidence, for incident cases), haplotypes associated with disease will be over-represented in the case
sample, and so estimates of haplotype frequencies will be biased. Positively associated haplotypes
will have haplotype frequency estimates that are higher than the population haplotype frequency.
To avoid this problem, one can weight each subject. The weights for the cases should be the
population prevalence, and the weights for controls should be 1 (assuming the disease is rare in the
population, and controls are representative of the general population). See Stram[9] for background
on using weights, and see the help file for haplo.glm for how to implement weights.

The estimated regression coefficients for case-control studies can be biased by either a large
amount of haplotype ambiguity and mis-specified weights, or by departures from Hardy Weinberg
equilibrium of the haplotypes in the pool of cases and controls. Generally, the bias is small, but
tends to be towards the null of no association. See Stram[9] and Epstein[5] for further details.

6.6 Control Parameters

Additional parameters are handled using control, which is a list of parameters providing additional
functionality in haplo.glm. This list is set up by the function haplo.glm.control. See the help file
(help(haplo.glm.control)) for a full list of control parameters, with details of their usage. Some of
the options are described here.
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6.6.1 Controlling Genetic Models: haplo.effect

The haplo.effect control parameter for haplo.glm instructs whether the haplotype effects are fit as
additive, dominant, or recessive. That is, haplo.effect determines whether the covariate (x) coding
of haplotypes follows the values in Table 1 for each effect type. Heterozygous means a subject has
one copy of a particular haplotype, and homozygous means a subject has two copies of a particular
haplotype.

Table 1: Coding haplotype covariates in a model matrix

Model Effects Heterozygous Homozygous
recessive 0 1
additive 1 2

dominant 1 1

Note that in a recessive model, the haplotype effects are estimated only from subjects who are ho-
mozygous for haplotype. This means that subjects who are homozygotes for the baseline haplotype
and subjects who are heterozygous make up the baseline group. Some of the haplotypes which
meet the haplo.freq.min and haplo.count.min cut-offs may occur as homozygous in only a few of
the subjects. In that case, the estimated effect may be unreliable. Below we domonstrate how to
use earlier results from haplo.em to find the number of homozygous subjects for each haplotype.

> is.homzyg <- save.em$hap1code == save.em$hap2code
> homzyg.counts <- table(save.em$hap1code[is.homzyg])
> homzyg.counts

4 12 34
2 1 1

The above calculation uses hap1code and hap2code from within save.em, which are haplotype
codes for each subject’s haplotype pair. The homzyg.counts result is a table showing the haplotype
codes (row 1) and how many times they appear homozygous in any subject (row2). Since the hap-
lotype coded as 4 is homozygous in two subjects, but none are over a count of five, so the recessive
model is not appropriate for the hla.demo dataset.

The default haplo.effect is additive, whereas the example below illustrates the fit of a dominant
effect of haplotypes for the gaussian trait with the gender covariate.

> fit.dom <- haplo.glm(y ~ male + geno.glm, family = gaussian,
+ data = my.data, na.action = "na.geno.keep",
+ locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
+ control = haplo.glm.control(haplo.effect = "dominant",
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+ haplo.min.count = 5))
> print(fit.dom)

Call:
haplo.glm(formula = y ~ male + geno.glm,

family = gaussian, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
control = haplo.glm.control(haplo.effect = "dominant",

haplo.min.count = 5))

Coefficients:
coef se t.stat pval

(Intercept) 1.42992 0.318 4.4908 1.20e-05
male 0.12606 0.163 0.7755 4.39e-01
geno.glm.13 0.84568 0.521 1.6223 1.06e-01
geno.glm.17 0.02521 0.426 0.0592 9.53e-01
geno.glm.34 -0.52496 0.371 -1.4133 1.59e-01
geno.glm.50 0.50410 0.467 1.0791 2.82e-01
geno.glm.55 0.18271 0.556 0.3286 7.43e-01
geno.glm.69 0.79200 0.529 1.4964 1.36e-01
geno.glm.77 -0.00494 0.337 -0.0147 9.88e-01
geno.glm.78 0.99835 0.371 2.6931 7.68e-03
geno.glm.99 0.27543 0.497 0.5546 5.80e-01
geno.glm.100 0.37100 0.362 1.0254 3.06e-01
geno.glm.102 -0.35014 0.433 -0.8079 4.20e-01
geno.glm.138 0.74078 0.282 2.6289 9.23e-03
geno.glm.140 0.15969 0.467 0.3417 7.33e-01
geno.glm.143 -0.19277 0.502 -0.3837 7.02e-01
geno.glm.155 0.02909 0.500 0.0582 9.54e-01
geno.glm.162 1.14736 0.464 2.4708 1.43e-02
geno.glm.165 -0.11327 0.449 -0.2525 8.01e-01
geno.glm.rare 0.20226 0.260 0.7791 4.37e-01

Haplotypes:
DQB DRB B hap.freq

geno.glm.13 21 7 7 0.0124
geno.glm.17 21 7 44 0.0232
geno.glm.34 31 4 44 0.0286
geno.glm.50 31 11 35 0.0169
geno.glm.55 31 11 51 0.0115
geno.glm.69 32 4 7 0.0152
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geno.glm.77 32 4 60 0.0318
geno.glm.78 32 4 62 0.0239
geno.glm.99 51 1 27 0.0150
geno.glm.100 51 1 35 0.0300
geno.glm.102 51 1 44 0.0176
geno.glm.138 62 2 7 0.0509
geno.glm.140 62 2 18 0.0154
geno.glm.143 62 2 44 0.0140
geno.glm.155 63 2 7 0.0136
geno.glm.162 63 13 7 0.0161
geno.glm.165 63 13 44 0.0164
geno.glm.rare * * * 0.5434
haplo.base 21 3 8 0.1041

6.6.2 Selecting the Baseline Haplotype (NEW)

The haplotype chosen for the baseline in the model is the one with the highest frequency. Sometimes
the most frequent haplotype may be an at-risk haplotype, and so the measure of its effect is desired.
To specify a more appropriate haplotype as the baseline in the binomial example, choose from the
list of other common haplotypes, fit.bin$haplo.common. To specify an alternative baseline, such as
haplotype 77, use the control parameter haplo.base and haplotype code, as in the example below.

> fit.bin$haplo.common

[1] 13 17 34 50 55 69 77 78 99 100 102 138 140 143
[15] 155 162 165

> fit.bin$haplo.freq.init[fit.bin$haplo.common]

[1] 0.01245945 0.02332031 0.02848720 0.01753713 0.01137492
[6] 0.01677789 0.03060053 0.02349463 0.01504752 0.03018431

[11] 0.01730642 0.05097906 0.01545287 0.01367136 0.01332757
[16] 0.01655073 0.01606451

> fit.bin.base77 <- haplo.glm(y.bin ~ male + geno.glm,
+ family = binomial, data = my.data, na.action = "na.geno.keep",
+ locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
+ control = haplo.glm.control(haplo.base = 77,
+ haplo.min.count = 5))
> print(fit.bin.base77)

Call:
haplo.glm(formula = y.bin ~ male + geno.glm,
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family = binomial, data = my.data, na.action = "na.geno.keep",
locus.label = label, allele.lev = attributes(geno.glm)$unique.alleles,
control = haplo.glm.control(haplo.base = 77,

haplo.min.count = 5))

Coefficients:
coef se t.stat pval

(Intercept) -0.5077 2.87e-01 -1.77e+00 7.88e-02
male -0.5578 3.26e-01 -1.71e+00 8.87e-02
geno.glm.4 1.1237 3.30e-01 3.41e+00 7.87e-04
geno.glm.13 -16.8518 2.91e-09 -5.79e+09 0.00e+00
geno.glm.17 0.3625 9.74e-02 3.72e+00 2.58e-04
geno.glm.34 1.3735 2.20e-01 6.24e+00 2.51e-09
geno.glm.50 -1.1590 2.38e-02 -4.87e+01 0.00e+00
geno.glm.55 -0.6484 2.02e-02 -3.20e+01 0.00e+00
geno.glm.69 -1.4092 2.02e-02 -6.98e+01 0.00e+00
geno.glm.78 -0.5269 5.77e-02 -9.14e+00 0.00e+00
geno.glm.99 -0.7145 4.49e-02 -1.59e+01 0.00e+00
geno.glm.100 -1.6262 3.98e-02 -4.09e+01 0.00e+00
geno.glm.102 0.1496 4.65e-02 3.22e+00 1.51e-03
geno.glm.138 -1.7230 9.60e-02 -1.80e+01 0.00e+00
geno.glm.140 0.2968 6.75e-02 4.40e+00 1.77e-05
geno.glm.143 0.4904 4.87e-02 1.01e+01 0.00e+00
geno.glm.155 -0.4640 2.51e-02 -1.85e+01 0.00e+00
geno.glm.162 -16.4486 5.44e-09 -3.02e+09 0.00e+00
geno.glm.165 0.0832 5.85e-02 1.42e+00 1.57e-01
geno.glm.rare -0.1177 2.14e-01 -5.49e-01 5.84e-01

Haplotypes:
DQB DRB B hap.freq

geno.glm.4 21 3 8 0.1041
geno.glm.13 21 7 7 0.0129
geno.glm.17 21 7 44 0.0226
geno.glm.34 31 4 44 0.0286
geno.glm.50 31 11 35 0.0170
geno.glm.55 31 11 51 0.0115
geno.glm.69 32 4 7 0.0169
geno.glm.78 32 4 62 0.0236
geno.glm.99 51 1 27 0.0152
geno.glm.100 51 1 35 0.0298
geno.glm.102 51 1 44 0.0175
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geno.glm.138 62 2 7 0.0515
geno.glm.140 62 2 18 0.0155
geno.glm.143 62 2 44 0.0140
geno.glm.155 63 2 7 0.0129
geno.glm.162 63 13 7 0.0159
geno.glm.165 63 13 44 0.0164
geno.glm.rare * * * 0.5440
haplo.base 32 4 60 0.0305

Explanation of Results

The above model has the same haplotypes as fit.bin, except haplotype 4, the old baseline, now
has an effect estimate while haplotype 77 is the new baseline. Due to randomness in the starting
values of the haplotype frequency estimation, different runs of haplo.glm may result in a different
set of haplotypes meeting the minimum counts requirement for being modeled. Therefore, once you
have arrived at a suitable model, and you wish to modify it by changing baseline and/or effects, you
can make results consistent by controlling the randomness using set.seed, as described in section
3.3. In this document, we use the same seed before making fit.bin and fit.bin.base77.

7 Extended Applications

The following functions are designed to wrap the functionality of the major functions in Haplo
Stats into other useful applications.

7.1 Combine Score and Group Results: haplo.score.merge

When analyzing a qualitative trait, such as binary, it can be helpful to align the results from
haplo.score with haplo.group. To do so, use the function haplo.score.merge, as illustrated in the
following example:

> merge.bin <- haplo.score.merge(score.bin, group.bin)
> print(merge.bin, nlines = 10)

------------------------------------------------------------
Haplotype Scores, p-values, and Frequencies

By Group
------------------------------------------------------------

DQB DRB B Hap.Score p.val Hap.Freq y.bin.0 y.bin.1
1 62 2 7 -2.19387 0.02824 0.05098 0.06789 0.01587
2 51 1 35 -1.58421 0.11315 0.03018 0.03754 0.00907
3 63 13 7 -1.56008 0.11874 0.01655 0.02176 NA
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4 21 7 7 -1.47495 0.14023 0.01246 0.01969 NA
5 32 4 7 -1.00091 0.31687 0.01678 0.02628 0.00794
6 32 4 62 -0.67990 0.49657 0.02349 0.01911 NA
7 51 1 27 -0.66509 0.50599 0.01505 0.01855 0.00907
8 31 11 35 -0.58380 0.55936 0.01754 0.01982 0.01587
9 31 11 51 -0.43721 0.66196 0.01137 0.01321 NA
10 51 1 44 0.00826 0.99341 0.01731 0.01595 0.00000

Explanation of Results

The first column is a row index, the next columns (3 in this example) illustrate the haplotype,
the Hap.Score column is the score statistic and p.val the corresponding χ2 p-value. Hap.Freq is the
haplotype frequency for the total sample, and the remaining columns are the estimated haplotype
frequencies for each of the group levels (y.bin in this example). The default print method only
prints results for haplotypes appearing in the haplo.score output. To view all haplotypes, use the
print option all.haps=TRUE, which prints all haplotypes from the haplo.group output. The output
is ordered by the score statistic, but the order.by parameter can specify ordering by haplotypes or
by haplotype frequencyies.

7.2 Case-Control Haplotype Analysis: haplo.cc (NEW)

It is possible to combine the results of haplo.score, haplo.group, and haplo.glm for case-control data,
all performed within haplo.cc. The function peforms a score test and a glm on the same haplotypes.
Haplotypes used in the analysis have an expected count at least as large as haplo.min.count, which
is explained in section 6.2.
Below, we execute haplo.cc, view a print-out of the results, then look at the names of the objects
stored within the cc.hla result.

> cc.hla <- haplo.cc(y = y.bin, geno = geno, haplo.min.count = 5,
+ locus.label = label)
> print(cc.hla, nlines = 25, digits = 2)

------------------------------------------------------------
Global Score Statistics

------------------------------------------------------------

global-stat = 34, df = 18, p-val = 0.014

------------------------------------------------------------
Counts for Cases and Controls

------------------------------------------------------------
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control case
157 63

------------------------------------------------------------
Haplotype Scores, p-values, Hap-Frequencies

(hf), and Odds Ratios (95% CI)
------------------------------------------------------------

DQB DRB B Hap-Score p-val pool.hf control.hf case.hf
151 62 2 7 -2.1939 0.02824 0.0491 0.0679 1.6e-02
101 51 1 35 -1.5842 0.11315 0.0302 0.0376 8.8e-03
166 63 13 7 -1.5601 0.11874 0.0142 0.0218 NA
22 21 7 7 -1.4750 0.14023 0.0124 0.0197 NA
79 32 4 7 -1.0009 0.31687 0.0251 0.0263 7.9e-03
78 32 4 62 -0.6799 0.49657 0.0188 0.0191 NA
100 51 1 27 -0.6651 0.50599 0.0144 0.0161 8.8e-03
29 31 11 35 -0.5838 0.55936 0.0176 0.0198 1.6e-02
34 31 11 51 -0.4372 0.66196 0.0111 0.0125 7.9e-03
103 51 1 44 0.0083 0.99341 0.0177 0.0178 7.7e-08
77 32 4 60 0.0318 0.97462 0.0307 0.0315 4.0e-02
148 62 2 44 0.1658 0.86830 0.0135 0.0133 NA
162 63 13 44 0.2206 0.82541 0.0161 0.0164 9.3e-03
169 63 2 7 0.2982 0.76555 0.0136 0.0103 1.6e-02
145 62 2 18 0.7885 0.43038 0.0156 0.0126 2.4e-02
17 21 7 44 0.8456 0.39776 0.0236 0.0175 4.8e-02
51 31 4 44 2.5077 0.01215 0.0284 0.0145 6.3e-02
12 21 3 8 3.7776 0.00016 0.1040 0.0697 1.9e-01
1 21 1 8 NA NA 0.0023 0.0033 NA
2 21 10 8 NA NA 0.0018 0.0032 NA
3 21 13 8 NA NA 0.0027 NA NA
4 21 2 18 NA NA 0.0023 0.0032 NA
5 21 2 7 NA NA 0.0023 0.0032 NA
6 21 3 18 NA NA 0.0046 0.0064 NA
7 21 3 35 NA NA 0.0057 0.0064 NA

glm.eff OR.lower OR OR.upper
151 Eff 1.5e-02 6.7e-02 3.0e-01
101 Eff 2.2e-02 7.9e-02 2.8e-01
166 Eff 2.5e-08 2.5e-08 2.5e-08
22 Eff 1.6e-08 1.6e-08 1.6e-08
79 Eff 4.1e-02 8.0e-02 1.5e-01
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78 Eff 4.4e-02 2.1e-01 1.0e+00
100 Eff 1.0e-01 1.9e-01 3.6e-01
29 Eff 8.9e-02 1.5e-01 2.4e-01
34 R 1.8e-01 2.9e-01 4.7e-01
103 Eff 8.4e-02 4.4e-01 2.3e+00
77 Eff 8.5e-02 3.0e-01 1.1e+00
148 Eff 8.5e-02 5.3e-01 3.3e+00
162 Eff 6.5e-02 3.5e-01 1.9e+00
169 Eff 4.6e-02 2.3e-01 1.2e+00
145 Eff 1.2e-01 5.7e-01 2.8e+00
17 Eff 1.3e-01 5.3e-01 2.2e+00
51 Eff 3.7e-01 1.2e+00 4.1e+00
12 Base NA 1.0e+00 NA
1 R 1.8e-01 2.9e-01 4.7e-01
2 R 1.8e-01 2.9e-01 4.7e-01
3 R 1.8e-01 2.9e-01 4.7e-01
4 R 1.8e-01 2.9e-01 4.7e-01
5 R 1.8e-01 2.9e-01 4.7e-01
6 R 1.8e-01 2.9e-01 4.7e-01
7 R 1.8e-01 2.9e-01 4.7e-01

> names(cc.hla)

[1] "cc.df" "group.count" "score.lst" "fit.lst"
[5] "ci.prob"

Explanation of Results

First, from the names function we see that cc.hla also contains score.lst and fit.lst, which are the
haplo.score and haplo.glm objects, respectively. For the printed results of haplo.cc, first are the
global statistics from haplo.score, followed by cell counts for cases and controls. The last portion
of the output is a data frame containing combined results for individual haplotypes:

• Hap-Score: haplotype score statistic

• p-val: haplotype score statistic p-value

• sim p-val: (if simulations performed) simulated p-value for the haplotype score statistic

• pool.hf: haplotype frequency for the pooled sample

• control.hf: haplotype frequencies for the control sample only

• case.hf: haplotype frequencies for the case sample only
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• glm.eff: one of three ways the haplotype appeared in the glm model: Eff: modeled as an
effect; Base: part of the baseline; and R: a rare haplotype, included in the effect of pooled
rare haplotypes

• OR.lower: Odds Ratio confidence interval lower limit

• OR: Odds Ratio for each effect in the model

• OR.upper: Odds Ratio confidence interval upper limit

Significance levels are indicated by the p-values for the score statistics, and the odds ratio
(OR) confidence intervals for the haplotype effects. Note that the Odds Ratios are effect sizes of
haplotypes, assuming haplotype effects are multiplicative. Since this last table has many columns,
lines are wrapped in the output in this manual. You can align wrapped lines by the haplotype
code which appears on the far left. Alternatively, instruct the print function to only print digits
significant digits, and set the width settings for output in your session using the options() function.

7.3 Score Tests on Sub-Haplotypes: haplo.score.slide (NEW)

To evaluate the association of sub-haplotypes (subsets of alleles from the full haplotype) with a
trait, the user can evaluate a ”window” of alleles by haplo.score, and slide this window across the
entire haplotype. This procedure is implemented by the function haplo.score.slide. To illustrate
this method, we use all 11 loci in the demo data, hla.demo.

First, make the geno matrix and the locus labels for the 11 loci. Then use haplo.score.slide for
a window of 3 loci (n.slide=3), which will slide along the haplotype for all 9 contiguous subsets of
size 3, using the previously defined gaussian trait resp.

> geno.11 <- hla.demo[, -c(1:4)]
> label.11 <- c("DPB", "DPA", "DMA", "DMB", "TAP1",
+ "TAP2", "DQB", "DQA", "DRB", "B", "A")
> score.slide.gaus <- haplo.score.slide(resp, geno.11,
+ trait.type = "gaussian", n.slide = 3, skip.haplo = 5/(2 *
+ nrow(geno.11)), locus.label = label.11)
> print(score.slide.gaus)

start.loc score.global.p global.p.sim max.p.sim
1 1 0.215498 NA NA
2 2 0.093664 NA NA
3 3 0.390424 NA NA
4 4 0.487713 NA NA
5 5 0.137468 NA NA
6 6 0.149241 NA NA
7 7 0.110008 NA NA
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8 8 0.009963 NA NA
9 9 0.029047 NA NA

Explanation of Results

The first column is the row index of the nine calls to haplo.score, the second column is the number
of the starting locus of the sub-haplotype, the third column is the global score statistic p-value for
each call. The last two columns are the simulated p-values for the global and maximum score
statistics, respectively. If you specify simulate=TRUE in the function call, the simulated p-values
would be present.

7.3.1 Plot Results from haplo.score.slide

The results from haplo.score.slide can be easily viewed in a plot shown in Figure 2, at the end
of this document. The x-axis has tick marks for each locus, and the y-axis is the −log10(pval).
To select which p-value to plot, use the parameter pval, with choices ”global”, ”global.sim”, and
”max.sim” corresponding to p-values described above. If the simulated p-values were not computed,
the default is to plot the global p-values. For each p-value, a horizontal line is drawn at the height
of −log10(pval) across the loci over which it was calculated. For example, the p-value score.global.p
= 0.009963 for loci 8-10 is plotted as a horizontal line at y = 2.002 spanning the 8th, 9th, and 10th

x-axis tick marks.

7.4 Scanning Haplotypes Within a Fixed-Width Window: haplo.scan (NEW)

Another method to search for a candidate locus within a genome region is haplo.scan. This method
searches for a region for which the haplotypes have the strongest association with a binary trait by
sliding a window of fixed width over each marker locus, and then scans over all haplotype lengths
within each window. This latter step, scanning over all possible haplotype lengths within a window,
distinguishes haplo.scan from haplo.score.slide (which considers only the maximum haplotype length
within a window). To acount for unknown linkage phase, the function haplo.em is called prior to
scanning, to create a list of haplotype pairs and posterior probabilities. To illustrate the scanning of
window, consider a 10-locus dataset. When placing a window of width 3 over locus 5, the possible
haplotype lengths that contain locus 5 are three (loci 3-4-5, 4-5-6, and 5-6-7), two (loci 4-5 and
5-6) and one (locus 5). For each of these loci subsets a score statistic is computed, which is based
on the difference between the mean vector of haplotype counts for cases and that for controls.
The maximum of these score statistics, over all possible haplotype lengths within a window, is the
locus-specific test statistic, or the locus scan statistic. The global test statistic is the maximum over
all computed score statistics. To compute p-values, the case/control status is randomly permuted.
Below we run haplo.scan on the 11-locus HLA dataset with a binary response and a window width
of 3, but first we use the results of summaryGeno to choose subjects with less than 50, 000 haplotype
pairs to speed calculations with all 11 polymorphic loci with many missing alleles.
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> geno.11 <- hla.demo[, -c(1:4)]
> y.bin <- 1 * (hla.demo$resp.cat == "low")
> hla.summary <- summaryGeno(geno.11, miss.val = c(0,
+ NA))
> many.haps <- (1:length(y.bin))[hla.summary[, 4] >
+ 50000]
> geno.scan <- geno.11[-many.haps, ]
> y.scan <- y.bin[-many.haps]
> scan.hla <- haplo.scan(y.scan, geno.scan, width = 3,
+ sim.control = score.sim.control(min.sim = 100,
+ max.sim = 100), em.control = haplo.em.control())
> print(scan.hla)

Call:
haplo.scan(y = y.scan, geno = geno.scan,

width = 3, em.control = haplo.em.control(),
sim.control = score.sim.control(min.sim = 100,

max.sim = 100))

============================================================
Locus Scan-statistic Simulated P-values

============================================================

loc-1 loc-2 loc-3 loc-4 loc-5 loc-6 loc-7 loc-8
sim.p-val 0.03 0.02 0.03 0.01 0.01 0.03 0.01 0.03

loc-9 loc-10 loc-11
sim.p-val 0.01 0.01 0.01

Loci with max scan statistic: 2
Max-Stat Simulated Global p-value: 0.02

Number of Simulations: 100

Explanation of Results

In the output we report the simulated p-values for each locus test statistic. Additionally, we
report the loci (or locus) which provided the maximum observed test statistic, and the Max-Stat
Simulated Global p-value is the simulated p-value for that maximum statistic. We print the number
of simulations, because they are performed until p-value precision criteria are met, as described in
section 5.7. We would typically allow simulations to run under default parameters rather than
limiting to 100 by the control parameters.
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8 License and Warranty

License:

Copyright 2003 Mayo Foundation for Medical Education and Research.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to
Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

For other licensing arrangements, please contact Daniel J. Schaid.
Daniel J. Schaid, Ph.D.
Division of Biostatistics
Harwick Building - Room 775
Mayo Clinic
200 First St., SW
Rochester, MN 55905
phone: 507-284-0639
fax: 507-284-9542
email: schaid@mayo.edu
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Appendix

A Counting Haplotype Pairs When Marker Phenotypes Have Miss-
ing Alleles

The following describes the process for counting the number of haplotype pairs that are consistent
with a subject’s observed marker phenotypes, allowing for some loci with missing data. Note that
we refer to marker phenotypes, but our algorithm is oriented towards typical markers that have a
one-to-one correspondence with their genotypes. We first describe how to count when none of the
loci have missing alleles, and then generalize to allow loci to have either one or two missing alleles.
When there are no missing alleles, note that homozygous loci are not ambiguous with respect
to the underlying haplotypes, because at these loci the underlying haplotypes will not differ if we
interchange alleles between haplotypes. In contrast, heterozygous loci are ambiguous, because we do
not know the haplotype origin of the distinguishable alleles (i.e., unknown linkage phase). However,
if there is only one heterozygous locus, then it doesn’t matter if we interchange alleles, because the
pair of haplotypes will be the same. In this situation, if parental origin of alleles were known, then
interchanging alleles would switch parental origin of haplotypes, but not the composition of the
haplotypes. Hence, ambiguity arises only when there are at least two heterozygous loci. For each
heterozygous locus beyond the first one, the number of possible haplotypes increases by a factor of
2, because we interchange the two alleles at each heterozygous locus to create all possible pairs of
haplotypes. Hence, the number of possible haplotype pairs can be expressed as 2x, where x = H−1,
if H (the number of heterozygous loci) is at least 2, otherwise x = 0.

Now consider a locus with missing alleles. The possible alleles at a given locus are considered
to be those that are actually observed in the data. Let ai denote the number of distinguishable
alleles at the locus. To count the number of underlying haplotypes that are consistent with the
observed and missing marker data, we need to enumerate all possible genotypes for the loci with
missing data, and consider whether the imputed genotypes are heterozygous or homozygous.

To develop our method, first consider how to count the number of genotypes at a locus, say the
ith locus, when either one or two alleles are missing. This locus could have either a homozygous
or heterozygous genotype, and both possibilities must be considered for our counting method. If
the locus is considered as homozygous, and there is one allele missing, then there is only one pos-
sible genotype; if there are two alleles missing, then there are ai possible genotypes. A function
to perform this counting for homozygous loci is denoted f(ai). If the locus is considered as het-
erozygous, and there is one allele missing, then there are ai − 1 possible genotypes; if there are two
alleles missing, then there are ai(ai−1)

2 possible genotypes. A function to perform this counting for
heterozygous loci is denoted g(ai) These functions and counts are summarized in Table A.1.

Table A.1: Factors for when a locus having missing allele(s) is counted as homozygous(f()) or
heterozygous(g())
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Number of Homozygous Heterozygous
missing alleles function f(ai) function g(ai)

1 1 ai − 1
2 ai

ai(ai−1)
2

Now, to use these genotype counting functions to determine the number of possible haplotype
pairs, first consider a simple case where only one locus, say the ith locus, has two missing alleles.
Suppose that the phenotype has H heterozygous loci (H is the count of heterozygous loci among
those without missing data). We consider whether the locus with missing data is either homozygous
or heterozygous, to give the count of possible haplotype pairs as

ai2x +
[
ai(ai − 1)

2

]
2x+1 (1)

where again x = H − 1 if H is at least 2, otherwise x = 0. This special case can be represented by
our more general genotype counting functions as

f(ai) 2x + g(ai) 2x+1 (2)

When multiple loci have missing data, we need to sum over all possible combinations of het-
erozygous and homozygous genotypes for the incomplete loci. The rows of Table A.2 below present
these combinations for up to m = 3 loci with missing data. Note that as the number of heterozy-
gous loci increases (across the columns of Table A.2), so too does the exponent of 2. To calculate
the total number of pairs of haplotypes, given observed and possibly missing genotypes, we need to
sum the terms in Table A.2 across the appropriate row. For example, with m = 3, there are eight
terms to sum over. The general formulation for this counting method can be expressed as

TotalPairs =
m∑

j=0

∑
combo

C(combo, j) (3)

where combo is a particular pattern of heterozygous and homozygous loci among the loci with
missing values (e.g., for m = 3, one combination is the first locus heterozygous and the 2nd and 3rd

third as homozygous), and C(combo, j) is the corresponding count for this pattern when there are
i loci that are heterozygous (e.g., for m = 3 and j = 1 , as illustrated in Table A.2).
Table A.2: Genotype counting terms when m loci have missing
alleles, grouped by number of heterozygous loci (out of m)
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m j = 0 of m j = 1 of m j = 2 of m j = 3 of m

0 2x

1 f(a1)2x g(a1)2x+1

2 f(a1)f(a2)2x g(a1)f(a2)2x+1 g(a1)g(a2)2x+1

f(a1)g(a2)2x+1

3 f(a1)f(a2)f(a3)2x g(a1)f(a2)f(a3)2x+1 g(a1)g(a2)f(a3)2x+2 g(a1)g(a2)g(a3)2x+2

f(a1)g(a2)f(a3)2x+1 g(a1)f(a2)g(a3)2x+2

f(a1)f(a2)g(a3)2x+1 f(a1)g(a2)g(a3)2x+2
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> plot(score.gaus)
> cat("These next two steps substitute for doing: \n",
+ "\t > locator.haplo(score.gaus)\n")

These next two steps substitute for doing:
> locator.haplo(score.gaus)

> pts.haplo <- list(x.coord = c(0.05098, 0.03018,
+ 0.1), y.coord = c(2.1582, 0.45725, -2.1566),
+ hap.txt = c("62:2:7", "51:1:35", "21:3:8"))
> text(x = pts.haplo$x.coord, y = pts.haplo$y.coord,
+ labels = pts.haplo$hap.txt)
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Figure 1: Haplotype Statistics: Score vs. Frequency, Quantitative Response43



> plot(score.slide.gaus)
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Figure 2: Global p-values for sub-haplotypes; Gaussian Response
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