mba.surf {MBA} | R Documentation |
The function mba.surf
returns a surface approximated from a
bivariate scatter of data points using multilevel B-splines.
mba.surf(xyz, no.X, no.Y, n = 1, m = 1, h = 8, extend=FALSE, ...)
xyz |
a n x 3 matrix or data frame, where n is the number of observed points. The three columns correspond to point x, y, and z coordinates. The z value is the response at the given x, y coordinates. |
no.X |
resolution of the approximated surface along the x axis. |
no.Y |
resolution of the approximated surface along the y axis. |
n |
initial size of the spline space in the hierarchical construction along the x axis. If the rectangular domain is a square, n = m = 1 is recommended. If the x axis is k times the length of the y axis, n = 1, m = k is recommended. The default is n = 1. |
m |
initial size of the spline space in the hierarchical construction along the y axis. If the y axis is k times the length of the x axis, m = 1, n = k is recommended. The default is m = 1. |
h |
Number of levels in the hierarchical construction. If, e.g., n = m = 1 and h = 8, the resulting spline surface has a coefficient grid of size 2^h + 3 = 259 in each direction of the spline surface. See references for additional information. |
extend |
if FALSE, a convex hull is computed for the input points and all matrix elements in z that have centers outside of this polygon are set to NA; otherwise, all elements in z are given an estimated z value. |
... |
currently no additional arguments. |
List with 1 component:
xyz.est |
a list that contains vectors x, y and the no.X x no.Y matrix z of estimated z-values. |
The function mba.surf
relies on the Multilevel B-spline
Approximation (MBA) algorithm. The underlying code was developed at
SINTEF Applied Mathematics by Dr. Oyvind Hjelle. Dr. Oyvind Hjelle
based the algorithm on the paper by the originators of Multilevel B-splines:
S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics, 3(3):229–244, 1997.
For additional documentation and references please see:
http://home.simula.no/~oyvindhj/MultilevelDoc/mba/html/index.html.
This minor portion of the MBA codebase was ported by Andrew O. Finley afinley@stat.umn.edu.
data(LIDAR) mba.int <- mba.surf(LIDAR, 300, 300, extend=TRUE)$xyz.est ## Not run: ##Image plot image(mba.int, xaxs="r", yaxs="r") ##Perspective plot persp(mba.int, theta = 135, phi = 30, col = "green3", scale = FALSE, ltheta = -120, shade = 0.75, expand = 10, border = NA, box = FALSE) ##For a good time I recommend using rgl library(rgl) ex <- 10 x <- mba.int[[1]] y <- mba.int[[2]] z <- ex*mba.int[[3]] zlim <- range(z) zlen <- zlim[2] - zlim[1] + 1 colorlut <- heat.colors(as.integer(zlen)) col <- colorlut[ z-zlim[1]+1 ] open3d() surface3d(x, y, z, color=col, back="lines") ## End(Not run)