
TNO report
PG/VGZ/00.038

Multivariate Imputation by Chained
Equations
MICE V1.14 User's manual

TNO Prevention and Health

Public Health
Wassenaarseweg 56
P.O.Box 2215
2301 CE Leiden
The Netherlands

Tel + 31 71 518 18 18
Fax + 31 71 518 19 20

Date

September 2005
Author(s)

S. van Buuren
C.G.M. Oudshoorn

The Quality System of the
TNO Institute Prevention
and Health has been certified in
accordance with ISO 9001

All rights reserved.

In case this report was drafted on
instructions, the rights and obligations of
contracting parties are subject to either
the Standard Conditions for Research
Instructions given to TNO, or the relevant
agreement concluded between the
contracting parties. Submitting the report
for inspection to parties who have a direct
interest is permitted.

© 2000 TNO

TNO Prevention and Health contributes to the
improvement of quality of life and to an increased healthy
human life expectancy. Research and consultancy
activities aim at improving health and health care in all
stages of life.

Netherlands Organization for Applied Scientific
Research (TNO)

Author

S. van Buuren, C.G.M. Oudshoorn
Project number

011.40684/01.01
ISBN-number

90-6743-677-1

GRANT OF PERMISSION

PERMISSION IS GRANTED TO USE, COPY AND DISTRIBUTE THIS

SOFTWARE FOR NON-COMMERCIAL AND SCIENTIFIC PURPOSES, SO

LONG AS NO FEE IS CHARGED AND SO LONG AS THE COPYRIGHT

NOTICE ABOVE, THIS GRANT OF PERMISSION, AND THE DISCLAIM-

ER BELOW APPEAR IN ALL COPIES MADE; AND SO LONG AS THE

NAME OF TNO IS NOT USED IN ANY ADVERTISING OR PUBLICITY

PERTAINING TO THE USE OR DISTRIBUTION OF THIS SOFTWARE

WITHOUT SPECIFIC, WRITTEN PRIOR AUTHORIZATION.

PERMISSION TO MODIFY OR OTHERWISE CREATE DERIVATIVE

WORKS OF THIS SOFTWARE IS NOT GRANTED.

DISCLAIMER

THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION AS

TO ITS FITNESS FOR ANY PURPOSE, AND WITHOUT WARRANTY OF

ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. TNO SHALL NOT BE LI-

ABLE FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCID-

ENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY

CLAIM ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE

SOFTWARE, EVEN IF IT HAS BEEN OR IS HEREAFTER ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

This report can be ordered from TNO-PG by transferring ƒ 21 (incl. VAT) to account number 99.889 of
TNO-PG Leiden. Please state TNO-PG publication number PG/VGZ/00.038

C:\Documents and Settings\Snotman\My Documents\studie_psychologie\scriptie\development mice\mice\inst\doc\Manual.sxw

TNO report
PG/VGZ/00.038 3

Contents

Contents.. 3

1Introduction...5

2Installation.. 6

3A simple example... 7

4Specification of the imputation model... 10
4.1Elementary imputation methods...10
4.2Adding your own imputation functions... 11
4.3Transformations and index variables .. 12
4.4Visiting scheme.. 14
4.5Choice of predictors... 14
4.6General advice in choosing predictors... 15

5Running mice..17
5.1Studying convergence.. 17
5.2Step by step.. 18
5.3Running problems.. 19
5.4Studying the initial solution... 19
5.5Using (starting) imputations created by other software.............................20

6After mice... 21
6.1Overview.. 21
6.2Extracting imputed data... 21
6.3Complete data analysis...22
6.4Pooling..22

References...24

4

TNO report
PG/VGZ/00.038 5

1 Introduction

Multiple imputation (Rubin, 1987, 1996) is the method of choice for complex incomplete
data problems. Schafer (1999) contains introductory material about the use of multiple im-
putation (MI). Other information about MI can be found in Multiple Imputation Online at

www.multiple-imputation.com

This document describes the mice library, which runs under S-Plus V4.5 and S-Plus 2000
for Windows. The library assists in performing the steps required in a full multiple imputa-
tion (MI) analysis: generation of imputations, repeated analyses on the imputed data, and
pooling of the results.

Specific features of the software are:
• columnwise specification of the imputation model;
• arbitrary patterns of missing data;
• transformations and index variables;
• subset selection of predictors;
• supports standard lm and glm complete-data methods;
• automated pooling using the Barnard-Rubin adjustment;
• callable user-written imputation functions;
• online help files.

This document describes how the tools of the mice library can be used. The software was
programmed in the S-Plus programming language.

The intended audience of the software consists of S-Plus users with S-Plus programming ex-
perience and with sound statistical capabilities who wish to solve incomplete data problems
in a principled way. This document does not discuss problems of incomplete data in general
(see the books by Little & Rubin, 1987 or Schafer, 1997), the technique of multiple imputa-
tion (see the book by Rubin, 1987 and the 1996-article) or Gibbs sampling methodology (see
Gelfand and Smith, 1990).

6

2 Installation

The mice library runs under S-Plus 4.5 and S-Plus 2000. The simplest way to install mice is
to copy the mice directory into the standard library directory, under Windows NT typically
something like C:/Program Files/sp2000/library. The following S-plus com-
mand makes the functions available to the current session:

> library(mice)

It is also possible to install mice outside the standard S-Plus library, which might be useful
for example if S-Plus runs on a network. The library can then be attached with a statement
like

> library(mice, lib.loc = "C:\\mylib")

where the distributed mice directory is assumed to be located in the directory C:\mylib.

The library is ‘pure S-Plus’ and does not use any compiled code. It should therefore also
work on other systems, but this has not been tested. Check the documentation of your local
system on attaching libraries.

TNO report
PG/VGZ/00.038 7

3 A simple example

The data frame nhanes in the mice library contains example data from Schafer (1997,
page 237). Suppose that the incomplete data are collected in either a matrix or data frame,
where missing values are coded as NA's.

> nhanes
 age bmi hyp chl
 1 1 NA NA NA
 2 2 22.7 1 187
 3 1 NA 1 187
 4 3 NA NA NA
 5 1 20.4 1 113
...

The number of the NA's can be counted and visualized as follows:

> md.pattern(nhanes)
 age hyp bmi chl
13 1 1 1 1 0
 1 1 1 0 1 1
 3 1 1 1 0 1
 1 1 0 0 1 2
 7 1 0 0 0 3
 0 8 9 10 27

There are 13 (out of 25) rows that are complete, there is one for which only bmi is missing,
and there are seven cases for which only age is known. The total number of missing values
is equal to (7*3)+(1*2)+(3*1)+(1*1) = 27. Most missing values (10) occur in chl.

The imputation algorithm is implemented in a function called mice. The function is invoked
as

> imp <- mice(nhanes)
...

which results in the object imp of a special class mids for storing multiple imputations. To
see the results of the imputation, type

> imp
Multiply imputed data set
Call:
mice(data = nhanes)
Number of multiple imputations: 5
Missing cells per column:
 age bmi hyp chl
 0 9 8 10

8

Imputation methods:
 age bmi hyp chl
 "" "pmm" "pmm" "pmm"
VisitSequence:
 bmi hyp chl
 2 3 4
PredictorMatrix:
 age bmi hyp chl
age 0 0 0 0
bmi 1 0 1 1
hyp 1 1 0 1
chl 1 1 1 0
Random generator seed value: 0

Imputations are generated according to the default method, which is predictive mean match-
ing (pmm) here. Entries VisitSequence and PredictorMatrix are algorithmic op-
tions that will be discusses later. Imputations for bmi are stored in

> impimpbmi
 1 2 3 4 5
 1 29.6 35.3 33.2 35.3 27.5
 3 30.1 30.1 29.6 29.6 29.6
 4 24.9 27.2 24.9 24.9 24.9
 6 24.9 24.9 20.4 24.9 25.5
10 22.7 26.3 22.7 26.3 27.4
11 30.1 29.6 29.6 27.5 30.1
12 22.7 26.3 28.7 26.3 26.3
16 30.1 30.1 33.2 33.2 27.5
21 33.2 20.4 30.1 20.4 33.2

Each row corresponds to a missing entry in the bmi variable. The columns contain the differ-
ent, multiple imputations. The default number of multiple imputations is equal to five. The
first completed data set can be obtained as

> complete(imp,1)
 age bmi hyp chl
 1 1 29.6 1 187
 2 2 22.7 1 187
 3 1 30.1 1 187
 4 3 24.9 1 184
 5 1 20.4 1 113
...

Note that the missing entries in nhanes have now been filled by the values from the first im-
putation.

TNO report
PG/VGZ/00.038 9

Suppose that our complete-data analysis involves a linear regression of chl on age and
hyp. For this purpose, an adapted function lm.mids is available that works on the imputed
data:

> fit<-lm.mids(chl~age+hyp, imp)

which repeatedly calls the standard regression function lm. The fit object contains the res-
ults of five complete-data analyses. These can be pooled as follows:

> pool(fit)
Call: pool(object = fit)

Pooled coefficients:
 (Intercept) age hyp
 136.2802 18.32603 20.59693

Fraction of information about the coefficients missing due to
nonresponse:
 (Intercept) age hyp
 0.2504597 0.3239345 0.4771509

More extensive output can be obtained, as usual, with the summary function, i.e.,

> summary(pool(fit))
 est se t df Pr(>|t|)

(Intercept) 136.28021 28.12605 4.8453373 13.551184 0.0002844227
 age 18.32603 12.45221 1.4717092 11.131217 0.1687990086
 hyp 20.59693 27.84369 0.7397343 7.302421 0.4825601408
 lo 95 hi 95 missing fmi
(Intercept) 75.767847 196.79257 NA 0.2504597
 age -9.041727 45.69378 0 0.3239345
 hyp -44.694201 85.88807 8 0.4771509

This completes the full multiple imputation analysis.

10

4 Specification of the imputation model

4.1 Elementary imputation methods

Data sets typically contain variables with various coding types, e.g., numerical, categorical or
binary. Some authors (Brand, 1999; Van Buuren et al, 1993, 1999; Raghunathan et al., 1998)
have proposed to specify an elementary imputation method for each variable that is to be im-
puted. Given the availability of these, some form of iteration can be used for obtaining im-
putations. Attractive aspects of this strategy are that model specification takes place on a
level that is typically well understood by the user (i.e. the individual variable), and that many
methods for creating univariate imputations are available. A disadvantage is that the proper-
ties of the combined multivariate distribution of the resulting imputations may not be known,
which complicates the assessment of convergence. See Appendix A for more details.

In mice, the user can specify an elementary imputation method for each incomplete data
column. The elementary imputation method takes a set of (at that moment) complete predict-
ors, and returns a single imputation for each missing entry in the incomplete target column.
Multiple imputations are created by repeated calls to the function. The mice library supplies
a number of built-in elementary imputation models, which are are given in Table 4.4.1.

Table 4.4.1Built-in elementary imputation methods in mice.

Method Description Type of target
impute.norm Bayesian linear regression Numeric
impute.pmm Predictive mean matching Numeric
impute.mean Unconditional mean imputation Numeric
impute.logreg Logistic regression 2 categories
impute.logreg2 Logistic regression (direct minimization) 2 categories
impute.polyreg Polytomous logistic regression >= 2 categories
impute.lda Linear discriminant analysis >= 2 categories
impute.sample Random sample from the available observed values Any

The default methods used in the mice function are impute.pmm for numeric data, im-
pute.logreg for binary data (=factors with two categories), and impute.polyreg for
categorical variables (=factors with more than two categories). These defaults can be changed
by the defaultImputationMethod argument to the mice function. For example

> mice(nhanes, defaultImp = c("norm","logreg","polyreg"))

changes the default method for numerical data to impute.norm, while leaving the defaults
for binary and categorical data unchanged. The imputationMethod argument specifies
the imputation method per column and overides the default. This argument can be either a

TNO report
PG/VGZ/00.038 11

string or a vector of strings with length ncol(data). If imputationMethod is specified
as one string, then all visited columns will be imputed by the technique specified by this
string. So

> mice(nhanes, imputationMethod = "norm")

specifies that impute.norm is to be applied on all columns. If imputationMethod is
vector of strings of length ncol(data), then each column will be imputed by the method
indicated by the position in the vector. Columns that need not be imputed have method "".
For example,

> mice(nhanes, imputationMethod = c("", "norm", "pmm", "mean"))

uses different methods for different columns. The nhanes2 data frame contains one poly-
tomous, one binary and two numeric variables. Imputations might be created as

> imp <- mice(nhanes2, im=c("polyreg","pmm","logreg","norm"))

where polyreg is used for the first (categorical) variable, ppm for the second (numeric),
logreg for the third (binary) and norm for the fourth variable (numeric). The im parameter
is a legal S-plus abbreviation of the imputationMethod argument. Note: Running this ex-
ample produces a list of warning messages because the sample size of 25 is actually too small
relative to the number of parameters.

If the data contains factors that are used for imputing other variables, the algorithm creates
dummy variables and fills these from the corresponding factor variable. The dummy variables
are created automatically (and discarded) within the main algorithm, and are automatically
imputed where necessary.

Appendix B describes the arguments of the major functions of the mice library.

4.2 Adding your own imputation functions

It is possible to write one‘s own elementary imputation function, and call this function from
within the Gibbs sampling algorithm. The easiest way to write such a function is to copy and
modify an existing impute function, for example impute.norm. Note that this only works
if the argument list is kept intact. For more information about the proper function arguments,
see the help on impute.norm or other impute functions, e.g. by typing

> ?impute.norm

The new function can be called by the Gibbs sampler by the imputationMethod argu-
ment. For example, calling the function impute.myfunc for each column can be done by
typing

12

> mice(nhanes, imputationMethod="myfunc").

4.3 Transformations and index variables

There is often a need for transformed, combined or recoded versions of the data. In the case
of incomplete data, one could 1) impute the original, and transform the completed original af-
terwards, or 2) transform the incomplete original and impute the transformed version. If,
however, both the original and the transform are needed within the imputation algorithm,
neither of these approaches work because one cannot be sure that the transformation holds
between the imputed values of the original and transformed versions.

The mice function uses a special mechanism, called 'passive imputation', to deal with such
situations. Passive imputation maintains the consistency among different transformations of
the same data. The method can be used to ensure that the transform always depends on the
most recently generated imputations in the original untransformed data. Passive imputation is
invoked by specifying a "~" as the first character of the imputation method. The entire
string, including the "~" is interpreted as the formula argument in a call to model.frame
(formula, data[!r[,j],]). This provides a simple method for specifying a large
variety of dependencies among the variables, such as transformed variables, recodes, interac-
tions, sum scores, and so on, that may themselves be needed in other parts of the algorithm.
As an example,

> imp <- mice(nhanes, imp=c("","pmm","pmm","~log(bmi)"))

replaces the missing values in the fourth column by the log of bmi, the second column. The
result is

> complete(imp)
 age bmi hyp chl
 1 1 29.6 1 3.387774
 2 2 22.7 1 187.000000
 3 1 30.1 1 187.000000
 4 3 24.9 1 3.214868
…
> complete(imp,2)
 age bmi hyp chl
 1 1 29.6 1 3.387774
 2 2 22.7 1 187.000000
 3 1 30.1 1 187.000000
 4 3 25.5 2 3.238678

Missing entries 1 and 4 in chl were replaced by the log of bmi. Note that entry 4 takes the
imputed values of bmi into account. Note also that the nonmissing values in chl are simply
copied from the data, so as a whole, the column now contains nonsensical data. One easy way

TNO report
PG/VGZ/00.038 13

to create consistency is by coding all entries in chl as NA, but for large data sets, this can be
inefficient. Another way is to apply the log transform using available cases beforehand, fol-
lowed by coding the remainder as NA.

An index of more variables can be specified by means of the I() operator, e.g. "~I
(0.5*log(age)+hyp)" computes the sum of half log(age) and hypertension status:

imp <- mice(cbind(nhanes,index=NA),imp=c("","pmm","pmm","pmm",
"~I(0.5*log(age)+hyp)"))

a discretized version of the imputed variable can be obtained by

> imp_mice(cbind(nhanes,obese=NA),imp=c("","pmm","pmm","pmm",
"~cut(bmi,breaks=c(0,30,35,100))")).

and an interaction term of two variables can be created as

> imp_mice(cbind(nhanes,int=NA),imp=c("","pmm","pmm","pmm",
"~I((bmi-25)*hyp)"))

so that it is available for imputation.

There are two specific points that need attention when defining transformations through the
"~" mechanism. First, deterministic relations between columns remain synchronized if the
target variable is updated immediately after any of its predictors are imputed. So in the last
example above, column int should then be updated each time after bmi or hyp is imputed.
This can be done by changing the sequence in which the algorithm visits the columns. See
section 4.4 for more details. Second, the "~" mechanism may easily lead to linear dependen-
cies among predictors, which produces in a fatal error if both the original and the transformed
variables are simultaneously used for imputation. One can circumvent this problem by defin-
ing the set of predictors such that original and transformed do not jointly occur. Section 4.5
described how to do this.

In S-Plus 4.5, the mice function will error if any column consists entirely of NA's. The
cbind(nhanes,index=NA) arguments creates such a data set. A workaround to the
problem is to compute the values of index for the nonmissing cases before entering the
mice function.

4.4 Visiting scheme

The standard algorithm imputes each incomplete column in the data from left to right. The
visitation scheme of the Gibbs sampler is essentially irrelevant as long as each column is vis-
ited often enough, but some schemes are more efficient than others. Also, as indicated in sec-

14

tion 4.3, the visiting scheme plays a role in keeping relations between variables synchronised
and consistent with the current set of imputations.

It is possible to alter the default visiting scheme by the visitSequence argument of the
mice function. This is a vector of integers of arbitrary length, specifying the visiting se-
quence, that is, the column order that is used to impute the data during one iteration of the al-
gorithm. Note that a given column may be visited more than once within the same iteration.
All columns with missing data that are used as predictors should be visited, or else the func-
tion will stop with an error.

Continuing the interaction example of section 4.3, we can take care that the interaction term
is always up to date by the following command:

> imp_mice(cbind(nhanes,int=NA),imp=c("","pmm","pmm","pmm",
"~I((bmi-25)*hyp)"),visitSequence=c(2,5,3,5,4))

Using the statement, the algorithm will visits column 5 immediately after column 2 or column
3.

4.5 Choice of predictors

The argument predictorMatrix of the mice function is a square matrix of size ncol
(data) containing 0/1 data. This matrix specifying the set of predictors to be used for each
incomplete column. If diagnostics=T, then the object returned by mice contains the pre-
dictor matrix used for imputation, e.g.

> imp$predictorMatrix
 age bmi hyp chl
age 0 0 0 0
bmi 1 0 1 1
hyp 1 1 0 1
chl 1 1 1 0

Rows correspond to incomplete target variables, in the sequence as they appear in data. A
value of '1' indicates that the column variable is used as a predictor for the target (row) vari-
able. Thus, in the above example, age, hyp and chl are predictors for imputing bmi. The
diagonal of predictorMatrix is zero. The default setting implies that for every incom-
plete column all other columns are used as predictors. However, for variables that are com-
plete (age in the above example) predictors are automatically removed.

The user can specify a predictorMatrix, thereby effectively limiting the number of pre-
dictors per variable. For example, suppose that bmi is not needed as a predictor. Setting all
entries in the bmi column to zero removes it from the predictor set of all other variables, e.g.

TNO report
PG/VGZ/00.038 15

> my.predictorMatrix
 age bmi hyp chl
age 0 0 0 0
bmi 1 0 1 1
hyp 1 0 0 1
chl 1 0 1 0

will not use bmi as a predictor, but still impute it. The predictorMatrix argument is es-
pecially useful when dealing with data sets with a large number of variables. The next section
contains some advice regarding the selection of predictors.

4.6 General advice in choosing predictors

As a general rule, using every available bit of available information yields multiple imputa-
tions that have minimal bias and maximal certainty. This principle implies that the number of
predictors in should be chosen as large as possible. Some authors observed that including as
many predictors as possible tends to make the MAR assumption more plausible, thus redu-
cing the need to make special adjustments for NMAR mechanisms.

However, data sets often contain several hundreds of variables, all of which can potentially
be used to generate imputations. It is not feasible (because of multicollinearity and computa-
tional problems) to include all these variables. It is also not necessary. In our experience, the
increase in explained variance in linear regression is typically negligible after the best, say,
15 variables have been included. For imputation purposes, it is expedient to select a suitable
subset of data that contains no more than 15 to 25 variables. Van Buuren et al (1999) provide
the following strategy for selecting predictor variables from a large data base:

1. Include all variables that appear in the complete-data model. Failure to do so may bias the
complete-data analysis, especially if the complete-data model contains strong predictive
relations. Note that this step is somewhat counter-intuitive, as it may seem that imputation
would artificially strengthen the relations of the complete-data model, which is clearly un-
desirable. If done properly however, this is not the case. On the contrary, not including the
complete-data model variables will tend to bias the results towards zero.

2. In addition, include the variables that appear in the response model. Factors that are
known to have influenced the occurrence of missing data (stratification, reasons for nonre-
sponse) are to be included on substantive grounds. Others variables of interest are those
for which the distributions differ between the response and nonresponse groups. These
can be found by inspecting their correlations with the response indicator of the target vari-
able (i.e. the variable to be imputed). If the magnitude of this correlation exceeds a certain
level, then the variable is included.

16

3. In addition, include variables that explain a considerable amount of variance of the target
variable. Such predictors help to reduce the uncertainty of the imputations. They are
crudely identified by their correlation with the target variable.

4. Remove from the variables selected in steps 2 and 3 those variables that have too many
missing values within the subgroup of incomplete cases. A simple indicator is the percent-
age of observed cases within this subgroup, the percentage of usable cases.

Typically, many predictors used for imputation are incomplete themselves. In principle, one
could apply the above modelling steps for each incomplete predictor in turn, but this may
lead to a cascade of auxiliary imputation problems. In doing so, one runs the risk that every
variable needs to be included after all. In practice, there is often a small set of key variables,
for which imputations are needed, which suggests that steps 1 through 4 are to be performed
for key variables only. This was the approach taken in Van Buuren, Boshuizen and Knook
(1999), but it may miss important second level predictors in the data. A safer and more effi-
cient, though more laborious, strategy is to perform the modeling steps for all incomplete
level-1 predictors. This is done in Oudshoorn et al. (1999). We expect that it is rarely neces-
sary to go beyond this level.

TNO report
PG/VGZ/00.038 17

5 Running mice

5.1 Studying convergence

There is no clear-cut method for determining whether the Gibbs sampling algorithm has con-
verged. Plotting the mids object (as produced by mice) yields a graphic display of the mean
and standard deviation of the imputations. On convergence, the traces should be intermingled
with each other, without showing any definite trends. Stated more precisely: convergence is
diagnosed when the variance between different sequences is no larger than the variance with
each individual sequence. Here is an example of the display that mice produces after 5 itera-
tions:

The means (of the imputed values only) per iteration-imputation combination are plotted on
the left, the standard deviations of the imputations (within the same replication) on the right.
The plots are a bit crude because the number of missing entries is small (9, 11 and 10). It is
somewhat hard to assess convergence in this case. Plotting longer iteration sequences of more
missing entries will generally convey a better idea whether the between-imputation variability
has stabilized and whether the estimates are free of trend.

iteration

mean

1 2 3 4 5

27.2
27.8

28.4

bmi

iteration

sd

1 2 3 4 5

2.5
3.5

4.5

bmi

iteration

mean

1 2 3 4 5

1.0
1.2

hyp

iteration

sd

1 2 3 4 5

0.0
0.2

0.4

hyp

iteration

mean

1 2 3 4 5

180
200

220

chl

iteration

sd

1 2 3 4 5

30
40

50

chl

18

Note that one iteration of the algorithm involves a lot of work, e.g. for each variable and each
mutiple imputation a statistical model is fitted, imputations are drawn and data are updated.
The needed number of main iterations in mice is typically much lower than is common in
modern Markov Chain simulation techniques, that often require thousands of iterations. No
iterations need to be wasted for achieving independence in the imputations themselves, since
elementary imputation procedures create imputations that are already statistically independ-
ent for a given value of the regression parameters. Thus, the primary function of the Gibbs
sampler as implemented here, is to create independence between the posterior distributions of
the regression coefficients. The main question is whether the number of iterations is enough
to stabilize the distributions of the parameters. Brand's simulation was based on moderate
amounts of missing data and was done with just 5 iterations with satisfactory performance.
(Brand, 1999). For large amounts of missing data, convergence can be slower though. In gen-
eral, we obtained good results with as few as 5 or 10 iterations.

Note that the plot focuses on the mean and variance of the imputations. This may not corres-
pond to the parameter of most interest. Section 5.2 describes a more refined method for
studying convergence.

5.2 Step by step

This mice.mids function enables the user to split up the computations of the Gibbs
sampler into smaller parts by providing a stopping point after every full iteration. There are
various circumstances in which this might be useful:
• Due to the way in which S-Plus handles loops, RAM memory may become easily

exhausted if the number of iterations is large. Returning to prompt/session level may
alleviate these problems;

• The user may want to compute special convergence statistics at specific points, e.g. after
each iteration, for monitoring convergence;

• For computing a 'few extra iterations'.

The imputation model itself is specified in the mice() function and cannot be changed with
mice.mids. The state of the random generator is saved with the mids-object.

As a simple example, the statements

> imp1 <- mice(nhanes,maxit=1)
> … anything you like to do here
> imp2 <- mice.mids(imp1)

yield the same result as

> imp <- mice(nhanes,maxit=2)

TNO report
PG/VGZ/00.038 19

To check convergence of an arbitrary parameter of interest, one could write a function that
loops over mice.mids, and that extracts imputed data with the complete function, and
that recomputes the parameter after each iteration using the current imputations. More in
particular, one could set maxit to 1, generate imputations, compute the statistic of in-
terest on the completed data, save the result, compute the second iteration using
mice.mids, and so on.

5.3 Running problems

The mice function was programmed for flexibility, and not to minimise the use of time or re-
sources. Combined with the greedy nature of S-Plus in general and that fact that method does
not used compiled functions, this poses some limits to the size of the data sets and the type of
data that can be analysed. The time that mice needs depends primarily on the choice of the
elementary imputation methods. Methods like impute.norm or impute.pmm are fairly
fast, while others, impute.polyreg in particular, can be slow. To give an idea of the time
needed, we successfully imputed a 4000 by 20 matrix containing a variety of levels in about
15 minutes on a 400 MHz processor.

Collinearity and instability problems occur in the impute-functions if the predictors are (al-
most) linearly related. For example, if one predictor can be written as a linear combination of
some others, then this results in messages like Error in solve.qr(a): appar-
ently singular matrix and Length of longer object is not a mul-
tiple of the length of the shorter object in: beta + rv %*%
rnorm(ncol(rv)). The solution is eliminate duplicate information, for example by spe-
cifying a reduced set of predictors. Finding the pair of nearly dependent variables can prove
to be difficult and laborious. One trick that we use in practice is to study the last eigenvector
of the covariance matrix of the incomplete data. Variables with high values on that factor of-
ten cause the problems. Alternatively, one could revert to collinearity diagnostics like the VIF
(Kleinbaum et al, 1988) or graphical displays (Cook and Weisburg, 1999). Pedhazur (1973)
provides a good discussion on multicollinearity. The ambitious user might like to write ele-
mentary imputation functions that are less sensitive to collinearity, for example, based on
ridge regression.

5.4 Studying the initial solution

It is possible to create a mice object without doing any Gibbs sampling. Simply specify
maxit=0 as an argument to the mice function. This allows you to get hold of the initial im-
putations (starting values).

20

5.5 Using (starting) imputations created by other software

It is possible to transform data from other imputation software into a mids object. First cre-
ate a mids object by calling mice on the incomplete data using maxit=0. Then, manually
replace the starting imputations in the mids object by the values generated by the other soft-
ware. It is essential that external imputations are stored in the proper format of the mids ob-
ject. The altered mids object can then be used as input for the Gibbs sampler by calling the
mice.mids function. Note that this requires all empty cells to be imputed, otherwise the
sampler will error on empty cells. Alternatively, the altered mids object can be used for re-
peated complete data analyses (by calling the lm.mids or glm.mids functions). For this
use, it is allowed that only a subset of empty cells is imputed, and that the complete data soft-
ware handles the remaining incomplete records.

TNO report
PG/VGZ/00.038 21

6 After mice

6.1 Overview

The mice library defines three data classes:
• mids: multiply imputed data set (= result of imputation)
• mira: multiply imputed repeated analyses (= results of repeated complete data analyses)
• mipo: multiple imputed pooled analysis (= result of pooling the repeated analyses)

The table below contains a short description of the key functions in the mice library.

Function Input Output Description

md.pattern data.frame matrix summarizes the pattern of the missing data

mice data.frame mids creates a multiply imputed data set

complete mids data.frame converts mids into completed data

lm.mids mids mira linear regression for imputed data

glm.mids mids mira generalized linear model for imputed data

pool mira mipo pools the repeated analyses

6.2 Extracting imputed data

The complete function extracts imputed data sets from a mids object, and returns the
completed data as a data frame. For example,

> complete(imp, 3)

extracts the third complete data set from a multiply imputed data in imp. Specifying

> complete(imp, "long")

produces a long matrix where the m completed data matrices are vertically stacked and pad-
ded with the imputation number. This form is convenient for making point estimates and for
exporting multiply imputed data to other software. Other options are "broad" and "re-
peated", which produce complete data in formats that are convenient for investigating
between-imputation patterns.

22

6.3 Complete data analysis

The mice library provides two functions for complete-data analysis on a mids object:
lm.mids and glm.mids. These functions are analogues to the standard lm and glm func-
tions. Their main contribution is that they repeated call the complete data function, and store
the resulting fits in an object of class mira, which stands for multiply imputed repeated ana-
lyses. So

> fit5<-lm.mids(chl~age+hyp, imp)

repeatedly calls the standard regression function lm. The fit5 object contains the results of
five complete-data analyses. The expression

> fit5$analyses[[1]]

returns the fit object of the first repeated analysis. It is easy to adapt the lm.mids function
to other types of complete data analysis.

6.4 Pooling

The function averages the estimates of the complete data model, computes the total variance
over the repeated analyses, and computes the relative increase in variance due to nonresponse
and the fraction of missing information.

The function takes an object of class mira, and returns an object of class mipo, which
stands for multiply imputed pooled analysis. For example,

> result <- pool(fit5)
> result
Call: pool(object = fit5)

Pooled coefficients:
 (Intercept) age hyp
 136.2802 18.32603 20.59693

Fraction of information about the coefficients missing due to
nonresponse:
 (Intercept) age hyp
 0.2504597 0.3239345 0.4771509

produces an object result of class mira, which contains the pooling results. The command
summary(result)provides a more extensive overview of the results.

TNO report
PG/VGZ/00.038 23

The function pool implements the method based on the adjusted degrees of freedom as in
Barnard & Rubin (1999). The function relies on the availability of
• the estimates of the model, typically present as 'coefficients' in the fit object;
• an appropriate estimate of the variance-covariance matrix of the estimates per analysis.

The latter is estimated from the fit-object by the Varcov function taken from Harrell's
design library (Alzola & Harrell, 1999). Currently, Varcov functions exists for the S-Plus
standard lm and glm function, as well as for design's specific analysis functions. For other
complete data methods, the user should define an appropriate Varcov function.

Note that not all information from the analyses is pooled. If one wants, for example, a com-
bined estimate of the residual variance around the regression line, this cannot be computed by
the pool function. It is however easy to adapt the pool function to other measures of in-
terest.

Meng & Rubin (1992) describe a procedure for calculating the pooled log-likelihood ratio
test and corresponding p-value for statistical analyses on multiply imputed data. This proced-
ure can be used for modelling purposes in the context of generalized linear models. Appendix
C contains a worked-out example that one may adapt to apply the procedure.

24

References

[1] ALZOLA CF & HARRELL FE. An introduction to S-Plus and the Hmisc and Design
Libraries, 1999. http://hesweb1.med.virginia.edu/biostat/s/index.html

[2] ARNOLD BC, CASTILLO E, SARABIA JM. Conditional specification of statistical
models. New York: Springer, 1999.

[3] BARNARD J & RUBIN DB. Small sample degrees of freedom with multiple
imputation. Biometrika, 86, 948-955, 1999.

[4] BRAND JPL. Design and implementation of a missing data machine. Academic thesis,
Erasmus Univerty, Rotterdam /TNO Prevention and Health, Leiden, 1999.

[5] COOK RD & WEISBERG S. Applied regression including computing and graphics.
New York: Wiley, 1999.

[6] GELFAND AE & SMITH AFM. Sampling-based approaches to calculating marginal
densities, Journal of the American Statistical Association, 85, 398-409, 1990.

[7] KENNICKELL AB. Imputation of the 1989 survey of consumer finances: Stochastic
relaxation and multiple imputation, ASA 1991 Proceedings of the Section on Survey
Research Methods, 1-10. Alexandria: ASA, 1991.

[8] KLEINBAUM DG, KUPPER LL & MULLER KE. Applied regression analysis and
other multivariate methods. 2nd Ed. Boston: PWS-Kent, 1988.

[9] LITTLE RJA & RUBIN DB. Statistical analysis with missing data. New York: John
Wiley and Sons, 1987.

[10] MENG XL & Rubin DB. Performing likelihood ratio tests with multiple-imputed data
sets. Biometrika, 79, 103-111, 1992.

[11] OUDSHOORN CGM, VAN BUUREN S & VAN RIJCKEVORSEL. Flexible multiple
imputation by chained equations of the AVO-95 Survey. Leiden: TNO Prevention and
Health. Report PG/VGZ/99.045, 1999.

[12] PEDHAZUR EJ. Multiple regression in behavioral research. 2nd Ed. New York: Holt,
Rinehart and Winston, 1973.

[13] RAGHUNATHAN TE, SOLENBERGER PW, VAN HOEWYK J. IVEware:
Imputation and Variance Estimation Software: Installation Instructions and User
Guide. Survey Research Center, Institute of Social Research, University of Michigan,
1998. http://www.isr.umich.edu/src/smp/ive/

[14] RUBIN DB. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley
and Sons, 1987.

[15] RUBIN DB. Multiple imputation after 18+ years (with discussion), Journal of the
American Statistical Association, 91, 473-518, 1996.

TNO report
PG/VGZ/00.038 25

[16] RUBIN DB & SCHAFER JL. Efficiently creating multiple imputations for incomplete
multivariate normal data, ASA 1990 Proceedings of the Statistical Computing Section,
83-88. Alexandria: ASA, 1990.

[17] SCHAFER JL. Analysis of incomplete multivariate data. London: Chapman & Hall,
1997.

[18] SCHAFER JL. Multiple imputation: A primer Statistical Methods in Medical
Research, 8:3-15, 1999.

[19] VAN BUUREN S, VAN RIJCKEVORSEL JLA & RUBIN DB. Multiple imputation
by splines. Bulletin of the International Statistical Institute, Contributed Papers II, 503–
504, 1993.

[20] VAN BUUREN S, BOSHUIZEN HC & KNOOK DL. Multiple imputation of missing
blood pressure covariates in survival analysis. Statistics in Medicine, 18, 681-694,
1999.

[21] VAN BUUREN S & OUDSHOORN CGM. Flexible multivariate imputation by MICE.
Leiden: TNO Preventie en Gezondheid, TNO/PG 99.054, 1999.

26

Appendix A Imputation algorithm

Let X = (X1, X2,…, Xk) be a set of k random variables, where each variable Xj = (Xj
obs, Xj

mis)
may be partially observed, with j = 1,…,k. The imputation problem is to draw from P(X), the
unconditional multivariate density of X. Let t denote an iteration counter. Assuming that data
are missing at random, one may repeat the following sequence of Gibbs sampler iterations:

For X1: draw imputations X1
t+1 from P(X1 | X2

t, X3
t,…, Xk

t)
For X2: draw imputations X2

t+1 from P(X2 | X1
t+1, X3

t,…, Xk
t)

:
For Xk: draw imputations Xk

t+1 from P(Xk | X1
t+1, X2

t+1,…, Xk-1
t),

i.e., condition each time on the most recently drawn values of all other variables. Properties
of this general iteration scheme have been described by Gelfand and Smith (1990). Rubin and
Schafer (1990) show that if P(X) is multivariate normal, then iterating linear regression mod-
els like X1 = X2

tβ12 + X3
tβ13 + … + Xk

tβ1k + ε1 with ε1 ~ N(0, σ1
2) will produce a random draw

from the desired distribution. Schafer (1997) generalizes this results to other multivariate dis-
tributions.

The implemented algorithm differs slightly from Schafer's approach in that the conditional
models can be specified directly, thus without the need to choose an encompassing multivari-
ate model for the entire data set. It is assumed that a multivariate distribution exists, and that
draws from it can be generated by iteratively sampling from the conditional distributions. In
this way, the multivariate problem is split into a series of univariate problems. Similar ideas
have been applied by Kennickell (1991), Brand (1999), Van Buuren et al (1993, 1999) and
Raghunathan et al. (1998). Rubin coined the term ‘incompatible Gibbs’ to refer to these kinds
of algorithms.

It is not always certain whether the multivariate distribution actually exists. It is possible that
the specification of two conditional distributions P(X1|X2) and P(X2|X1) are incompatible, so
that no joint distribution P(X1, X2) exists. Arnold et al. (1999) deal with this problem from a
mathematical-statistical point of view. Very little is known about the properties of the Gibbs
sampler under a given incompatible specification. It could be that, since there is no distribu-
tion to converge to, the algorithm will alternate between isolated conditional distributions. In
that case, the final result will depend on the precise stopping point, which is clearly undesir-
able. Things may be worse if variables are related in a nonlinear way. Brand (1999) studied
the performance of a variety of actual algorithms based on possibly incompatible condition-
als, with quite encouraging results. By and large, the subject of incompatible Gibbs is still
somewhat of an open research problem, and more work is needed to establish its properties.

TNO report
PG/VGZ/00.038 27

Appendix B Function arguments

This appendix describes the arguments of the major functions of the mice library. For more
details on a specific function, use the standard help mechanism, e.g. by typing ?complete.

FUNCTIONS

complete Produces imputed flat files from multiply imputed data set (mids)

DESCRIPTION:
Takes an object of type mids, fills in the missing data, and
returns the completed data in a specified format.
USAGE
data.frame <- complete(x, action=1)

REQUIRED ARGUMENTS:
x An object of class 'mids' (created by the function mice()).

OPTIONAL ARGUMENTS:
action
If action is a scalar between 1 and x$m, the function returns the data with the ac-
tion's imputation filled in. Thus, action=1 returns the first completed data set.
The can also be one of the following strings: "long", "broad", "repeated". This
has the following meaning:
action="long" produces a long matrix with n*m rows, containing all imputed data plus
two additional variables "_ID_" (containing the row.names) and "_IMP_" (containing the
imputation number).
action="broad" produces a broad matrix with m times the number of columns in the
original data. The first ncol(x$data) columns contain the first imputed data matrix.
Column names are changed to reflect the imputation number.
action="repeated" produces a broad matrix with m times ncol(x$data) columns. The first
m columns give the filled-in first variable. Column names are changed to reflect the
imputation number.
VALUE:
A data frame with the imputed values filled in.

glm.mids Generelized linear regression on multiply imputed data

DESCRIPTION:
Performs repeated glm on a multiply imputed data set

USAGE:
glm.mids(formula=formula(data), family=gaussian, data=sys.parent(), weights,
subset, na.action, start=eta, control=glm.control(...), method="glm.fit",
model=F,x=F, y=T, contrasts=NULL, ...)

REQUIRED ARGUMENTS:
formula a formula expression as for other regression models, of the form

28

response ~ predictors. See the documentation of lm and formula for details.
data An object of type 'mids', which stands for 'multiply imputed data set',

typically created by function mice().
OPTIONAL ARGUMENTS:
family see glm
weights
subset
na.action
start
control
method
model
x
y
contrasts
VALUE:

An objects of class 'mira', which stands for 'multiply imputed repeated
 analysis'.

This object contains m glm.objects, plus some descriptive information.

impute.lda Elementary imputation method: Linear Discriminant Analysis

DESCRIPTION:

Imputes univariate missing data using linear discriminant analysis
USAGE:

imp <- impute.lda(y, ry, x)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern (F=missing, T=observed)
x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations.

impute.logreg Elementary imputation method: Logistic Regression

DESCRIPTION:

Imputes univariate missing data using logistic regression.
USAGE:

imp <- impute.logreg(y, ry, x)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern of length n (F=missing, T=observed)
x Matrix (n x p) of complete covariates.

TNO report
PG/VGZ/00.038 29

VALUE:
imp A vector of length nmis with imputations (0 or 1).

impute.logreg2 Elementary imputation method: Logistic Regression

DESCRIPTION:

Imputes univariate missing data using logistic regression.
USAGE:

imp <- impute.logreg2(y, ry, x)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern of length n (F=missing, T=observed)

x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations (0 or 1).

impute.mean Elementary imputation method: Simple mean imputation

DESCRIPTION:

Imputes the arithmetic mean of the observed data
USAGE:

imp <- impute.mean(y, ry, x=NULL)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern (F=missing, T=observed)
OPTIONAL ARGUMENTS:
x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations.

impute.norm Elementary imputation method: Linear Regression Analysis

DESCRIPTION:

Imputes univariate missing data using linear regression analysis

30

USAGE:
imp <- impute.norm(y, ry, x)

REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern (F=missing, T=observed)
x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations.

impute.pmm Elementary imputation method: Linear Regression Analysis

DESCRIPTION:

Imputes univariate missing data using predictive mean matching
USAGE:

imp <- impute.pmm(y, ry, x)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern (F=missing, T=observed)
x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations.

impute.polyreg Elementary imputation method: Polytomous Regression

DESCRIPTION:

Imputes missing data in a categorical variable using polytomous regression
USAGE:

imp <- impute.polyreg(y, ry, x)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern (F=missing, T=observed)
x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations.

TNO report
PG/VGZ/00.038 31

impute.sample Elementary imputation method: Simple random sample

DESCRIPTION:

Imputes a random sample from the observed y data
USAGE:

imp <- impute.sample(y, ry, x=NULL)
REQUIRED ARGUMENTS:
y Incomplete data vector of length n
ry Vector of missing data pattern (F=missing, T=observed)
OPTIONAL ARGUMENTS:
x Matrix (n x p) of complete covariates.

VALUE:
imp A vector of length nmis with imputations.

lm.mids Linear regression on multiply imputed data

DESCRIPTION:
Performs repeated linear regression on multiply imputed data set

USAGE:
fit <- lm.mids(formula, data, weights, subset, na.action, method="qr",

model=F,
x=F, y=F, contrasts=NULL, ...)

REQUIRED ARGUMENTS:
formula

a formula object, with the response on the left of a ~ operator, and the
terms, separated by + operators, on the right.

data
An object of type 'mids', which stands for 'multiply imputed data set',
typically, created by function mice().

OPTIONAL ARGUMENTS:
weights see lm
subset see lm
na.action see lm
method see lm
model see lm
x see lm
y see lm
contrasts see lm
VALUE:

An objects of class 'mira', which stands for 'multiply imputed repeated
analysis'.
This object contains m lm.objects, plus some descriptive information.

md.pattern Missing data pattern

DESCRIPTION:

32

Computes the missing data pattern of a matrix or data.frame.
USAGE:

pat <- md.pattern(x)
REQUIRED ARGUMENTS:
x A data frame or a matrix containing the incomplete data.

Missing values are coded as NA's.

VALUE:
A matrix with ncol(x)+1 columns, in which each row corresponds to

 a missing data pattern (1=observed, 0=missing).
Rows and columns are sorted in increasing amounts of missing
information. The last column and row contain row and column counts,
respectively.

mice.mids Multivariate Imputation by Chained Equations (iteration step)

DESCRIPTION:
Takes a "mids"-object, and produces an new object of class "mids".

USAGE:
mice.mids(obj, maxit=1, diagnostics=T, printFlag=T)

REQUIRED ARGUMENTS:
obj

An object of class "mids", typically produces by a previous call
to mice() or mice.mids()

OPTIONAL ARGUMENTS:
maxit

The number of additional Gibbs sampling iterations.
diagnostics

A Boolean flag. If TRUE, diagnostic information will be appended to
the value of the function. If FALSE, only the imputed data are saved.
The default is TRUE.

printFlag
A Boolean flag. If TRUE, diagnostic information during the Gibbs sampling
iterations will be written to the command window. The default is TRUE.

VALUE:
An object of class mids, which stands for 'multiply imputed data set'.

mice Multivariate Imputation by Chained Equations

DESCRIPTION:
Produces an object of class "mids", which stands for 'multiply imputed data set'.

TNO report
PG/VGZ/00.038 33

USAGE:
object <- mice(data, m = 5,

imputationMethod = vector("character",length=ncol(data)),
predictorMatrix = (1 - diag(1, ncol(data))),
visitSequence = (1:ncol(data))[apply(is.na(data),2,any)],
defaultImputationMethod=c("pmm","logreg","polyreg"),
maxit = 5,
diagnostics = T,
printFlag = T,
seed = NA)

REQUIRED ARGUMENTS:
data
A data frame or a matrix containing the incomplete data. Missing values are coded as
NA's.

OPTIONAL ARGUMENTS:
m
Number of multiple imputations. If omitted, m=5 is used.
imputationMethod
Can be either a string, or a vector of strings with length ncol(data), specifying the
elementary imputation method to be used for each column in data. If specified as a
single string, the given method will be used for all columns. The default imputation
method (when no argument is specified) depends on the measurement level of the target
column and are specified by the defaultImputationMethod argument.
Columns that need not be imputed have method "". Built-in methods are:
norm Bayesian linear regression Numeric
pmm Predictive mean matching Numeric
mean Unconditional mean imputation Numeric
logreg Logistic regression 2 categories
logreg2 Logistic regression (direct minimization) 2 categories
polyreg Polytomous logistic regression >= 2 categories
lda Linear discriminant analysis >= 2 categories
sample Random sample from the observed values Any
For example, for the j'th column, the impute.norm function that implements the
Bayesian linear regression method can be called by specifying the string "norm"
as the j'th entry in the vector of strings.
The user can write his or her own imputation function, say impute.myfunc, and call it
for all columns by specifying imputationMethod="myfunc", or for specific columns by
specifying imputationMethod=c("norm","myfunc",...).
Special method: If the first character of the elementary method is a "~", then the
string is interpreted as the formula argument in a call to model.frame(formula, data
[!r[,j],]). This provides a simple mechanism for specifying a large variety of depen-
dencies among the variables, for example transformed versions of imputed variables,
recodes, interactions, sum scores, and so on, that may themselves be needed in other
parts of the algoritm. Note that the "~" mechanism works only on those entries which
have missing values in the target column. The user should make sure that the combined
observed and imputed parts of the target column make sense. One easy way to create
consistency is by coding all entries in the target as NA, but for large data sets,
this could be inefficient.
Though not strictly needed, it is often useful to specify visitSequence such that the
column that is imputed by the "~" mechanism is visited each time after one of its pre-
dictors was visited. In that way, deterministic relation between columns will always
be synchronized.
predictorMatrix
A square matrix of size ncol(data) containing 0/1 data specifying the set of predic-
tors to be used for each target column. Rows correspond to target variables (i.e.
variables to be imputed), in the sequence as they appear in data. A value of '1' means
that the column variable is used as a predictor for the target variable (in the rows).
The diagonal of predictorMatrix must be zero. The default for predictorMatrix is that
all other columns are used as predictors (sometimes called massive imputation).

34

visitSequence
A vector of integers of arbitrary length, specifying the column indices of the visit-
ing sequence. The visiting sequence is the column order that is used to impute the
data during one iteration of the algorithm. A column may be visited more than once.
All incomplete columns that are used as predictors should be visited, or else the
function will stop with an error. The default sequence 1:ncol(data) implies that
columns are imputed from left to right.
defaultImputationMethod=c("pmm","logreg","polyreg")
A vector of three strings containing the default imputation methods for numerical
columns, factor columns with 2 levels, and factor columns with more than two levels,
respectively. If nothing is specified, the following defaults will be used:
pmm predictive mean matching numeric data
logreg logistic regression imputation binary data (factor with 2 levels)
polyreg polytomous regression imputation categorical data (factor >= 2 levels)
maxit
A scalar giving the number of iterations. The default is 5.
diagnostics
A Boolean flag. If TRUE, diagnostic information will be appended to the value of the
function. If FALSE, only the imputed data are saved. The default is TRUE.
seed
An integer between 0 and 1000 that is used by the set.seed function for ofsetting the
random number generator. Default is to leave the random number generator alone.

VALUE:
An object of class mids, which stands for 'multiply imputed data set'. For
a description of the object, see the documentation on "mids.object".

pool Multiple imputation pooling

DESCRIPTION:
Pools the results of m repeated complete data analysis

USAGE:
y <- pool(x, dfmethod="smallsample")

REQUIRED ARGUMENTS:
object

An object of class 'mira', produced by functions like lm.mids or glm.mids.
OPTIONAL ARGUMENTS:
dfmethod

A string describing the method to compute the degrees of freedom.
The default value is "smallsample", which specifies the is
Barnard-Rubin adjusted degrees of freedom (Barnard& Rubin, 1999)

 for small samples. Specifying a different string
produces the conventional degrees of freedom as in Rubin (1987).

VALUE:
An object of class 'mipo', which stands for 'multiple imputation pooled'.

DATA OBJECTS

mids multiply imputed data set

DESCRIPTION

TNO report
PG/VGZ/00.038 35

An object containing a multiply imputed data set
GENERATION

The "mids" object is generated by the mice and mice.mids functions.
METHODS

The "mids" class of objects has methods for the following generic functions:
print, summary, plot.

STRUCTURE
An object of class mids is a list of the following components:

call The call that created the object.
data A copy of the incomplete data set.
m The number of imputations.
nmis An array containing the number of missing observations per column.
imp A list of nvar components with the generated multiple imputations.

Each part of the list is a nmis[j] by m matrix of imputed values for
variable j.

imputationMethod
A vector of strings of length(nvar) specifying the elementary
imputation method per column.

predictorMatrix
A square matrix of size ncol(data) containing 0/1 data specifying
the predictor set.

visitSequence
The sequence in which columns are visited.

seed
The seed value of the solution.

iteration
Last Gibbs sampling iteration number.

lastSeedValue
The most recent seed value.

chainMean
A list of m components. Each component is a length(visitSequence)
by maxit matrix containing the mean of the generated multiple
imputations. The array can be used for monitoring convergence.
Note that observed data are not present in this mean.

chainCov
A list with similar structure of itermean, containing the covariances
of the imputed values.

pad A list containing various settings of the padded imputation model,
i.e. the imputation model after creating dummy variables. Normally,
this array is only useful for error checking.

mipo multiply imputed pooled analysis

DESCRIPTION
An object containing the m fit objects of a complete data analysis,
plus some additional information.

36

GENERATION
The "mipo" object is generated by the lm.mids and glm.mids functions.

METHODS
The "mipo" class of objects has methods for the following generic functions:
print, summary.

STRUCTURE
An object of class mipo is a list of the following components:

call The call that created the mipo object.
call1 The call that created the mira object that was used in 'call'.
call2 The call that created the mids object that was used in 'call1'.
nmis An array containing the number of missing observations per column.
m Number of multiple imputations.
qhat An m x npar matrix containing the complete data estimates for the

npar paremeters of the m complete data analyses.
u An m x npar x npar array containing the variance-covariance matrices

of the m complete data analyses.
qbar The average of complete data estimates.
ubar The average of the variance-covariance matrix of the complete data estimes.
b The between imputation variance-covariance matrix.
t The total variance-covariance matrix.
r Relative increases in variance due to missing data
df Degrees of freedom associated with the t-statistics.
f Fractions of missing information.

mira multiply imputed repeated analysis

DESCRIPTION
An object containing the m fit objects of a complete data analysis,
plus some additional information.

GENERATION
The "mira" object is generated by the lm.mids and glm.mids functions.

METHODS
The "mira" class of objects has methods for the following generic functions:
print, summary.

STRUCTURE
An object of class mira is a list of the following components:

call The call that created the object.
call1 The call that created the mids object that was used in 'call'.

TNO report
PG/VGZ/00.038 37

nmis An array containing the number of missing observations per column.
analyses

A list of m components containing the individual fit objects
from each of the m complete data analyses.

38

Appendix C Likelihood ratio test
##
Reference: (1992) Meng, X., Rubin, D.B., Performing likelihood ratio tests with
multiply-imputed datasets
Biometrika, 79, pp 103-111.
imp_mice(nhanes2)
fit1_glm.mids(hyp~chl+age+bmi,data=imp)
fit0_glm.mids(hyp~age+bmi,data=imp)
formula1_hyp~chl+age+bmi
formula0_hyp~age+bmi
Calculate for each imputed dataset the deviance for the model
with and without the variable (this example: chl).
devM is the mean of these deviances (mean(d)'_m from the article of Meng).
deviance_0
for (i in (1:(imp$m))){

data.i_complete(imp,i)
model.0_model.matrix(formula0,data=data.i)%*%coef(fit0$analyses[[i]])
model.1_model.matrix(formula1,data=data.i)%*%coef(fit1$analyses[[i]])
deviance<-deviance+deviance.logistic(data.i$hyp,logistic(model.1))-de-

viance.logistic(data.i$hyp,logistic(model.0))
}
devM<-deviance/imp$m

Calculate the pooled coefficients for the "large" and "small" model.
####
result1_pool(fit1)
result0_pool(fit0)
k<-length(result1$qbar)-length(result0$qbar)
Calculate now the deviance for each imputed dataset with the pooled coefficients
The five deviances will then be pooled: devL (mean(d)_L in the article of Meng).
deviance_0
for (i in (1:(imp$m))){

data.i_complete(imp,i)
model.0_model.matrix(formula0,data=data.i)%*%result0$qbar
model.1_model.matrix(formula1,data=data.i)%*%result1$qbar
deviance<-deviance+deviance.logistic(data.i$hyp,logistic(model.1))-de-

viance.logistic(data.i$hyp,logistic(model.0))
}
devL<-deviance/imp$m
loglikelihoodratio(k,imp$m,devL,devM) ## The pooled loglikelihoodratio
pooled.p.deviance(k,imp$m,devL,devM) ## The pooled p-value of the loglikelihoodra-
tio.

functions needed
#################################
deviance.logistic<-function(yvector,fittedprobs){

yvector<-as.numeric(yvector)-1
term1_term2_rep(0,length(yvector))
term1[yvector!=0]<-yvector[yvector!=0]*log(yvector[yvector!=0]/fittedprobs

[yvector!=0])
term2[yvector==0]<-(1-yvector[yvector==0])*log((1-yvector[yvector==0])/(1-

fittedprobs[yvector==0]))
return(-(2*sum(term1+term2)))}

####
logistic<-function(mu) exp(mu)/(1+exp(mu))
####
Calculation teststatistic D_L .

TNO report
PG/VGZ/00.038 39

loglikelihoodratio<-function(k,nimp,devL,devM){
r.L<-((nimp+1)/(k*(nimp-1)))*(devM-devL)
return(devL/(k*(1+r.L)))}

pooled.p.deviance<-function(k,nimp,devL,devM){
r.L<-((nimp+1)/(k*(nimp-1)))*(devM-devL)
D.L<-devL/(k*(1+r.L))
nu<-k*(nimp-1)
if (nu>4) w<-4+(nu-4)*((1+(1-nu/2)*(1/r.L))^2) else w<-nu*(1+1/k)*((1+1/r.L)

^2)/2
return(p.value<-1-pf(D.L,k,w))}

