
The Strucplot Framework—Visualizing Multi-way

Contingency Tables

by David Meyer, Achim Zeileis, and Kurt Hornik

1 Framework Overview

The strucplot framework in the R package vcd, used for visualizing multi-way contingency tables,
integrates techniques such as mosaic displays, association plots, and sieve plots. The main idea
is to visualize the tables’ cells arranged in rectangular form. For multi-way tables, the variables
are nested into rows and columns using recursive conditional splits, given the margins. The result
is a ‘flat’ representation that can be visualized in ways similar to a two-dimensional table. This
principle defines a class of conditional displays which allows for granular control of graphical
appearance aspects, including:

� the content of the tiles

� the split direction for each dimension

� the graphical parameters of the tiles’ content

� the spacing between the tiles

� the labeling of the tiles

This document gives an introduction to the framework, whereas labeling and shading issues are
described in separate vignettes.

The strucplot framework is highly modularized: Figure 1 shows the hierarchical relationship
between the various components. On the lowest level, there are several groups of workhorse and
parameter functions that directly or indirectly influence the final appearance of the plot. These
are examples of ‘graphical appearance control’ (‘grapcon’) functions. They are created by gener-
ating functions (‘grapcon generators’), allowing flexible parameterization and extensibility (Figure
1 only shows the generators). The first part of the generator names (group_foo ()) reflects the
group they belong to (strucplot core, labeling, legend, shading, or spacing). The workhorse func-
tions (created by struc_foo (), labeling_foo (), and legend_foo ()) directly produce graphical
output (“add ink to the canvas”), whereas the parameter functions (created by spacing_foo ()
and shading_foo ()) compute graphical parameters used by the others. The grapcon functions re-
turned by struc_foo () implement the core functionality, creating the tiles and their content. On
the second level of the framework, a suitable combination of the low-level grapcon functions (or, al-
ternatively, corresponding generating functions) is passed as “hyperparameters” to strucplot().
This central function sets up the graphical layout using grid viewports (see Figure 2), and co-
ordinates the specified core, labeling, shading, and spacing functions to produce the plot. On
the third level, we provide several convenience functions such as mosaic(), sieve(), assoc(),
and doubledecker() which interface strucplot() through sensible parameter defaults and sup-
port for model formulas. Finally, on the fourth level, there are ‘related’ vcd functions (such as
cotabplot() and the pairs() methods for table objects) arranging collections of plots of the
strucplot framework into more complex displays (e.g., by means of panel functions).

1



Related

Convenience

Low-level

Strucplot core

Labeling

Legend

Shading

Spacing

W
or

kh
or

se
F

un
ct

io
ns

P
ar

am
et

er
F

un
ct

io
ns

Level 4

Level 3

Level 2

Level 1

pairs(), cotabplot()

mosaic(), sieve(), assoc(), doubledecker()

strucplot()Coordinating

struc_mosaic(), struc_sieve(),
struc_assoc()

labeling_border(), labeling_list(),
labeling_cells()

legend_resbased(), legend_fixed()

shading_hsv(), shading_hcl(),
shading_Friendly(), shading_max()

spacing_equal(), spacing_conditional(),
spacing_highlighting(), spacing_increase()

Graphical appearance control (“grapcon”) functions / generators
for strucplot() (Only the generators are shown below)

Figure 1: Components of the strucplot framework.

2 Mosaic, Association, and Sieve Plots

As an example, consider the ‘HairEyeColor’ data containing two polytomous variables (hair and
eye color), as well as one (artificial) dichotomous variable (sex, i.e., gender). The ‘flattened’
contingency table can be obtained using the structable() function (quite similar to ftable() in
base R, but allowing the specification of split directions):

> (hec <- structable(Eye ~ Sex + Hair, data = HairEyeColor))

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 38 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

Female Black 36 9 5 2
Brown 81 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

Let us first visualize the contingency table by means of a mosaic plot (Hartigan and Kleiner,
1984) which is basically an area-proportional visualization of (typically, observed) frequencies,
composed of tiles (corresponding to the cells) created by recursive vertical and horizontal splits
of a square. Thus, the area of each tile is proportional to the corresponding cell entry given the
dimensions of previous splits. Figure 3 depicts the effect of

> mosaic(hec)

equivalent to

2



main

sub

plot

le
ge

nd

[F]

[E]margin_top

margin_bottom

m
ar

gi
n_

rig
ht

m
ar

gi
n_

le
ft

[A] [B]

[C] [D]

Figure 2: Viewport layout for strucplot displays with their names. [A] = “corner top left”, [B] =
“corner top right”, [C] = “corner bottom left”, [D] = “corner bottom right”, [E] = “legend top”,
[F] = “legend sub”.

> mosaic(~Sex + Eye + Hair, data = HairEyeColor)

The small bullets indicate zero entries in the corresponding cell. Note that in contrast to, e.g.,
mosaicplot() in base R, the default split direction and level ordering in all strucplot displays
correspond to the textual representation. It is also possible to visualize the expected values instead
of the observed values (see Figure 4):

> mosaic(hec, type = "expected")

In order to compare observed and expected values, a sieve plot (Riedwyl and Schüpbach, 1994)
could be used (see Figure 5):

> sieve(hec)

Alternatively, we can directly inspect the residuals. The Pearson residuals (standardized deviations
of observed from expected values) are preferably visualized using association plots (Cohen, 1980).
In contrast to assocplot() in base R, vcd’s assoc() function scales to more than two variables
(see Figure 6):

> assoc(hec, compress = FALSE)

The compress argument keeps distances between tiles equal for better comparison.
For both mosaic plots and association plots, the splitting of the tiles can be controlled using

the split_vertical argument (default: alternating splits starting with a vertical one).

> mosaic(hec, split_vertical = c(TRUE, FALSE, TRUE),

+ labeling_args = list(abbreviate = c(Eye = 3)))

3



Eye

S
ex

H
ai

r

F
em

al
e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

M
al

e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

Brown Blue Hazel Green

Figure 3: Mosaic plot for the ‘HairEyeColor’ data.

Eye

S
ex

H
ai

r

F
em

al
e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

M
al

e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

Brown Blue Hazel Green

Figure 4: Mosaic plot for the ‘HairEyeColor’ data (expected values).

4



Eye

S
ex

H
ai

r

F
em

al
e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

M
al

e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

Brown Blue Hazel Green

Figure 5: Sieve plot for the ‘HairEyeColor’ data visualizing simultaneously observed and expected
values.

For compatibility with mosaicplot() in base R, the mosaic() function also allows the use of a
"direction" argument taking a vector of "h" and "v" characters (see Figure 7):

> mosaic(hec, direction = c("v", "h", "v"))

By a suitable combination of splitting, spacing, and labeling settings, the functions provided by
the strucplot framework can be customized in a quite flexible way. For example, doubledecker()
is simply a wrapper for mosaic(), setting the right defaults. Figure 8 shows a doubledecker plot
of the ‘Titanic’ data, explaining the probability of survival (‘survived’) by age, given sex, given
class. It is created by:

> doubledecker(Titanic)

equivalent to:

> doubledecker(Survived ~ Class + Sex + Age, data = Titanic)

3 Conditional and partial views

So far, we have visualized full tables. For objects of class table, conditioning on levels (i.e., choosing
a table subset for fixed levels of the conditioning variable(s)) is simply done by indexing. However,
subsetting "structable" objects is more restrictive because of their inherent conditional structure.
Since the variables on both the row and the columns side are nested, conditioning is only possible
“outside-in”:

> hec

5



Eye

S
ex

H
ai

r

F
em

al
e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

M
al

e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

Brown Blue Hazel Green

Figure 6: Association plot for the ‘HairEyeColor’ data.

6



Sex

Eye

H
ai

r

Male

B
lo

nd

Brw Blu Hzl Grn

R
ed

B
ro

w
n

B
la

ck

Female

Brw Blu Hzl Grn

Figure 7: Mosaic plot for the ‘HairEyeColor’ data—alternative splitting.

7



●● ●●

●●

●● ●●

●●

●● ●●

Class
Sex
Age

1st
Male
ChildAdult

Female
ChildAdult

2nd
Male
ChildAdult

Female
ChildAdult

3rd
Male
ChildAdult

Female
ChildAdult

Crew
Male
ChildAdult

Female
ChildAdult

Yes

No

Survived

Figure 8: Doubledecker plot for the ‘Titanic’ data.

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 38 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

Female Black 36 9 5 2
Brown 81 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

> hec["Male", ]

Eye Brown Blue Hazel Green
Hair
Black 32 11 10 3
Brown 38 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

> hec[c("Male", "Brown"), ]

Eye Brown Blue Hazel Green

38 50 25 15

> hec["Male", "Green"]

Hair
Black 3

8



Brown 15
Red 7
Blond 8

Now, there are several ways for visualizing conditional independence structures. The “brute force”
method is to draw separate plots for the strata. The following example compares the association
between hair and eye color, given gender, by using subsetting on the flat table and grid’s viewport
framework to visualize the two groups besides each other:

> pushViewport(viewport(layout = grid.layout(ncol = 2)))

> pushViewport(viewport(layout.pos.col = 1))

> mosaic(hec["Male"], margins = c(left = 2.5, top = 2.5,

+ 0), sub = "Male", newpage = FALSE)

> popViewport()

> pushViewport(viewport(layout.pos.col = 2))

> mosaic(hec["Female"], margins = c(top = 2.5, 0), sub = "Female",

+ newpage = FALSE)

> popViewport(2)

Note the use of the margins argument: it takes a vector with up to four values whose unnamed
components are recycled, but “overruled” by the named arguments. Thus, in the example, only
the top margin is set to 2 lines, and all other to 0. This idea applies to almost all vectorized
arguments in the strucplot framework (with split_vertical as a prominent exception).

Since mosaic displays are “conditional plots” by definition, we can also use one single mosaic
for stratified plots. The formula interface of mosaic() allows the specification of conditioning
variables (see Figure 10):

> mosaic(~Hair + Eye | Sex, data = hec, split_vertical = TRUE,

+ keep_aspect_ratio = FALSE)

The effect of using this kind of formula is that conditioning variables are permuted ahead of the the
conditioned variables in the table, and that spacing_conditional() is used as default to better
distinguish conditioning from conditioned dimensions. This spacing uses equal space between tiles
of conditioned variables, and increasing space between tiles of conditioning variables. In addition,
we release the fixed aspect ratio to get less distorted margins.

The cotabplot() function does a much better job on this task: it arranges stratified strucplot
displays in a lattice-like layout, conditioning on variable levels. The plot in Figure 11 shows hair
and eye color, given sex:

> cotabplot(~Hair + Eye | Sex, data = hec, panel_args = list(margins = 3),

+ labeling = labeling_left(clip = FALSE))

The labeling_args argument modifies the labels’ appearance: here, to be left-aligned and un-
clipped (see the separate vignette: “Labeling in the Strucplot Framework”for detailed information).

Another high-level function for visualizing conditional independence models are the pairs()
methods for table and structable objects. In contrast to cotabplot() which conditions on vari-
ables, the pairs() methods create pairwise views of the table. The function produces, by default,
a plot matrix having strucplot displays in the off-diagonal panels, and the variable names (option-
ally, with univariate statistics) in the diagonal cells. Figure 12 shows a pairs display with mosaic
plots visualizing mutual independence in the lower triangle, association plots for the same in the
upper triangle, and bar charts in the diagonal.

> pairs(hec, lower_panel = pairs_assoc, space = 0.3, diag_panel_args = list(rot = -45,

+ just_leveltext = c("left", "bottom")))

9



Male

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

Female

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue HazelGreen

Figure 9: Distribution of hair and eye color, given gender.

Sex

Eye

H
ai

r

Male

B
lo

nd

Brown Blue Hazel Green

R
ed

B
ro

w
n

B
la

ck

Female

Brown Blue Hazel Green

Figure 10: Mosaic plot for conditional independence structures.

10



Sex = Male

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

Sex = Female

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

Figure 11: Conditional table plot for the ‘HairEyeColor’ data.

(The labels of the variables are to be read from left to right and from top to bottom.) In plots
produced by pairs(), each panel’s row and column define two variables X and Y used for the
specification of four different types of independence: pairwise, total, conditional, and joint. The
pairwise mosaic matrix shows bivariate marginal relations between X and Y , collapsed over all
other variables. The total independence mosaic matrix shows mosaic plots for mutual indepen-
dence, i.e., for marginal and conditional independence among all pairs of variables. The conditional
independence mosaic matrix shows mosaic plots for marginal independence of X and Y , given all
other variables. The joint independence mosaic matrix shows mosaic plots for joint independence
of all pairs (X, Y ) of variables from the others.

Since the matrix is symmetric, the upper and lower parts can independently be used to display
different types of independence models, or different strucplots displays (mosaic, association, or sieve
plots). The available panel functions (pairs_assoc(), pairs_mosaic(), and pairs_sieve()) are
simple wrappers to assoc(), mosaic(), and sieve(), respectively. Obviously, seeing patterns in
strucplot matrices becomes increasingly difficult with higher dimensionality. Therefore, this plot
is typically used with a suitable residual-based shading (described in the vignette on “Colors and
Residual-based Shadings in the Strucplot Framework”).

4 Interactive plot modifications

All strucplot core functions are supposed to produce conditional hierarchical plots by the means
of nested viewports, corresponding to the provided splitting information. Thus, at the end of the
plotting, each tile is associated with a particular viewport. Each of those viewports has to be
conventionally named, enabling other strucplot modules, in particular the labeling functions, to
access specific tiles after they have been plotted. The naming convention for the viewports is:

cell:Variable1 =Level1,Variable2 =Level2 . . .

Clearly, these names depend on the splitting. The following example shows how to access parts of
the plot after it has been drawn (see Figure 13):

11



0
50

100
150
200
250
300
350

M
ale

Fem
ale

Sex

0
50

100
150
200
250
300

Black
Brown

Red
Blond

Hair

0

50

100

150

200

250

Brown

Blue
Hazel

Green

Eye

Figure 12: Pairs plot for the ‘HairEyeColor’ data.

> mosaic(~Hair + Eye, data = hec, pop = FALSE)

> seekViewport("cell:Hair=Blond")

> grid.rect(gp = gpar(col = "red", lwd = 4))

> seekViewport("cell:Hair=Blond,Eye=Blue")

> grid.circle(r = 0.2, gp = gpar(fill = "cyan"))

Note that the viewport tree is removed by default. Therefore, the pop argument has to be set to
FALSE when viewports shall be accessed.

In addition to the viewports, the main graphical elements get names following a similar con-
struction method. This allows to change graphical parameters of plot elements after the plotting
(see Figure 14):

> assoc(Eye ~ Hair, data = hec, pop = FALSE)

> getNames()[1:6]

[1] "GRID.GROB.5093" "rect:Hair=Black,Eye=Brown"
[3] "GRID.GROB.5094" "rect:Hair=Brown,Eye=Brown"
[5] "GRID.GROB.5095" "rect:Hair=Red,Eye=Brown"

> grid.edit("rect:Hair=Blond,Eye=Blue", gp = gpar(fill = "red"))

References

Cohen A (1980). “On the Graphical Display of the Significant Components in a Two-Way Con-
tingency Table.” Communications in Statistics—Theory and Methods, A9, 1025–1041.

12



Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

Figure 13: Adding elements to a mosaic plot after drawing.

Hartigan J, Kleiner B (1984). “A mosaic of television ratings.” The American Statistician, 38,
32–35.

Riedwyl H, Schüpbach M (1994). “Parquet diagram to plot contingency tables.” In F Faulbaum
(ed.), “Softstat ’93: Advances in Statistical Software,” pp. 293–299. Gustav Fischer, New York.

13



Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

Figure 14: Changing graphical parameters of elements after drawing.

14


	Framework Overview
	Mosaic, Association, and Sieve Plots
	Conditional and partial views
	Interactive plot modifications

