Labeling in the Strucplot Framework

by David Meyer, Achim Zeileis, and Kurt Hornik

1 Introduction

One of the major enhancements in package ved compared to mosaicplot() and assocplot() in
base R is the labeling in the strucplot framework which offers many more features and flexibil-
ity. Like shading, spacing, and drawing of legend and core plot, labeling is now carried out by
specialized graphical appearance control (“grapcon”) functions. This renders labeling completely
modular (see the introductory vignette: “The Strucplot Framework— Visualizing Multi-way Con-
tingency Tables” for an overview). The user supplies either a labeling function, or, alternatively,
a generating function that parameterizes a labeling function, to strucplot() which then draws
the labels (the idea behind generating functions is discussed in detail in the vignette: “Colors and
Residual-based Shadings in the Strucplot Framework”). Labeling is well-separated from the actual
plotting that occurs in the low-level core functions. It only relies on the viewport tree produced by
them, and the ‘dimnames’ attribute of the visualized table. Labeling functions are grapcons that
“add ink to the canvas”: the drawing of the labels happens after the actual plot has been drawn
by the core function. Thus, it is possible to supply one’s own labeling function, or to combine
some of the basic functions to produce a more complex labeling. In the following, we describe the
three basic modules (1abeling_text (), labeling_list(), and labeling_cells()) and derived
functions that build upon them.

2 Labels in the borders: labeling_text ()

labeling_text() is the default for all strucplot displays. It plots labels in the borders similar to
the mosaicplot () function in base R, but is much more flexible: it is not limited to 4 dimensions,
and the positioning and graphical parameters of levels and variable names are customizable. In
addition, the problem of overlapping labels can be handled in several ways.

As an example, consider the ‘Titanic’ data, consisting of 4 categorical variables: survival
(‘survived’), gender (i.e., ‘sex’), age, and crew. By default, the variable names and levels are
plotted ‘around’ the plot in a counter-clockwise way (see Figure 1):

> mosaic(Titanic)

Note that the last two levels of the ‘survived’ variable do overlap, as well as some adult and child
labels of the ‘age’ Variable. This issue can be addressed in several ways. The ‘brute force’ method
is to enable clipping for these dimensions (see Figure 2):

> mosaic(Titanic, labeling args = list(clip = c(Survived = TRUE,
+ Age = TRUE)))

The clip parameter is passed to the labeling function via the labeling_args argument which
takes a list of parameters. clip itself takes a vector of logicals (one for each dimension). Almost
all vectorized arguments in the strucplot framework can be abbreviated in the following way:
unnamed components (or the defaults, if there are none) are recycled as needed, but overridden
by the named components. Here, the default is FALSE, and therefore clipping is enabled only for
the ‘survived’ and ‘age’ variables. A more sensible solution to the overlap problem is to abbreviate
the levels (see Figure 3):

Sex
Male Female

° °

1st

2nd

° 9

Child AdulChild AdultChild

3rd

Class
Adult
Age

oo

Child

Crew
Adult

No

Survived

Yes Nées
Figure 1: Mosaic plot for the ‘Titanic’ data with default settings for labeling.

Sex
Male Female

° °
° ¢

oo
No Yes I'e

Survived

1st
Adult

2nd
Adult 1

*hil

3rd

Class
Adult
Age

Crew
Adult

Figure 2: The effect of clipping.

> mosaic(Titanic, labeling_args = list(abbreviate = c(Survived = TRUE,
+ Age = 3)))

Sex
Male Female

Adl Chl

1st
——

2nd
[]
L7

Adl Chl

Chl

3rd

Class
Adl
Age

Chl

Crew
Adl

Survived

Figure 3: Abbreviating.

The abbreviate argument takes a vector of integers indicating the number of significant characters
the levels should be abbreviated to (TRUE is interpreted as 1, obviously). Abbreviation is performed
using the abbreviate () function in base R. Another possibility is to rotate the levels (see Figure 4):

> mosaic(Titanic, labeling_args = list(rot_labels = c(bottom = 90,
+ right = 0), offset_varnames = c(right = 1), offset_labels = c(right = 0.3)),
+ margins = c(right = 4, bottom = 3))

Finally, we could also inhibit the output of repeated levels (see Figure 5):

> mosaic(Titanic, labeling args = list(rep = c(Survived = FALSE,
+ Age = FALSE)))

We now proceed with a few more ‘cosmetic’ features (which do not all produce satisfactory
results for our sample data). A first simple, but effectful modification is to position all labels and
variables left-aligned: (see Figure 6):

> mosaic(Titanic, labeling_args = list(pos_varnames = "left",
+ pos_labels = "left", just_labels = "left", rep = FALSE))

Note that obviously we need to change the justification to "left" as well. We can achieve the
same effect by using the convenience function labeling left():

> mosaic(Titanic, labeling = labeling left)

Next, we show how to put all levels to the bottom and right margins, and all variable names to
the top and left margins (see Figure 7):

1st

2nd

Class
3rd

Crew

1st

2nd

Class
3rd

Crew

Sex
Male Female
Child

Child

o 6
I i [

— e— | R RO T

-I l - g’

oo Child

Adult

No

Ye
P&

Survived

Figure 4: Rotating labels.

Sex
Male Female

° °
° ¢

[}
(o)}
I lI)
oo
Yes

Figure 5: Inhibiting the repetition of levels.

Child

Adult

No
Survived

Sex
Male Female

° °

ﬁ |:|
—
o oL]
=
N
[11] | || |
'E =}
® =
oo o
[2) -
23 33
[(ONE} <<
No Yes
Survived

Figure 6: Left-aligning.

> mosaic(Titanic, labeling args = list(tl_labels = FALSE,
+ tl_varnames = TRUE, abbreviate = c(Survived = 1,
+ Age = 3)))

The t1_foo (“top left”) arguments are TRUE by default. Now, we will add boxes to the labels and
additionally enable clipping (see Figure 8):

> mosaic(Titanic, labeling_args = list(tl_labels = FALSE,
TRUE, clip = TRUE))

+ tl_varnames = TRUE, boxes

The values to boxes and clip are recycled for all dimensions. The result is pretty close to what
calling mosaic() with the labeling cboxed() wrapper does, except that variables and levels, by
default, are put to the top and to the left of the plot:

> mosaic(Titanic, labeling = labeling_cboxed)
Another variant is to put the variable names into the same line as the levels (see Figure 9):

> mosaic(Titanic, labeling_args = list(tl_labels = TRUE,
+ boxes = TRUE, clip = c(Survived = FALSE, TRUE), labbl_varnames = TRUE),
+ margins = c(left = 4, right = 1, 3))

labbl_varnames (“variable names to the bottom/left of the labels”) is a vector of logicals indicating
the side for the variable names. The resulting layout is close to what 1abeling_lboxed () produces,
except that variables and levels, by default, are left-aligned and put to the bottom and to the right
of the plot:

> mosaic(Titanic, labeling = labeling_lboxed, margins = c(right = 4,
+ left = 1, 3))

A similar design is used by the doubledecker () function.

Class / Age

Class / Age

Sex / Survived
° o

N Y NY

Male Female

Adl Chl
1st

Adl Chl
2nd

Chl

Adl
3rd

Chl

Adl
Crew

Figure 7: Changes in the margins.

Sex / Survived

[
I

3rd

Q
[No il Yes |4 o
[Male ml

Figure 8: Boxes and Clipping.

Sex | Male [Female
Survived N Yes NG Yes

—— o

1
Adult

o

[2nd]
dult]]

|

OO

] ai

3rd
Adult

|

Crew
Adult

Class
Age

Figure 9: Variable names beneath levels.

3 Labels in the cells: labeling_cells()

This labeling draws both variable names and levels in the cells. As an example, we use the ‘PreSex’
data on pre- and extramarital sex and divorce (see Figure 10):

> mosaic("MaritalStatus + Gender, data = PreSex, labeling = labeling_cells)

In the case of narrow cells, it might be useful to abbreviate labels and/or variable names and turn
off clipping (see Figure 11):

> mosaic("PremaritalSex + ExtramaritalSex, data = PreSex,
+ labeling = labeling_cells(abbreviate_labels = TRUE,
+ abbreviate_varnames = TRUE, clip = FALSE))

For some data, it might be convenient to combine cell labeling with border labeling as done by
labels_conditional () (see Figure 12):

> mosaic("“PremaritalSex + ExtramaritalSex | MaritalStatus +
+ Gender, data = PreSex, labeling = labeling conditional (abbreviate_varnames = TRUE,
+ abbreviate_labels = TRUE, clip = FALSE))

Additionally, the cell labeling allows the user to add arbitrary text to the cells by supplying a
character array in the same shape than the data array to the text argument (cells with missing
values are ignored). In the following example using the ‘Titanic’ data, this is used to add all
observed values greater than 5 to the cells after the mosaic has been plotted (see Figure 13):

> mosaic(Titanic, labeling_args = list(abbreviate = c(Survived = 1,
+ Age = 4)), pop = FALSE)

> tab <- ifelse(Titanic < 6, NA, Titanic)

> labeling _cells(text = tab, clip = FALSE) (Titanic)

Figure 10: Cell labeling for the ‘PreSex’ data.

4 A simple list of labels: labeling list()

If problems with overlapping labels cannot satisfactorily resolved, the last remedy could be to
simply list the levels below the plot (see Figure 14):

> mosaic(Titanic, labeling = labeling_list, margins = c(bottom = 5))

The number of columns can be specified.

Figure 11: Cell labeling for the ‘PreSex’ data, labels abbreviated.

Gender
Women Men

Divorced

MaritalStatus

Figure 12: Conditional labeling for the ‘PreSex’, labels abbreviated.

Sex
Male Female

N Y NY

Survived

1st

2nd
Chld AditChid Adit Chid

3rd

Class
AdIt
Age

Chld

Crew
AdIt

Figure 13: User-supplied Text added to a mosaic display of the ‘Titanic’ data.

Sex
° °
) o

[0}
=)
<
o

Survived
Class: 1st 2nd 3rd Crew Sex: Male Female
Age: Child Adult Survived: No Yes

Class

Figure 14: Labels indicated below the plot.

10

	Introduction
	Labels in the borders: labeling_text()
	Labels in the cells: labeling_cells()
	A simple list of labels: labeling_list()

