
PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page 1

PBS Modelling 0.60: User’s Guide
(Draft Report)

Jon T. Schnute, Alex Couture-Beil, and Rowan Haigh

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2006

Canadian Technical Report of
Fisheries and Aquatic Sciences xxxx

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page 2

Canadian Technical Report of
Fisheries and Aquatic Sciences

 Technical reports contain scientific and technical information that contributes to existing
knowledge but which is not normally appropriate for primary literature. Technical reports are
directed primarily toward a worldwide audience and have an international distribution. No
restriction is placed on subject matter and the series reflects the broad interests and policies of
the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.
 Technical reports may be cited as full publications. The correct citation appears above
the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries
Abstracts and indexed in the Department’s annual index to scientific and technical publications.
 Numbers 1 - 456 in this series were issued as Technical Reports of the Fisheries
Research Board of Canada. Numbers 457 - 714 were issued as Department of the
Environment, Fisheries and Marine Service Technical Reports. The current series name was
changed with report number 925.
 Technical reports are produced regionally but are numbered nationally. Requests for
individual reports will be filled by the issuing establishment listed on the front cover and title
page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport technique canadien des
sciences halieutiques et aquatiques

 Les rapports techniques contiennent des renseignements scientifiques et techniques qui
constituent une contribution aux connaissances actuelles, mais que ne sont pas normalement
appropriés pour la publication dans un journal scientifique. Les rapports techniques sont
destinés essentiellement à un public international et ils sont distribués à cet échelon. Il n’y a
aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des
politiques du ministère des Pêches et des Océans, c’est-à-dire les scences halieutiques et
aquatiques.
 Les rapports techniques peuvent être cités comme des publications complètes. Le titre
exact paraît au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés
dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l’index
annual des publications scientifiques et techniques du Ministère.
 Les numéros 1 à 456 de cette série ont été publiés à titre de rapports techniques de
l’Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre
de rapports techniques de la Direction générale de la recherche et du développement, Service
des pêches et de la mer, ministère de l’Environnement. Les numéros 715 à 924 ont été publiés
à titre de rapports techniques du Service des pêches et de la mer, ministère des Pêches et de
l’Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925.
 Les rapports techniques sont produits à l’échelon regional, mais numérotés à l’échelon
national. Les demandes de rapports seront satisfaites par l’établissement auteur dont le nom
figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution
par des agents commerciaux.

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page i

Canadian Technical Report of

Fisheries and Aquatic Sciences xxxx

2006

PBS Modelling 0.60: User’s Guide
(Draft Report)

by

Jon T. Schnute, Alex Couture-Beil, and Rowan Haigh

Fisheries and Oceans Canada

Science Branch, Pacific Region

Pacific Biological Station

3190 Hammond Bay Road

Nanaimo, British Columbia

V9T 6N7

CANADA

 – ii –

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page ii

© Her Majesty the Queen in Right of Canada, 2006

Cat. No. Fs97-6/2549E ISSN xxxx-xxxx

9 8 7 6 5 4 3 2 1 (First printing – MMM DD, YYYY)

Correct citation for this publication:

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2006. PBS Modelling 1: user’s guide v.0.60 (draft

version). Can. Tech. Rep. Fish. Aquat. Sci. xxxx: xxx + xxx p.

 – iii –

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page iii

TABLE OF CONTENTS

Abstract ... v
Résumé.. v
Preface.. vi
1. Introduction... 1
2. GUI tools for model exploration... 3

2.1. Example: Lissajous curves... 3
2.2. Window description file... 6
2.3. Window support functions... 8
2.4. Internal data for windows .. 10

3. Functions for data exchange ... 11
4. Functions for graphics and analysis.. 13

4.1. Graphics utilities .. 13
4.2. Data management... 14
4.3. Function minimization and maximum likelihood.. 14
4.4. Handy utilites ... 14

5. Examples... 15
5.1. Random variables... 16

5.1.1. RanVars – Random variables... 16
5.1.2. RanProp – Random proportions... 17
5.1.3. SineNorm – Sine normal.. 18

5.2. Statistical analyses ... 19
5.2.1. LinReg – Linear regression .. 19
5.2.2. MarkRec – Mark-recovery.. 20
5.2.3. CCA – Catch-curve analysis.. 21

5.3. Other applications .. 22
5.3.1. FishRes – Fishery reserve ... 22
5.3.2. FishTows – Fishery tows... 23

References... 24
Appendix A. Building PBSmodelling and other packages ... 25

A.1. Installing required software .. 25
A.2. Building PBSmodelling ... 27
A.3. Creating a new R package... 28
A.4. Embedding C code .. 31

Appendix B. Widget descriptions ... 35
Button.. 35
Check .. 35
Data ... 36
Entry.. 37
Grid ... 38
History... 39
Label ... 40
Matrix.. 40
Menu ... 42

 – iv –

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page iv

MenuItem.. 42
Null ... 43
Radio ... 43
Slide .. 44
SlidePlus ... 45
Text ... 46
Vector.. 47
Window... 48

Appendix C. PBS Modelling functions and data .. 48
C.1. Objects in PBS Modelling ... 49
C.2. Function dependencies .. 50

LIST OF TABLES

Table 1. Lissajous project files... 4
Table 2. R source code with GUI definition strings... 9
Table 3. Data file in PBS format .. 12
Table A1. C representations for R data types.. 31
Table A2. .C() example in PBStry .. 32
Table A3. .Call() example adapted from PBSmodelling .. 33

LIST OF FIGURES

Figure 1. Tangled relationships.. 2
Figure 2. GUI organization .. 2
Figure 3. Lissajous GUI ... 5
Figure 4. Lissajous graph ... 6
Figure 5. RanVars GUI and density plot... 16
Figure 6. RanProp GUI and pairs plot for Dirichlet.. 17
Figure 7. SineNorm GUI and plot ... 18
Figure 8. LinReg GUI and regression plot .. 19
Figure 9. MarkRec GUI and density plots ... 20
Figure 10. CCA GUI and parameter pairs plot ... 21
Figure 11. FishRes GUI and population time series .. 22
Figure 12. FishTows GUI and simulated tow tracks .. 23

 – v –

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page v

ABSTRACT

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2006. PBS Modelling 1: user’s guide v.0.60 (draft

version). Can. Tech. Rep. Fish. Aquat. Sci. xxxx: xxx + xxx p.

This draft report describes the R package PBS Modelling, which contains software to facilitate
the design, testing, and operation of computer models. The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Initially designed for fisheries scientists, this package has broad potential application
in many scientific fields. PBS Modelling focuses particularly on tools that make it easy to
construct and edit a customized graphical user interface (GUI) appropriate for a particular
problem. Although our package depends heavily on the R interface to Tcl/Tk, a user does not
need to know Tcl/Tk. In addition to GUI design tools, PBS Modelling provides utilities to
support data exchange among model components, conduct specialized statistical analyses, and
produce graphs useful in fisheries modelling and data analysis. Examples implement classical
ideas from fishery literature, as well as our own published papers. The examples also provide
templates for designing customized analyses using other R libraries, such as PBS Mapping,
odesolve, and BRugs. Users interested in building new packages can use PBS Modelling and a
simpler enclosed package PBS Try as prototypes. An appendix describes this process completely,
including the use of C code for efficient calculation.

RÉSUMÉ

Schnute, J.T., Couture-Beil, A. et Haigh, R. 2006. PBS Modelling 1: Guide de l’utilisateur v.0.60

(version provisoire). Can. Tech. Rep. Fish. Aquat. Sci. xxx: xxx + xxx p.

Google translation: Ce projet de rapport décrit le paquet PBS de R modelant, qui contient le
logiciel pour faciliter la conception, l'essai, et l'opération des modèles d'ordinateur. Les initiales
PBS se rapportent à la station biologique Pacifique, un laboratoire important de pêche sur la côte
Pacifique du Canada dans Nanaimo, Colombie britannique. Au commencement conçu pour des
scientifiques de pêche, ce paquet a la large application potentielle dans beaucoup de domaines
scientifiques. PBS modelant des foyers en particulier sur les outils qui le rendent facile à
construire et éditer une interface utilisateur graphique adaptée aux besoins du client (GUI)
s'approprient pour un problème particulier. Bien que notre paquet dépende fortement de
l'interface de R à Tcl/Tk, un utilisateur n'a pas besoin de savoir Tcl/Tk. En plus des outils de
conception de GUI, modeler de PBS fournit des utilités à l'échange d'informations
supplémentaires parmi les composants modèles, les analyses statistiques spécialisées par
conduite, et les graphiques de produit utiles dans la pêche modelant et l'analyse de données. Les
exemples mettent en application des idées classiques de la littérature de pêche, aussi bien que nos
propres papiers édités. Les exemples fournissent également des calibres pour concevoir des
analyses adaptées aux besoins du client en utilisant d'autres bibliothèques de R, telles que tracer
de PBS, odesolve, et BRugs. Les utilisateurs intéressés à de nouveaux paquets de bâtiment
peuvent employer modeler de PBS et un essai inclus plus simple du paquet PBS comme
prototypes. Une annexe décrit ce processus complètement, y compris l'utilisation du code de C
pour le calcul efficace..

 – vi –

PBS Modelling v. 0.60 Report draft 57, August 29, 2006 Page vi

Preface

After working with fishery models for more than 30 years, I’ve used a great variety of
computer software and hardware. Currently, the free distribution of R (R Development Core
Team 2006a) provides an excellent platform for software development. Furthermore, the
associated network of contributed libraries on CRAN (Comprehensive R Archive Network,
CRAN: http://cran.r-project.org/) gives access to a wealth of algorithms from many users in
various fields. This disciplined system allows users, like the authors of this package, to distribute
software that extends the utility of R in new directions.

 At various times, I’ve used software in Basic, Fortran (Mittertreiner and Schnute 1985),
Pascal, C, and C++ to implement ideas in published papers. Usually this software goes stale in
time, due to minimal documentation, changing operating systems, the lack of portable libraries,
and many other factors. Because R includes a rich library of statistical software that operates on
multiple platforms, my colleagues and I can now distribute software that actually works when
other people try it. The user community includes us, because we often find that we can’t
remember how to operate our own software after a few weeks or months, let alone years.
Although writing a good R package requires considerable effort, the result often pays off in
portability, communication, and long term usage.

 PBS Modelling tries to accomplish several goals. First, it anticipates the need for model
exploration with a graphical user interface, a so-called GUI (pronounced gooey). We make this
easy by encapsulating key features of the Tcl/Tk library into convenient tools fully documented
here. A user need not learn Tcl/Tk to use this package. Everything required appears in Appendix
B. You might want to start by running the function testWidgets(). Co-author Rowan Haigh
likes the subtitle: “modelling the world with gooey substances.”

Second, we want to demonstrate interesting analyses related to our work in fishery
management and other fields. The function runExamples() illustrates some of these, as
described further in Section 5. The code for all of them appears in the R library directory
PBSmodelling\Examples. We demonstrate the power of other R libraries, such as BRugs
(to perform Bayesian posterior sample with the application WinBUGS), odesolve (to solve
differential equations numerically), and PBSmapping (to draw maps and perform spatial
analyses).

Third, PBS Modelling serves as a prototype for building a new R package, as summarized
in Appendix A. We illustrate two methods of calling C code (.C and .Call), and discuss many
other technical issues encountered while building this library.

Finally, to use R effectively, we’ve found it convenient to devise a number of “helper”

functions that facilitate data exchange, graphics, function minimization, and other analyses. We
include these here for the benefit of our users, who may choose to ignore them. We hope that
PBS Modelling inspires interest in interactive models that demonstrate applications in many
fields. Enjoy!

Jon Schnute, August 2006

 – 1 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 1

1. Introduction

This draft report describes software to facilitate the design, testing, and operation of
computer models. The package PBS Modelling is distributed as a freely available library for the
popular statistical program R (R Development Core Team 2006a). The initials PBS refer to the
Pacific Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo,
British Columbia. Previously, we produced the R library PBS Mapping (Schnute et al. 2004),
which draws maps and performs various spatial operations. Although both packages (which can
run separately or together) include examples relevant to fishery models and data analysis, they
have broad potential application in many scientific fields.

 Computer models allow us to speculate about reality, based on mathematical assumptions
and available data. The full implications of a model usually require numerous runs with varying
parameter values, data sets, and hypotheses. A customized graphical user interface (or GUI,
often pronounced “gooey”) facilitates this exploratory process. PBS Modelling focuses
particularly on tools that make it easy to construct and edit a GUI appropriate for a particular
problem. Some users may wish to use this package only for that purpose. Other users may want
to explore the examples included, which demonstrate applications of likelihood inference,
Bayesian analysis, differential equations, computational geometry, and other modern
technologies. In constructing these examples, we take advantage of the diversity of algorithms
available in other R libraries.

 In addition to GUI design tools, PBS Modelling provides utilities to support data
exchange among model components, conduct specialized statistical analyses, and produce graphs
useful in fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using the R libraries discussed here. In part, PBS Modelling
provides a (very incomplete) guide to the variety of analyses possible with the R framework. We
anticipate many revisions of our library, as we find time to include more examples.

PBS Modelling depends heavily on Peter Dalgaard’s (2001, 2002) R interface to the
Tcl/Tk package (Ousterhout 1994). This combines a scripting language (Tcl) with an associated
GUI toolkit (Tk). In our library, we simplify GUI design with the aid of a “window description
file” that specifies the layout of all GUI components and their relationship with variables in R.
We support only a subset of the possibilities available in Tcl/Tk, but we customize them in ways
intended specifically for model design and exploration (Appendix B). A user of PBS Modelling
does not need to know Tcl/Tk.

Computer models typically involve a variety of components, such as code, data, a user
interface, and documentation. Figure 1 illustrates the tangled relationships that sometimes
accompany computer model design. PBS Modelling allows the GUI to become a device for
organizing components, as well as running and testing software (Figure 2). The project might
involve other applications, as well as R itself.

 – 2 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 2

Figure 1. Tangled relationships among computer model components.

Figure 2. Computer model components organized with a graphical user interface (GUI).

In PBS Modelling, project design normally begins with a text file that describes the GUI.
Additional files may contain code for R and other applications, which sometimes require code
written in languages other than R. For example, the R BRugs library (to perform Bayesian
inference using Gibbs sampling) requires a file with the intended statistical model, written in the
language of a separate program WinBUGS. In other contexts, a user might write C code to get
acceptable performance from model components that require extensive computer calculations.
This code might be compiled as a separate program or linked directly into a customized R
package.

 – 3 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 3

Section 2 of this report describes the process of designing a GUI to operate a computer
model. Components can share data through text files in a specialized “PBS format” presented in
Section 3. These correspond naturally to list objects within R. Section 4 describes additional
tools for customized graphics and data analysis. In Section 5, we highlight briefly some of the
examples in our initial release, although we expect the list to expand in future versions.

Appendix A describes the process of building PBS Modelling in a Windows environment.

A simple enclosed package PBS Try gives a prototype for building any R package, including the
use of C code to speed calculations. Appendix B gives the complete syntax for all visual
components (called widgets) available for a writing a window description file to specify a
customized GUI. Appendix C shows the help files included with the library.

To use PBS Modelling, run R and install the package from the R GUI (click “Packages”,
“Install package(s)…, select a mirror, and choose PBSmodelling from the list of packages).
Windows users can also obtain an appropriate zip file from the authors of this report or directly
from the CRAN web site http://cran.r-project.org/.

2. GUI tools for model exploration

 The practical task of writing appropriate code for the R Tcl/Tk package can sometimes
become a bit daunting, particularly if the GUI window requires extensive design and change. For
a restricted set of Tk components (called widgets), PBS Modelling makes it much easier to
design and use GUIs for exploring models in R. A user needs to supply two key parts of a
GUI-driven analysis:
• a window description file (an ordinary text file) that completely specifies the desired layout

of widgets and their relationship with functions and variables in R, and
• R code that defines relevant functions, variables, and data.

This section begins with an example to illustrate the main ideas, and then gives complete details
for constructing window description files that can be used to generate GUIs.

2.1. Example: Lissajous curves

A Lissajous curve (http://mathworld.wolfram.com/LissajousCurve.html), named after one
of its inventors Jules-Antoine Lissajous, represents the dynamics of the system

sin(2) , sin[2 ()],x mt y ntπ π φ= = + (1)

where time t varies from 0 to 1. During this time interval, the variables x and y go through m and
n sinusoidal oscillations, respectively. The constant φ , which lies between 0 and 1, represents a
cycle fraction of phase shift in y relative to x. We want to design a GUI that allows us to explore
this model by plotting Lissajous curves (y vs. x) for various choices of the parameters (, ,)m n φ .
We also want to vary the number of time steps k and choose a plot that is either lines or points.

 – 4 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 4

Table 1. Two text files associated with the “Lissajous Curve” project. The first gives a
description of the GUI window used to manage the graphics. The second contains R code to
draw a Lissajous curve.
———————————————————————————————————————

File 1: LissajousCurve.txt
window title="Lissajous Curve"
vector length=4 names="m n phi k" \
 labels="'x cycles' 'y cycles' 'y phase' points" \
 values="2 3 0 1000"
radio name=ptype text=lines value="l" mode=character
radio name=ptype text=points value="p" mode=character
button text=Plot function=drawLiss

File 2: LissajousCurve.r
drawLiss <- function() {
 getWinVal(scope="L");
 tt <- 2*pi*(0:k)/k;
 x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
 plot(x,y,type=ptype);
 invisible(NULL); }

———————————————————————————————————————

 This analysis can be accomplished with the R code and window description file shown in
Table 1. Assume that these two files reside in the current working directory and that
PBS Modelling has been installed in R. Start an R session from this directory, and type the
following three lines of code in the R command window:
> require(PBSmodelling)
> source("LissajousCurve.r")
> createWin("LissajousCurve.txt")

The first line assures that PBS Modelling is loaded, the second defines the function drawLiss
for drawing Lissajous curves, and the third creates a window that can be used to draw curves
corresponding to any choice of parameters. Figure 3 shows the resulting GUI window interface.
When the <Plot> button is clicked, the curve in Figure 4 appears in the R graphics window. This
corresponds to the default parameter values:

2, 3, 0, 1000m n kφ= = = = . (2)

The GUI allows different Lissajous figures to be drawn easily. Simply change parameter values
in the four entry boxes, and click on <Plot>.

The description file (Table 1) specifies a window titled “Lissajous Curve” with a
vector of four entries. These correspond to quantities with the R variable names m, n, phi,
and k. The corresponding window (Figure 3) will contain four entry boxes that allow these
quantities to be changed. A label for each quantity emphasizes its conceptual role: the number of
cycles for x or y, the phase shift for y, and the number of points plotted. Initial values correspond
to those listed in (2). The backslash (\) character indicates that a widget description (in this case,

 – 5 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 5

a vector) continues on the next line. A pair of radio buttons, both corresponding to an R
variable named ptype, allow selection between “lines” and “points” when drawing the plot.
The graph is actually drawn (i.e., the R function drawLiss is called) when the user presses a
button that contains the text “Plot”. In general, we use the symbols <…> to designate a button
or keystroke, such as the <Plot> button or the radio buttons <lines> and <points>.

 The file of R code (Table 1) implements the algorithm (1) for computing k points on a
Lissajous curve. The function drawLiss has no arguments, but gets values of the R variables
m, n, phi, k, and ptype from the GUI window via a call to the PBS Modelling function
getWinVal. The argument scope="L" implies that these variables have local scope within
this function only. (Another choice scope="G" would give the variables global scope.)

Figure 3. GUI generated by the description file LissajousCurve.txt in Table 1. It
contains five widgets: the window titled “Lissajous Curve”, a vector of four entries, two linked
radio buttons (<lines> and <points>), and a <Plot> button.

 – 6 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 6

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

y

Figure 4. Default graph for the “Lissajous Curve” project, obtained by clicking the <Plot>
button in Figure 3. The x variable goes through two cycles while the y variable goes through 3
cycles. A line graph is drawn through 1000 points generated by the algorithm (1).

2.2. Window description file

A window description file currently supports the following 17 widgets:

1. window – an entire new window;
2. menu – a menu grouping;
3. menuitem – an item in a menu;
4. grid – a rectangular block of widgets;
5. label – a text label;
6. button – a button linked to an R function that runs a particular analysis and generates a

desired output, perhaps including graphics;
7. check – a check box used to turn a variable off or on, with corresponding values 0 or 1;
8. radio – one of a set of mutually exclusive radio buttons for making a particular choice;
9. null –a blank widget that can occupy an empty space in a grid;

10. entry – a field in which a scalar variable (number or string) can be altered;
11. text – an entry box that supports multiple lines of text;
12. vector – an aligned set of entry fields for all components of a vector;

 – 7 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 7

13. matrix – an aligned set of entry fields for all components of a matrix;
14. data – an aligned set of entry fields for all components of a data frame, where columns can

have different modes;
15. slide – a slide bar that sets the value of a variable;
16. slideplus – an extended slide bar that also displays a minimum, maximum, and current

value;
17. history – a device for archiving parameter values corresponding to different model

choices, so that a “slide show” of interesting choices can be preserved.

The description file is an ordinary text file that specifies each widget on a separate line.
However, any one widget description can span multiple lines by using a backslash character (\)
to indicate the end of an incomplete line. For example, the single line:
label text="Hello World!"
is equivalent to:
label \
 text="Hello World!"
Meaningful indentation is highly recommended, but not compulsory. The three-line description
of a vector widget in Table 1 illustrates a readable style.

Each widget has named arguments that control its behaviour, analogous to the named
arguments of a function in R. Some (required) arguments must be specified in the widget
description. Others (not required) can take default values. All widgets have a type argument
equal to one of the 17 names above, although the word type can be omitted in the description
file. Appendix A gives an alphabetic list of all these widgets, along with detailed descriptions of
all arguments. As in calls to R functions, argument names can be omitted as long as they
conform to the order specified in the detailed widget descriptions given below. Nevertheless, we
recommend that all argument names be specified, except possibly the name type, which is
always the first argument for each widget. Unlike R functions, where commas separate
arguments, the arguments in a widget description are separated by white space.

In a description file, all argument values are treated initially as strings. In addition to
specifying a line break, the backslash can be used to indicate five special characters: single quote
\', double quote \", tab \t, newline \n, and backslash \\. If an argument value does not
include spaces or special characters, then quotes around the string are not required. Otherwise,
double quotes must be used to delineate the value of an argument. Single quotes indicate strings
nested within strings. For example, the vector in Table 1 has four labels specified by the string
argument
labels="'x cycles' 'y cycles' 'y phase' points"

A hash mark (#) that is not within a string begins a comment, where everything on a line
after the hash mark is ignored. As mentioned above, an isolated backslash (not part of a special
character) indicates continuation onto the next line. A break can even occur in the middle of a
string, such as the long label

 – 8 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 8

label text="This long label with spaces \
 spans two lines in the description file"
In this case, leading spaces in the second line are ignored, to allow meaningful formatting in the
description file. Intentional spaces in a long string should appear prior to the backslash on the
first line.

 Although the type argument (like vector) for a widget can never be abbreviated,
other arguments follow the convention used with named arguments in R function calls. For a
given widget type, the available arguments can be abbreviated, as long as the abbreviations
uniquely identify each argument. For example, the vector in Table 1 could be specified as:
vector len=4 nam="m n phi k" \
 lab="'x cycles' 'y cycles' 'y phase' points" \
 val="2 3 0 1000"

 Unlike variable names in R, widget names and their arguments are not case sensitive.
Some users may prefer to write all type variables in upper case or with an initial capital letter.
For example, the names WINDOW, VECTOR, RADIO, and BUTTON could be used to
emphasize the widgets in Table 1.

2.3. Window support functions

 PBS Modelling includes functions designed to connect R code with GUI windows. Every
window has a name argument (with default name=window), and windows with different
names can coexist. When running a program with multiple windows, only one window will be
current (i.e., selected by the user) at any particular time. The function createWin uses a
description file to generate one or more windows, where each window has a name (perhaps the
default) taken from the file. If a window with the specified name already exists, it will be closed
before the new window is opened. When designing and testing a GUI, this feature ensures that a
new version automatically replaces the previous one. The function closeWin, which takes a
vector of window names, closes all windows named in the vector. With no arguments,
closeWin() closes all windows that are currently open.

 Although createWin normally builds a GUI from a description file, it will also accept
a vector of strings equivalent to such a file. Thus, a file of R source code can define a GUI
directly, without the need for a separate description file. Table 2 illustrates how this can be done
in a simple case. To see the character vectors equivalent to a given description file (say,
winDesc.txt), type the R command:
 scan("winDesc.txt",what=character(),sep="\n")
In particular, if the description file includes a backslash or double quote character, the
corresponding R string must represent it as \\ or \", respectively. Despite this alternative of
embedding window descriptions in R source files, we recommend writing separate files to define
GUIs, except perhaps for very simple models.

 – 9 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 9

Table 2. A simple file of R source code with character strings that define a GUI. No separate
window description file is required.
———————————————————————————————————————

File: Simple.r
window description strings
winStr=c(
 "window",
 "entry name=n value=5",
 "button function=myPlot text=\"Plot sinusoid\"");

function to plot a sinusoid
myPlot <- function() {
 getWinVal(scope="L");
 x <- seq(0,500)*2*n*pi/500;
 plot(x,sin(x),type="l"); };

commands to create the window
require(PBSmodelling); createWin(winStr,astext=TRUE)

———————————————————————————————————————

 Internally, PBS Modelling uses a list object in the process of generating a GUI from a
description file. The functions compileDescription and parseWinFile give lists that
correspond to description files. Just as createWin can act directly on a character vector, it can
also act on a suitably defined list, rather than a file. This feature makes it possible to replace a
description file with R code that defines the corresponding list, although we recommend against
this practice in most cases.

 R programs need to share data with a GUI window. PBS Modelling provides three
functions that deal with values of R variables named in a description file:
• getWinVal returns values from the current window;
• setWinVal sets values in the current window;
• clearWinVal clears global values associated with the current window.

 Some models associate a particular action with a single parameter vector. In such cases
the function createVector generates a GUI directly, without the need for a corresponding
description file.

 Several functions support file display and manipulation from a GUI:
• openFile opens a file using the default program for the file extension;
• promptOpenFile shows the current directory for choosing a file to open;
• promptSaveFile shows the current directory for naming a file to save.

 PBS Modelling includes a history widget designed to collect interesting choices of
GUI variables so that they can be redisplayed later, rather like a slide show. This widget has

 – 10 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 10

buttons to add and remove GUI settings from the current collection, to scroll backward and
forward, and to clear all entries from the collection. Other buttons allow entire history files to be
saved or loaded.

Normally, a user would invoke a history widget simply by including a reference to it
in the description file. However, PBS Modelling includes some support functions for customized
applications:
• initPBShistory initializes data structures for holding a collection of history data;
• addPBShistory saves the current window settings to the current history record;
• rmPBShistory removes the current record from the history;
• backPBShistory and forwPBShistory move backward and forward among the

history records;
• jumpPBShistory moves to a specified record in the history;
• exportPBShistory and importPBShistory save and load histories from files;
• clearPBShistory removes all records from the current collection.
The help file for initPBShistory shows an example that uses these functions directly.

2.4. Internal data for windows

PBS Modelling uses two list variables PBS.win and PBS.options in the global
environment to store information relevant to its current settings. In particular, PBS.win has four
components that contain data about the current GUI window, where
• $vars is a vector with the names of all R variables declared in the description file;
• $funs is a vector with the names of all R functions declared in the description file;
• $actions is a vector with action names (optionally declared in the description file) that

indicate recent actions taken by the user in the current GUI;
• $windowname is the name of the currently active window.
The functions showVars, showFuns, showActions, and showWin can also be used to
return these character vectors. If multiple windows are present, PBS.win automatically gets
updated to the data for the window currently selected.

After using createWin to produce a GUI, the vectors PBS.win$vars and
PBS.win$funs provide useful summaries of names declared in the current project.
Furthermore, the vector PBS.win$actions provides a record of GUI actions taken by the
user, starting with the most recent and working backwards. By default, the action associated
with a widget is its type; for example a button has default action=button. In general,
however, the description file could give a unique action name to each potential action, so that the
vector would give an unambiguous record of user actions.

If a widget invokes the function openFile, the associated action should be the file
name. By definition, openFile has the default argument PBS.win$actions[1].

 Currently, PBS.options acts primarily to store default program names associated with
file extensions. On a Windows platform, the native R function shell.exec (called by

 – 11 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 11

openFile) automatically chooses a default from the registry. For this reason, our distribution
specifies an empty list:
 PBS.options$openFile=list().
The default can, however, be overwritten by specifying explicit list components, such as:
 html='"c:/Program Files/Mozilla Firefox/firefox.exe" %f'
where %f denotes the file name in the string passed to the operating system. On Unix platforms,
it may be essential to specify default this way. Future versions of our library may include other
options, such as default width for a data entry field or the maximum number of actions.

3. Functions for data exchange

 Computer models usually require data exchange between model components. For
example, as described above, the functions getWinVal and setWinVal move data between
an R program and the GUI. Other applications, such as those written separately in C, may have
the ability to write data to files that R can read. In cases like this, it would be convenient to have
variable names in the C code correspond to variables with the same names in R. PBS Modelling
can facilitate this process with the functions readList and writeList, which convert a text
file to an R list and vice-versa. Another function unpackList creates local or global
variables with names that match the list components.

 Table 3 illustrates a data file in PBS format, legible by readList. The file contains
lines with an initial dollar sign (like $x in Table 3) that specify a list component name in R,
followed by one or more lines of data. Data items are separated by white space. A single item of
data corresponds to a scalar in R, multiple items on a single line correspond to a vector, and
multiple lines of data correspond to a matrix with the number of columns determined by the first
line of data. Thus, in Table 3, $x is a scalar, $y is a vector of length 4, and $z is a 2×4 matrix.
The format also supports four possible data type definitions on a line preceded by $$:

$$ vector mode=numeric names=""
$$ matrix mode=numeric ncol colnames="" byrow=TRUE
$$ data modes=numeric ncol colnames byrow=TRUE
$$ array mode=numeric dim fromright=TRUE

Table 3 illustrates their use in specifying $a, $b1, and $b2. Matrices and data frames can be
read by row or column. This choice determines the order of reading the data, and white space
(including line breaks) merely signifies breaks between data items. Array objects with three or
more dimensions can be read in two ways, with indices varying first from the right or from the
left. For example, data for an array indexed by [i,j,k] are read by varying i first with fixed j
and k if fromright=TRUE. Similarly, k varies first if fromright=FALSE.

 – 12 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 12

Table 3. Sample data file for PBS Modelling. The function readList converts this file to a
list object with six components: a scalar $x, a logical vector $y, two matrices ($z,$a), and
two data frames ($b1,$b2). The matrix $a is read by column, and $b1=$b2.
———————————————————————————————————————
$x
0

$y
T F TRUE FALSE

$z
11.1 12.2 13.3 14.4
15.5 16.6 17.7 1.88e+01

$a
$$matrix ncol=2 byrow=FALSE colnames="a b"
5 1 2 3

$b1
$$data ncol=3 modes="numeric logical character" \
 byrow=TRUE colnames="N L C"
5 T aa
3 F bb
8 T cc
10.5 F dd

$b2
$$data ncol=3 modes="numeric logical character" \
 byrow=FALSE colnames="a b c"
5 3 8 10.5
T F T F
aa bb cc dd

———————————————————————————————————————

As in widget descriptions, arguments may be omitted in favour of their defaults, and the
$$ line may be continued across multiple lines by using a backslash character \. For a matrix,
the argument ncol is required. Similarly, a data object (i.e., a data frame) must specify ncol
and a vector colnames of length ncol. Also, modes must have length 1 (so that all entries in
the data frame have the same mode) or length ncol. An array must have a complete dim
argument, a vector giving the number of dimensions for each index.

 – 13 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 13

As indicated earlier, PBS Modelling can use this specialized data format as a convenient
means of capturing data from other programs. For example, to export data from an external C
program, write C code that generates a data file in PBS format, where component names in the
file match the C variable names. Then read the resulting file into an R session with the function
readList, and use unpackList to produce local or global R variables. At this point, both R
and C share data with the same variable names.

 To considerable extent, R has native support for reading and writing a variety of text
files, including the functions scan, cat, source, dump, dget, dput, read, write,
read.table, and write.table. External programs sometimes utilize R formats for their
input data. For example, the program WinBUGS (Speigelhalter et al., 2004), which implements
Bayesian inference using Gibbs sampling, uses data files written in a list format closely related to
the R syntax produced by the dput function. If the file myData.txt has this format, then
either of the two R commands
 myData <- dget("myData.txt");
 myData <- eval(parse("myData.txt"));
produces a corresponding R list object named myData.

We should, however, add a word of caution here. When R saves array data in dput
format, it converts the array to a vector by varying the indices from left to right. For example, a
matrix with indices [i,j] is saved as a vector in which i varies for each fixed j. In effect, the
data are stored by column. This sometimes gives an unnatural visual appearance. In English, the
eye reads naturally from left to right, then down. Matrices are normally displayed by row, with
column index j varying for each fixed i. WinBUGS, supported by the R package BRugs
(Thomas 2004), requires input data formatted in this visually meaningful way. More generally,
WinBUGS reads arrays by varying the indices from right to left. The BRugs function bugsData
writes data in this format, but users must take special care in reading WinBUGS data with the
dget function.

4. Support functions for graphics and analysis

 As mentioned in the preface, we have devised a number of functions that make it easier
for us to work in R. Some of them, such as plotBubbles, relate to techniques discussed in our
published work (e.g., Richards et al. 1997; Schnute and Haigh 2006). Others just provide
convenient utilities. For example, testCol("red") shows all colours in the palette
colors() that contain the string "red".

4.1. Graphics utilities

resetGraph............Resets various graphics parameters to defaults, with mfrow=c(1,1)
expandGraphSets various graphics parameters to make graphs fill out available space

drawBarsDraw a linear bar plot on the current graph
plotCsumPlots cumulative sum of a vector, with value added

 – 14 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 14

plotBubblesConstruct a bubble plot for a matrix
genMatrixGenerate a test matrix for use in plotBubbles

addArrowsCalls arrows function using relative (0:1) coordinates
addLegendAdds a legend using relative (0:1) coordinates
addLabelAdds a panel label using relative (0:1) coordinates

testCol...................Display colours available
testLty...................Display line types available
testLwd...................Display line widths
testPch...................Display plotting symbols
testGrGUI to do some/most/all of the above
pickCol...................Pick a color from a complete palette

4.2. Data management

clearAllFunction to clear all data in the global environment

pad0Pads numbers with leading zeroes (string)
show0........................Shows decimal places including zeroes (string)
viewViews first n rows of a data.frame or matrix

compareParsFind the difference between two par vectors ***** not implemented
compareLists.......Find the difference between two lists

4.3. Function minimization and maximum likelihood

***** These concepts have not been implemented in PBS Modelling 0.60.

New data type:
parVec – a data frame with columns val, min, max, active (logical), and possible row
names;

scalePar scales parameters to [0,1]
restorePar get actual parameters from scaled values

calcMin(pvec,func,tol) calculates the minimum of func, starting at pvec

4.4. Handy utilities

calcGMCalculates the geometric mean of a vector of numbers
findPat...................Find all strings that include any string in a vector of patterns
pause........................Pause, typically between graphics displays
showArgsShow the arguments for a specified widget in Appendix B
testWidgetsGUI to test all widgets listed in Appendix B

 – 15 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 15

viewView of first few lines of a (potentially large) matrix or data frame

5. Examples

As mentioned in the Preface, PBS Modelling includes a variety of examples that illustrate
applications based on this and other libraries. Generally, each example comprises R-code, a
window description file, documentation, and other supporting files. All relevant code appears in
the R library directory PBSmodelling\Examples, where example xxx typically has
corresponding files xxx.r, xxxWin.txt, and xxxDoc.txt or xxxDoc.pdf. The function
runExamples() brings up a window that runs the examples in a temporary directory located
on the path defined by the environment variable Temp.

Alternatively, you can copy all the files from PBSmodelling\Examples to a
directory of your choice and open R in this working directory. To run example xxx, type
source("xxx.r") on the R command line. For instance, source("LissFig.r") creates
Lissajous figures (described earlier) and includes the history widget for collecting settings that
the user wishes to retain. Sourcing LissFig.r invokes the windows description file
LissFigWin.txt, which produces the GUI.

 These examples work correctly only if a user’s computer has been set to associate “.txt”
and “r” with suitable text editors. Similarly, the Acrobat Reader must be installed, so that “*.pdf”
is associated with that program. In the descriptions below, we often refer to GUI elements in
quotation marks. For example, “Model” usually refers to the button labelled “Model”. In some
cases, this becomes shorthand for “Press the button labelled Model”.

 – 16 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 16

5.1. Random variables

5.1.1. RanVars – Random variables

-2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f

Normal
Lognormal
Gamma

Figure 5. RanVars GUI (left) and density plot (right). Simulations are based on 500 random
draws with mean =1 and SD = 1.

 The RanVars example draws samples from three continuous random distributions
(normal, lognormal, and gamma) with a common mean µ and standard deviation σ . The
documentation (“Docs” button) shows relevant formulas that connect distribution parameters
with the moments µ and σ Estimated parameter values from a simulation (invoked by
“Simulate”) are displayed in the GUI alongside the true values (Figure 5). We use only the
straightforward formulas in the documentation, without bias correction formulas like those
described by Aitchison and Brown (1969). Three buttons at the bottom of the GUI portray the
data visually as density curves, cumulative proportions, and paired scatter plots.

 – 17 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 17

5.1.2. RanProp – Random proportions

p1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

p2

0.0 0.1 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

p3

Figure 6. RanProp GUI (left) and pairs plot (right). Simulations are based on 200 random
draws where n = 10 for the multinomial and Dirichlet distributions and σ = 0.1 for the logistic-
normal distribution. The pairs plot portrays results for the Dirichlet.

 The RanProp example simulates up to five random proportions drawn from one of three
distributions – multinomial, Dirichlet, and logistic-normal. The observed proportion means and
standard deviations are reported in the GUI (Figure 6), and a graphical display renders the points
as a paired scatter plot. After defining options in the GUI, including the vector “pvec” of true
underlying proportions, press “Go”. Schnute and Haigh (2006) provide further technical details
about these three distributions.

***** This example still needs a documentation file.

 – 18 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 18

5.1.3. SineNorm – Sine normal

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x (xm = 0, xs = 0.1)

y

Figure 7. SineNorm GUI (left) and plot (right). Simulations are based on 500 random draws
of sin(2)y xπ= , where x is normal with mean 0µ = and standard deviation 0.1σ = . Blue
points portray jittered values of x, and red points show corresponding values of y.

 The SineNorm example illustrates a somewhat unconventional random variable

sin(2)y xπ= , where x is normal. The GUI allows you to specify the mean µ and standard
deviation σ of x. If 0µ = and σ is small, the transformation is nearly linear, so that y is
approximately normal. If σ is large, the transformation concentrates y near -1 and 1. Figure 7
illustrates the transformation when σ has the moderate value 0.1. Try 10σ = to see how values
y tend to occur near the peaks and troughs of the sine function, where the slope is relatively flat.

 – 19 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 19

5.2. Statistical analyses

5.2.1. LinReg – Linear regression

5 10 15 20 25

0
50

10
0

speed

di
st

a = -17.6
b = 3.93

Figure 8. LinReg GUI (left) and regression plot (right). The linear regression uses the cars
dataset (n=50) to predict dist vs. speed. The plot shows observations (green circles), fitted
line (solid blue line), the 95% confidence limits of the fitted model (solid red lines), the 95% CL
of the data (dashed purple lines), and the fits using the Bayes posterior estimates of (a,b) (gold
lines).

 The example LinReg estimate parameters in a linear regression y a bx= + using either
simulated data or data objects that come with the R-package. We compare classical frequentist
regression with results from Bayesian analysis, using the BRugs library to interface with the
program WinBUGS. After selecting various data options, “Pairs Plot” shows a pairs plot (,)x y
and “Classic Regression” adds confidence limits (at “p-level”) from regression theory. Red and
violet curves show bounds for a prediction or a new observation, respectively, each conditional
on x. If the data came from simulation, a blue line portrays the truth, with specified values a and
b, that must be estimated from the data.

 A corresponding Bayesian analysis uses the WinBUGS model shown by pressing
“Model”. Choose parameters to monitor (normally all of them): the intercept a, the slope b, and
the predictive standard deviation σ . After specifying a number of sample chains for the MCMC
sample, press “Compile” to compile the model with these settings. “Update” generates samples
in “Length” increments. Additional buttons at the bottom of the GUI allow you to explore the
MCMC output. Posterior samples of (,)a b correspond to sample lines. The “Regression” button
illustrates these in relationship to confidence limits from a frequentist analysis (Figure 8).

 – 20 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 20

5.2.2. MarkRec – Mark-recovery

0 500000 1000000 1500000 2000000 2500000

0.
0

e+
00

1.
5

e-
06

'N'

0.000 0.001 0.002 0.003 0.004

0
20

0
60

0
'p'

Figure 9. MarkRec GUI (left) and density plots (right). A low recovery of marked fish can lead
to fat tails in N due to occasional large spikes in the population estimate.

 The example MarkRec performs a Bayesian analysis of a mark-recovery experiment in
which M fish are marked and allowed to disperse randomly in the population. Later, a sample of
size S is removed from the population and R marks are recovered. Both the total population N
and the marked proportion p are unknown, where

M Rp
N S

= ≅ .

In one version of the theory, R is binomially distributed with probability p in a sample of size S,
and the above approximation suggests the estimate
ˆ S MN M S

R R
= = .

When recoveries are low (0R ≈), the posterior distribution of N exhibits a fat tail (Figure 9).

As in LinReg, “Model” shows the MarkRec model for WinBUGS, which
(deliberately) includes an illegitimate prior that depends on the data. By increasing an initially
small quantity ε , this fake prior allows the tail of N values to be arbitrarily clipped. Schnute
(2006) gives some historical perspective to this analysis, in the context of work by W.E. Ricker.

 – 21 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 21

5.2.3. CCA – Catch-curve analysis

Z.1

5 15 25 0.5 1.5 2.5 2 6 10 14

0.
04

0.
08

0.
12

0.
16

5
10

15
20

25

alpha.1

betak.1

0.
0

0.
4

0.
8

0.
5

1.
5

2.
5 tau.1

n.1

50
15

0
25

0
35

0

2
4

6
8

12

rho1.1

0.04 0.10 0.16 0.0 0.4 0.8 50 200 350 2 6 10

2
4

6
8

10

rho2.1

Figure 10. CCA GUI (left) and parameter pairs plot (right). Comparison of Bayes posterior
distribution of CCA model parameter estimates from chain 1 (N=100). Symbols indicate means
(blue squares) and modes (red triangles). Diagonal shows parameter estimate distributions.

 The example CCA illustrates a catch-curve model proposed by Schnute and Haigh (2006).
It incorporates effects of survival, selectivity, and recruitment anomalies on age structure data
from a single year. After making various model choices, press “Set”, “NLM” (which may take
several seconds), and “Plot” to view the maximum likelihood estimates and their relationship
with the data. A WinBUGS model (“Model”) allows us to calculate posterior distributions.
(See the last few lines of “Model”.) As in MarkRec, select parameters to monitor, specify a
number of chains, and “Compile” the model. “Update”s may be slow, but eventually they
produce interesting posterior samples (Figure 10). “Docs” gives details of the deterministic
model, and the Dirichlet distribution is used to describe error in the observed proportion.

We include this example to illustrate a somewhat realistic WinBUGS model that can be
used to estimate parameters for a population dynamics model. We will provide further
information when the paper (Schnute and Haigh 2006) is published. PBS Modelling includes the
data for this example as the matrix CCA.qbr.hl.

 – 22 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 22

5.3. Other applications

5.3.1. FishRes – Fishery reserve

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

Biomass B: Reserve (green) Fishery (red)

t

B

0 20 40 60 80

-0
.1

5
-0

.0
5

0.
05

Rate of change dB/dt

t

dB
/d

t

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

Fishing Mortality F

t

F

Figure 11. FishRes GUI (left) and time series (right) of population biomass, rates of biomass
change, and fishing mortality.

 The example FishRes models a fish population associated with a marine reserve using
differential equations, which are solved numerically with the odesolve library. The dynamic
equations:

1 1 2 1
1

1 2 1

1
⎛ ⎞ ⎛ ⎞

= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

dB B B BrB a
dt K K K

2 2 2 1
2 2

2 2 1

1 ()
⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

dB B B BrB a F t B
dt K K K

max min
min

2() 1 sin
2

π− ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

F F tF t F
n

describe the biomass iB in region 1,2i = , where region 1 is a reserve and region 2 experiences a
periodic fishing mortality rate F, with minimum and maximum values minF and maxF . The two
regions have a common growth rate r, but different carrying capacities iK . A parameter a
determines the movement rate from the region of higher density to the other region (Figure 11).

 – 23 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 23

5.3.2. FishTows – Fishery tows

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 12. FishTows GUI (left) and simulated tow track (right). Tow track plots show 40
random tows in a square with side length 100. Each tow has width 2, and the rectangle
encompasses 10,000 square units. Top: The individual rectangles, with 160 vertices, have areas
that sum to 4,445 square units. Bottom: The union includes a complex polygon (red) and three
isolated rectangles (blue, green, yellow) that cover only 3,455 square units. The complex
polygon (red) has 547 vertices and 91 holes.

 The example FishTows provides a simulator of fishery tow tracks using the
PBSmapping library. The example demonstrates the difference between swept area and area
impacted by trawls that often cover the same ground repeatedly. This application can be regarded
an exotic random number generator, where tows initially join two points picked from a uniform
random distribution within a square of a given side length. Three parameters (the number of
tows, the tow width, the side length) determine several random variables, including the mean tow
length, the areas swept and impacted, the numbers of polygons and holes in the union set of
tows, and the number of vertices in the union. Each of these would also have a variance and an
overall distribution generated by many runs of this example.

 – 24 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 24

References

Aitchison, J., and J.A.C. Brown. 1969. The lognormal distribution, with special reference to its

uses in economics. Cambridge University Press. Cambridge, UK. xviii+176 p.

Daalgard, P. 2001. A primer on the R Tcl/Tk package. R News 1 (3): 27–31, September 2001.

URL: http://CRAN.R-project.org/doc/Rnews/

Daalgard, P. 2002. Changes to the R Tcl/Tk package. R News 2 (3): 25–27, December 2002.

URL: http://CRAN.R-project.org/doc/Rnews/

Ligges, U. 2003. R Help Desk: Package Management. R News 3 (3), 37–39. URL:

http://CRAN.R-project.org/doc/Rnews/

Ligges, U, and D. Murdoch. 2005. R Help Desk: Make 'R CMD' work under Windows – an

example. R News 5 (2), 27–28. URL: http://CRAN.R-project.org/doc/Rnews/

Mittertreiner, A., and J. Schnute. 1985. Simplex: a manual and software package for easy

nonlinear parameter estimation and interpretation in fishery research. Canadian Technical
Report of Fisheries Aquatic Sciences 1384: xi+90 p.

Ousterhout, J.K. 1994. Tcl and the Tk toolkit. Addison-Wesley, Boston, MA. 458 p.

RDCT: R Development Core Team (2006a). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-
0. URL http://www.R-project.org. (Available in the current R GUI from “Help”,
“Manuals in PDF”, “R Reference Manual”)

RDCT: R Development Core Team (2006b). Writing R extensions. R Foundation for Statistical

Computing, Vienna, Austria. ISBN 3-900051-11-9. URL http://www.R-project.org.
(Available in the current R GUI from “Help”, “Manuals in PDF”, “Writing R
extensions”)

Richards, L.J., J.T. Schnute, and N. Olsen. 1997. Visualizing catch-age analysis: a case study.

Canadian Journal of Fisheries and Aquatic Sciences 54: 1646–1658.

Schnute, J.T. 2006. Curiosity, recruitment, and chaos: a tribute to Bill Ricker’s inquiring mind.

Environmental Biology of Fishes 75: 95-110.

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other

utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496. viii+82 pp.

Schnute, J.T., Boers, N.M., and Haigh, R. 2004. PBS Mapping 2: user’s guide. Canadian

Technical Report of Fisheries and Aquatic Sciences 2549. viii+126 pp.

 – 25 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 25

Schnute, J.T., and Haigh, R. 2006. Compositional analysis of catch curve data with an
application to Sebastes maliger. ICES Journal of Marine Science (in review).

Spiegelhalter, D., A. Thomas, N. Best, and D. Lunn. 2004. WinBUGS User Manual, version 2.0.

Available at http://mathstat.helsinki.fi/openbugs/.

Thomas, N. 2004. BRugs User Manual (the R interface to BUGS), version 1.0. Available at

http://mathstat.helsinki.fi/openbugs/.

Appendix A. Building PBSmodelling and other packages

The R project defines a standard for creating a package of functions, data, and
documentation. You can obtain a comprehensive guide to “Writing R Extensions” (R
Development Core Team 2006b, R-exts.pdf) from the CRAN web site or the R GUI (see the
References above). Ligges (2003) and Ligges and Murdoch (2005) provide useful introductions.
We have designed PBSmodelling and a very simple enclosed package PBStry as prototypes
for package development. This Appendix summarizes the steps needed to:

A.1. install the required software;
A.2. build PBS Modelling from source materials;
A.3. write source materials for a new package and compile them;
A.4. include C code in a package.

Our discussion applies only to package development on a computer running Microsoft
Windows 2000, XP, or (maybe) later. We particularly highlight issues that have proved
troublesome for us. The R library directory PBSmodelling\PBStools contains batch
files that can assist the process. For example, you might locate this directory as
C:\Utils\R\R-2.3.1\library\PBSmodelling\PBStools.

A.1. Installing required software

Building R packages requires six pieces of free software. Even if some of this software is
already installed, it may be helpful (or even essential) to update to the latest versions. We
recommend installing each package on a path that does not include spaces. For example, avoid
using C:\Program Files, even if that happens to be part of a package’s default path. In this
appendix, we use C:\Utils as a root directory for all required software. The list below shows
versions available at the time of writing this report, along with suggested paths.

1. R itself, currently version 2.3.1 (C:\Utils\R\R-2.3.1). We assume that R is already

installed from the CRAN web site http://cran.r-project.org/ and that it runs correctly on your
computer. We also assume that the package PBSmodelling is installed in R.

2. A set of UNIX tools for building R packages in Windows (no version number shown,
C:\Utils\Rtools). Obtain the file tools.zip from the web site http://www.murdoch-
sutherland.com/Rtools/. Uncompress this file in C:\Utils, and (if you wish) rename the
base directory from \tools to \Rtools. These tools are essential. DO NOT plan to use

 – 26 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 26

programs with the same name in an installation of Cygwin or any other UNIX emulator that
happens to be installed on your computer.

3. Perl, currently version 5.8.8.817 (C:\Utils\Perl). Obtain this from the Active State web
site: http://www.activestate.com/Products/ActivePerl/Download.html.

4. MinGW, currently version 5.0.3 (C:\Utils\MinGW), the minimalist GNU C compiler for
Windows. Obtain a small installation file from http://www.mingw.org/, and use this as a
package manager to download and install at least the basic components.

Alternatively, you may wish to obtain Dev-C++, currently version 4.9.9.2
(C:\Utils\DevCpp). Obtain a complete installation file from http://www.bloodshed.net/.
This package includes a distribution of MinGW and a convenient integrated development
environment (IDE) for compiling and testing C programs. Based on our current experience,
Dev-C++ works as an adequate substitute for MinGW in building R packages.

5. MiKTeX, currently version 2.5 (C:\Utils\MiKTeX), available from
http://www.miktex.org/. This processor for TeX and LaTeX files helps typeset help files
within a package. If you don’t have version 2.5 or later, take this opportunity to upgrade.
Download the “basic” installation file, and install these components only. You can add more
LaTeX packages from the Internet later, as required. (MiKTeX often does this
automatically.) Take some time to investigate the MiKTeX package manager (mpm.exe or
go to the “Programs” menu and select “MiKTeX 2.5”, “Browse Packages”).

The text editor WinEdt (available from http://www.winedt.com/) provides a convenient GUI
for editing LaTeX files and operating MiKTeX. Combined with the R package RWinEdt, it
can also serve as an editor and interface for R. However, it is available only as shareware that
requires a fee for long-term use, unlike any other software mentioned here.

6. The Microsoft HTML Help Workshop (no version shown, C:\Utils\HHW). You need
the installation file HtmlHelp.exe, currently at
http://www.microsoft.com/office/ork/xp/appndx/appa06.htm.
If Microsoft no longer makes it available there, you can obtain the file from
http://www.murdoch-sutherland.com/Rtools/. After installation, we think you can safely
ignore a message that “This computer already has a newer version of HTML Help”. (If
anyone has different information, please let us know.)

After these six pieces of software are installed, you’re ready to start building R packages.
For this purpose, create a new directory that can contain your packages; such as D:\Rdevel\.
Within the R library directory, which could be C:\Utils\R\R-2.3.1\library\, find the
subdirectory PBSmodelling\PBStools. Copy all the batch files there into your new
packages directory. You should have these ten files:

• definePaths.bat, checkPaths.bat related to the installation;
• checkPBS.bat, buildPBS.bat, packPBS.bat, unpackPBS.bat related to PBS

Modelling;
• check.bat, build.bat, pack.bat, unpack.bat related to the construction of new

packages.

 – 27 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 27

You need to change definePaths.bat so that it reflects the paths you chose in the above six
installations. For example, your version of this batch file might contain the lines
set R_PATH=C:\Utils\R\R-2.3.1\bin
set TOOLS_PATH=C:\Utils\Rtools\bin
set PERL_PATH=C:\Utils\Perl\bin
set MINGW_PATH=C:\Utils\MinGW\bin
set TEX_PATH=C:\Utils\MiKTeX\miktex\bin
set HTMLHELP_PATH=C:\Utils\HHW

Notice that each path, except the last, ends in a bin subdirectory.

 Hopefully, your installation is now complete. In you new packages directory, run
checkPaths.bat from a command line or double-click the icon. This script verifies that a
few essential files lie on the indicated paths. If everything is correct, you should see the message
“All program paths look good”. Otherwise, you’ll see a warning about software that doesn’t
appear on your specified paths.

 You may wish to inspect all the batch files with a text editor. They don’t use your system
PATH environment variable. Instead, each one defines a new local path appropriate for building
R packages (via checkPaths.bat). A SETLOCAL command ensures that this change doesn’t
alter your system’s permanent environment.

A.2. Building PBSmodelling

 Once all the required software is installed, the batch files discussed above make it fairly
easy to build PBSmodelling. We assume that you have already created the directory
discussed in Appendix A.1, say D:\Rdevel, for building R packages and that it contains the
relevant eight batch files. In particular, definePaths.bat should reflect your installation
paths and checkPaths.bat should report the message that “All program paths look good”.
Then follow these steps:

1. On the CRAN web site http://cran.r-project.org/, go to “Packages” on the left and find

PBSmodelling. Download the file PBSmodelling_x.xx.tar.gz into D:\Rdevel.
Then rename this file (or copy it and rename the copy) so that the version number is
removed. You should now have the file PBSmodelling.tar.gz in D:\Rdevel.

2. In the development directory D:\Rdevel, double-click the icon for unpackPBS.bat or
type the command unpackPBS in a corresponding command window. This should extract
the contents of PBSmodelling.tar.gz, preserving directory structure, into a
subdirectory \PBSmodelling with five sudirectories: \data, \inst, \man, \R, and
\src.

Our batch file uses the command tar -xzvf PBSmodelling.tar.gz, where
tar.exe appears in the \Rtools directory (section A.1, step 2). The command line
parameters specify a verbose (v) extraction (x) of the given file (f), after filtering with gzip
(z).

 – 28 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 28

If you use other software for this extraction, please ensure that it is configured to handle
UNIX files correctly. For example, “WinZip” has an option to extract a “TAR file with smart
CR/LF conversion”. This must be turned off.

3. In the base directory D:\Rdevel, double-click the icon for checkPBS.bat or type the
command checkPBS in a corresponding command window. If all software is installed
correctly and D:\Rdevel\PBSmodelling correctly represents the contents of the
.tar.gz file, you should see a series of DOS messages reporting “OK” to various tests. A
distinct pause might accompany the message: “checking whether package 'PBSmodelling'
can be installed ...”.

You might also encounter a delay as MiKTeX downloads the LaTeX package lmodern,
part of a larger package lm. If this is really slow, you can abort the process and install lm
with the MiKTeX package manager, as discussed in step 5 of section A.1. Choose a remote
server near you. You only need to do this once. When it’s finished, run checkPBS.bat
again.

4. Examine the new directory E:\Rdevel\PBSmodelling.Rcheck created by the
check process in step 2. The text files 00check.log and 00install.out show
detailed results.

5. In the base directory D:\Rdevel, double-click the icon for buildPBS.bat or type the
command buildPBS in a corresponding command window. This creates the file
D:\Rdevel\PBSmodelling.zip, which could be used to install PBSmodelling
from a local zip file.

6. Again in the base directory D:\Rdevel, double-click the icon for packagePBS.bat or
type the command packagePBS in a corresponding command window. This creates a new
package distribution file PBSmodelling_x.xx.tar.gz that replaces the one
downloaded from CRAN in step 1.

If these steps all work without problems, you can be pretty sure that the requisite software is
installed correctly and that you understand the basic steps needed to build R packages.

A.3. Creating a new R package

R packages require a special directory structure. The R function package.skeleton
automatically creates this structure, but (without further work) it does not produce a package that
can be compiled. Although PBSmodelling has the requisite structure, it is perhaps too
complicated to serve as a convenient prototype. For this reason, we include a small subset
PBStry that illustrates the key details. You can make a new package simply by editing the files
in PBStry. You need a suitable editor (e.g., WinEdt or the Notepad) to view and change various
text files.

1. Start by locating the file PBStry_x.xx.tar.gz in the R library directory
\PBSmodelling\PBStools. Copy this file into your development directory, such as
D:\Rdevel, and rename it (or copy and rename the copy) to obtain the file
PBStry.tar.gz.

 – 29 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 29

2. Follow steps similar to those in section A.2 to unpack, check, build, and re-package
PBStry. You must now use a DOS command window in D:\Rdevel to issue the four
commands
unpack PBStry
check PBStry
build PBStry
pack PBStry
which invoke the batch files unpack.bat, check.bat, build.bat, and
package.bat. The first command should give you a new subdirectory \PBStry, along
with its five sudirectories: \data, \inst, \man, \R, and \src.

3. Use your editor to open the file DESCRIPTION in the root directory \PBStry. This file,
essential in every R package, contains key information in a special format (RDCT 2006b,
section 1.1.1). The following example illustrates a minimal set of required fields.

Package: MyPack
Version: 1.00
Date: 2006-08-31
Title: My R Package
Author: User of PBS Modelling
Maintainer: User of PBS Modelling
Depends: R (>= 2.3.1)
Description: My customized R functions
License: GPL version 2 or newer (recommended)

The package name in DESCRIPTION must agree with the directory name in which this file
lies. For example, if you change PBStry to MyPack in DESCRIPTION and rename the
directory from \PBStry to \MyPack, you have effectively changed the package name.
Similarly, if you change the version to 1.01, you have effectively changed the version
number that appears in the file names for distributing your package.

4. The subdirectory \PBStry\R contains all R code used by the package. For example,
PBStry includes six R functions (calcFib, calcGM, calcSum, findPat, pause, and
We view). The six files could be combined into a single file (such as PBStry.R), but we
use separate files here for clarity. The functions all have relatively simple code, hopefully
comprehensible to users with limited R experience. Five of them come from
PBSmodelling. Two of them (calcFib, calcSum) call compiled C code, as we discuss
more completely in section A.4 below.

By convention, the distinct file zzz.R defines code for initializing the package. In this case
the function .First.lib, calls library.dynam to load a dynamic link library
(PBStry.dll) created from compiled C code during the build process.

When a version number changes, the DESCRIPTION file must be changed accordingly. We
also like to make a corresponding change in zzz.R, so that the version number appears on
the R console when the library is loaded. PBStry illustrates this possibility for zzz.R.

5. The subdirectory \PBStry\data contains all data objects that come with the package.
Here, the binary file QBR.rda holds a matrix of quillback rockfish (Sebastes maliger)

 – 30 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 30

sample data used in the CCA example above (section 5.2.3). The same data matrix is called
CCA.qbr.hl in PBSmodelling.

If you want to add data to a new package, first create the object (e.g., myData) in R and then
execute the command:
save(myData,file="myData.rda")
The object name must match the prefix in the file name, and the suffix must be .rda.
Include the resulting file in your package’s \data subdirectory.

6. The subdirectory \PBStry\man contains a documentation file for every object in the
package. PBStry has six functions and one data set, so the \man subdirectory has seven
corresponding R documentation files (*.Rd). An additional file PBStry.Rd documents the
package as a whole. Rd files use a rather complex scripting language (RDCT 2006b, section
2) that can be converted to help files in several formats (PDF, HTML, text). For many
packages, the examples in PBStry may provide adequate prototypes. They represent three
distinct cases: functions (e.g., calcGM.Rd, findPat.Rd), data sets (QBR.Rd), and
complete packages (PBStry.Rd).

7. The subdirectory \PBStry\src contains source code for C code to be compiled into the
dynamic link library PBStry.dll. We include sample files to calculate Fibonacci numbers
iteratively (fib.c) and to add the components of a numeric vector (sum.c). In section A.4,
we discuss the linkage between R code and compiled C functions.

8. Finally, the subdirectory \PBStry\inst contains files that are to be included directly in
the R library tree for PBStry when the package is installed. The file PBStry-Info.txt
briefly describes the context and purpose of the trial package.

If you have successfully followed the steps above, you have actually built two R

packages, PBSmodelling and PBStry. Furthermore, you’re reasonably familiar with the
contents of PBStry. You can use the files in that small package as prototypes for writing your
own R package, which might contain R code in the subdirectory \R. data in \data, C source
code in \src, and R documentation in \man.

The larger package PBSmodelling offers more prototypes and uses a somewhat
different style. The main directory includes the required DESCRIPTION file, plus a second file
NAMESPACE that lists all objects available to a user of the package. Effectively, the namespace
mechanism distinguishes between objects provided by the package and other (hidden) objects
required for the implementation, but not intended for public use. Our NAMESPACE file contains
the rather cryptic instruction: exportPattern("^[^\\.]"). The R string "^[^\\.]"
translates to the regular expression ^[^\.] that designates any pattern not starting with a period
(.). We don’t export “dot” objects, whose names in R start with a period. (For more complete
information, see the file PBSMfunctions.txt in the subdirectory \inst or the R library
directory for PBSmodelling.) The namespace file must also import functions required from
other packages. Because PBSmodelling relies heavily on tcltk, the file includes the
command: import(tcltk).

 – 31 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 31

 In PBStry, without a namespace, the file zzz.R defines the initializing function
.First.lib, as mentioned in step 4 above. By contrast, the namespace protocol in
PBSmodelling requires a different name for the initializing function: .onLoad in zzz.R.

 In summary, we recommend building a new package by editing, adding, and deleting
prototype files in PBStry. Our batch files can facilitate tests and debugging. For more advanced
work, particularly packages with a namespace protocol, look at PBSmodelling. Have a
current version of RDCT (2006b) available, and consult that manual when necessary. We find it
useful to keep the PDF file open and to use Acrobat’s search feature (Ctrl-F) to find topics of
interest.

A.4. Embedding C code

R provides two functions, .C() and.Call(), for invoking compiled C code. PBStry
includes two simple examples that use .C(), probably the method of choice for simple
packages. The .Call() function uses a more complex interface that offers better support for R
objects. PBSmodelling includes a simple example to illustrate this calling convention.

Calling C functions from R using .C()

Table A1. C representations of R data types.

R Object C Type
logical int *
integer int *
double double *
complex Rcomplex * 1
character char **

1 Rcomplex is defined in Complex.h.

The .C() calling convention uses the following key concepts:
• R must allocate the appropriate length and type of variables before calling a C function.
• R objects are transformed into an equivalent C type (Table A.1), and a pointer to the value is

passed into the C function. All values are returned by modifying the original values passed in.
• A C function called by .C() must have return type void, because values are returned only

by accessing the predefined R function arguments.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.
• .C()returns a list similar to the '...' list of arguments passed in, but reflecting any changes

made by the C code. (See the help file for .C)

 – 32 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 32

Table A2. Two text files associated with a .C() call in PBStry. R code in the first file calls C
code in the second.
———————————————————————————————————————

File 1: calcFib.R
calcFib <- function(n, len=1) {
 if (n<0) return(NA);
 if (len>n) len <- n;
 retArr <- numeric(len);
 out <- .C("fibonacci", as.integer(n), as.integer(len),
 as.numeric(retArr), PACKAGE="PBStry")
 x <- out[[3]]
 return(x) }

File 2: fib.c
void fibonacci(int *n, int *len, double *retArr) {
 double xa=0, xb=1, xn=-1; int i,j;
 /* iterative loop */
 for(i=0;i<=*n;i++) {
 /* initial conditions: fib(0)=0, fib(1)=1 */
 if (i <= 1) { xn = i; }
 /* fib(n)=fib(n-1)+fib(n-2) */
 else {xn = xa+xb; xa=xb; xb=xn; }
 /* save results if iteration i is within the
 range from n-len to n */
 j=i - *n + *len - 1;
 if (j>=0) retArr[j] = xn;
 } /* end loop */
} /* end function */

———————————————————————————————————————

 The function calcFib in PBStry illustrates an application of these concepts
(Table A2). The R function uses C code to calculate the first n Fibonacci numbers iteratively,
where a vector holds the last len numbers calculated. After ensuring that n and len satisfy
obvious constraints, the R code creates a return array retArr of the appropriate length. The .C
call passes n, len, and retArr by reference to the C function fibonacci. On exit, the
vector out contains a list corresponding to the input variables n, len, and retArr, so that the
third component out[[3]] holds the modified vector of values calculated by fibonacci.
We encourage you also to examine the second example in PBStry , associated the files
calcSum.R and sum.c.

 – 33 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 33

Table A3. .Call() example adapted from PBSmodelling, with two associated text files. R
code in the first file calls C code in the second.
———————————————————————————————————————

File 1: callFib.R
callFib <- function(n, len=1) {
 out <- .Call("fibonacci2", as.integer(n),
 as.integer(len), PACKAGE="PBSmodelling")
 return(out) }

} File 2: fib2.c
#include <R.h>
#include <Rdefines.h>
SEXP fibonacci2(SEXP sexp_n, SEXP sexp_len) {
 /* ptr to output vector that we will create */
 SEXP retVals;
 double *p_retVals, xa=0, xb=1, xn; int n, len, i, j;
 /* convert R variables into C 'int's */
 len = INTEGER_VALUE(sexp_len);
 n = INTEGER_VALUE(sexp_n);
 /* Allocate space for the output vector */
 PROTECT(retVals = NEW_NUMERIC(len));
 p_retVals = NUMERIC_POINTER(retVals);
 /* iterative loop */
 for(i=0;i<=n;i++) {
 /* initial conditions: fib(0)=0, fib(1)=1 */
 if (i <= 1) { xn = i; }
 /* fib(n)=fib(n-1)+fib(n-2) */
 else { xn = xa+xb; xa=xb; xb=xn; }
 /* save results if iteration i is within the
 range from n-len to n */
 j=i - n + len - 1;
 if (j>=0) p_retVals[j] = xn;
 } /* end loop */
 UNPROTECT(1);
 return retVals;
} /* end fibonacci2 */
———————————————————————————————————————

Calling C functions from R using .Call()

The .C() convention requires a fairly simple conversion of R objects into C types
(Table A.1). By contrast, .Call() provides extra structure that enables C to handle R objects
directly (RDCT 2006b, section 4.7). This function uses “S-expression” SEXP types defined in
rinternals.h., a file in the \include directory of the R installation. An SEXP pointer can
reference any type of R object. The .Call() convention uses the following key concepts:

 – 34 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 34

• C functions called by R must accept only SEXP typed arguments. These arguments should be
treated as read only.

• Similarly, C functions called by R must have SEXP return types.
• The Programmer must protect R objects from the R garbage collector, and must release

protected objects before the function terminates. R provides macros for this task.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.

 The function callFib in Table A3 (adapted from .fibCall in PBSmodelling)
illustrates an application of these concepts. As before, the R function uses C code to calculate the
first n Fibonacci numbers iteratively, where a vector holds the last len numbers calculated. The
code in callFib assumes that n and len already satisfy the necessary constraints. The simple
.Call to fibonacci2 looks very natural. Input values n and len produce the output vector
out, where the C code must somehow determine what out should be. Not surprisingly, it
requires more complicated C code to make this happen.

 The C function fibonacci2 (Table A3) first loads header files that include the
required definitions from R. All input and output variables belong to type SEXP. Other internal
variables have the standard C types double and int. Functions like INTEGER_VALUE()
convert R types into C types. The SEXP vector retVals of return values is created by the R
constructor NEW_NUMERIC() and then protected from garbage collection by PROTECT().
After all required variables are defined and type cast correctly, the iterative loop of calculations
follows the earlier example in Table A2. Finally, the only protected vector retVals is released
by UNPROTECT(1), and the standard closing command return retVals returns the output
vector from fibonacci2.

 Obviously, it takes some time and effort to become familiar with the specialized R types,
constructors, and conversion functions. For this reason, it’s probably easier at first to use .C(),
rather than .Call().

 – 35 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 35

Appendix B. Widget descriptions

This appendix lists PBS Modelling widgets in alphabetical order. Details for each widget
include a description, usage, arguments, and an illustrated example. In specifying a widget, the
user can arrange named arguments in any order. If arguments are not named, they must appear in
the order specified by the argument list, similar to named arguments in an R function.

Button
Description

A button linked to an R function that runs a particular analysis and generates a desired
output, perhaps including graphics.

Usage
type=button text="Calculate" font="" width=0 function=""

action="button" sticky="" padx=0 pady=0

Arguments

texttext to display on the button
fontfont for button text - specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in any order
width..................button width, the default 0 will adjust the width to the minimum required
functionR function to call when the button is pushed (i.e., clicked by the mouse)
actionvalue for PBS.win$action when pressing this button
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = button"
button text="Push Me"

Check

Description

A check box used to turn a variable off or on, with corresponding values FALSE or TRUE.

Usage
type=check name checked=FALSE text="" font="" function=""

action="check" sticky="" padx=0 pady=0

 – 36 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 36

Arguments

namename of R variable altered by this check box (required)
checked.............if TRUE, the box is checked initially and the variable is set to 1
textidentifying text placed to the right of this check box
fontfont for check text - specify family (Times, Helvetica, or Courier), size (as

point size), and style (bold, italic, underline, overstrike), in any order
functionR function to call when the check box is changed
actionvalue for PBS.win$action when altering this check box
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = check"
check name=junk checked=T text="Check Me"

Data

Description

An aligned set of entry fields for all components of a data frame. The data widget can
accept a variety of modes. The user must keep in mind that rowlabels and collabels
should conform to R naming conventions (no spaces, no special characters, etc.). If mode is
logical, fields appear as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=data nrow ncol names modes="numeric" rowlabels=""

collabels="" rownames=X colnames= font="" values=
byrow=TRUE function="" enter=TRUE action="data" width=6
sticky="" padx=0 pady=0

Arguments

nrownumber of rows (required)
ncolnumber of columns(required)
names..................either one name or a set of nrow*ncol names used to store the data

frame in R (required)
modes..................R modes for the data frame, where valid modes are:

numeric, integer, complex, logical, character
rowlabelseither one label or a vector of nrow labels used to label rows of this data

frame in the display

 – 37 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 37

collabelseither one label or a vector of ncol labels used to label columns of this
data frame in the display

fontfont for labels - specify family (Times, Helvetica, or Courier), size (as
point size), and style (bold, italic, underline, overstrike), in any order

valuesdefault values (either one value for all data frame components or a set of
nrow*ncol values)

byrow..................if TRUE and nrow*ncol names are used, interpret the names by row;
otherwise by column. Similarly, interpret nrow*ncol initial values.

functionR function to call when any entry in the data frame is changed
enter..................if TRUE, call the function only after the <Enter> key is pressed
actionvalue for PBS.win$action when changing any component of this data

frame
width..................character width to reserve for the each entry in the data frame
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = data"
data nrow=3 ncol=3 names=Census byrow=FALSE \

modes="character logical numeric" width=10 \
rowlabels="Rec1 Rec2 Rec3" collabels="City Smell Popn" \
values="Nanaimo Vancouver Spuzzum T T F 80000 600000 50"

Entry

Description

A field in which a scalar variable (number or string) can be altered.

Usage
type=entry name value="" width=20 label="" font="" function=""

enter=TRUE action="entry" mode="numeric" sticky="" padx=0
pady=0

Arguments

namename of R variable corresponding to this entry (required)
value..................default value to display in the entry

 – 38 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 38

width..................character width to reserve for the entry
label..................text to display above the entry box
fontfont for label - specify family (Times, Helvetica, or Courier), size (as point

size), and style (bold, italic, underline, overstrike), in any order
functionR function to call when the entry is changed
enter..................if TRUE, call the function only after the <Enter> key is pressed
actionvalue for PBS.win$action when making this entry
modeR mode for the value entered, where valid modes are:

numeric, integer, complex, logical, character
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = entry"
entry name=junk value="Enter something here" width=20

mode=character

Grid

Description

Creates space for a rectangular block of widgets. Spaces must be filled. Widgets can be any
combination of available widgets, including grid.

Usage
type=grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont=""

sidefont="" byrow=TRUE borderwidth=1 relief="flat"
sticky="" padx=0 pady=0

Arguments

nrownumber of rows in the grid
ncolnumber of columns in the grid
toptitletitle to place above grid
sidetitletitle to place on the left side of the grid
topfont.............font for top of grid - specify family (Times, Helvetica, or Courier), size (as

point size), and style (bold, italic, underline, overstrike), in any order
sidefontfont for left of grid - specify family (Times, Helvetica, or Courier), size (as

point size), and style (bold, italic, underline, overstrike), in any order
byrow..................if TRUE, create widgets across rows, otherwise down columns

 – 39 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 39

borderwidth ...width of the border around the grid
relieftype of border around the grid, where valid styles are:

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
grid 2 2 relief=groove toptitle=Columns sidetitle=Rows

topfont="Helvetica 12 bold" sidefont="Helvetica 12 bold"
 label text="Cell 1" font="times 8 italic"
 label text="Cell 2" font="times 10 italic"
 label text="Cell 3" font="times 12 italic"
 label text="Cell 4" font="times 14 italic"

History

Description

Allows the user to save and recover previous combinations of widget settings. A desired
realization can be saved to a hidden stack using the Add button. Each saved realization has
an Index within the stack of total saves Size. The user can scroll back and forward
through the stack, invoking saved widget settings. Realizations no longer desired can be
deleted using the Remove button.

Usage
type=history name="default" archive=TRUE sticky="" padx=0

pady=0

Arguments

namename of history archive
archive.............if TRUE, user can import previous sessions or export the current session
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

 – 40 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 40

Example
window title="Widget = history"
history archive=TRUE

Label

Description

Creates a text label. If the text argument is left blank, label emulates the null widget.

Usage
type=label text="" font="" sticky="" padx=0 pady=0

Arguments

texttext to display in the label
fontfont for label - specify family (Times, Helvetica, or Courier), size (as point

size), and style (bold, italic, underline, overstrike), in any order
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = label"
label text="Information Label"

Matrix

Description

An aligned set of entry fields for all components of a matrix. If the mode is logical, the
matrix appears as a set of check boxes that can be turned on or off using mouse clicks.

 – 41 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 41

Usage
type=matrix nrow ncol names rowlabels= collabels= rownames=""

colnames="" font="" values="" byrow=TRUE function=""
enter=TRUE action="matrix" mode="numeric" width=6 sticky=""
padx=0 pady=0

Arguments

nrownumber of rows (required)
ncolnumber of columns(required)
names..................either one name or a set of nrow*ncol names used to store the matrix in

R (required)
rowlabelseither one label or a vector of nrow labels used to label rows of this

matrix in the display
collabelseither one label or a vector of ncol labels used to label columns of this

matrix in the display
fontfont for labels - specify family (Times, Helvetica, or Courier), size (as

point size), and style (bold, italic, underline, overstrike), in any order
valuesdefault values (either one value for all matrix components or a set of

nrow*ncol values)
byrow..................if TRUE and nrow*ncol names are used, interpret the names by row;

otherwise by column. Similarly, interpret nrow*ncol initial values.
functionR function to call when any entry in the matrix is changed
enter..................if TRUE, call the function only after the <Enter> key is pressed
actionvalue for PBS.win$action when changing any component of this

matrix
modeR mode for the matrix, where valid modes are:

numeric, integer, complex, logical, character
width..................character width to reserve for the each entry in the matrix
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = matrix"
matrix nrow=2 ncol=3 rowlabels="'Row A' 'Row B'"

collabels="'Col 1' 'Col 2' 'Col 3'" values="10 20 30 100
200 300" names="a b c d e f" font="times 10 italic"

 – 42 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 42

Menu

Description

A menu grouping. Submenus can either be menu or menuitem.

Usage
type=menu nitems=1 label font=""

Arguments

nitemsnumber of items or submenus to include in the menu
label..................text to display as the menu label (required)
fontfont for menus - specify family (Times, Helvetica, or Courier), size (as

point size), and style (bold, italic, underline, overstrike), in any order

Example (assuming that the R functions have been defined)
window title="Widget = menu"
menu nitems=1 label="Widgets"
 menuitem label="Show arguments" func=showArgs
menu nitems=4 label="Test functions"
 menuitem label="Colours" func=testCol
 menuitem label="Line types" func=testLty
 menuitem label="Line widths" func=testLwd
 menuitem label="Point symbols" func=testPch

MenuItem

Description

One of nitems following a menu command.

Usage
type=menuitem label font="" function action="menuitem"

Arguments

label..................text to display as the menu item label (required)
fontfont for submenus - specify family (Times, Helvetica, or Courier), size (as

point size), and style (bold, italic, underline, overstrike), in any order
functionR function to call when the menu item is clicked (required)
actionvalue for PBS.win$action when selecting this menu item

 – 43 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 43

Null

Description

Creates a null widget, useful for padding a grid with blank cells that appear as empty space.

Usage
type=null padx=0 pady=0

Arguments

padxspace used to pad the label on the left and right
padyspace used to pad the label on the top and bottom

Example
grid 2 2 relief=raised toptitle=Top sidetitle=Side

topfont="Courier 10 bold" sidefont="courier 10 bold"
 label text="Here" font="courier 8"
 null
 null
 label text="There" font="courier 8"

Radio

Description
One of a set of mutually exclusive radio buttons for making a particular choice. Buttons with
the same value for name act collectively to define a single choice among the alternatives.

Usage
type=radio name value text="" font="" function=""

action="radio" mode="numeric" sticky="" padx=0 pady=0

Arguments

namename of R variable altered by this radio button, where radio buttons with
the same name define a mutually exclusive set (required)

value..................value of the variable when this radio button is selected (required)
textidentifying text placed to the right of this radio button
fontfont for radio buttons - specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in any order
functionR function to call when this radio button is selected
actionvalue for PBS.win$action when this radio button is selected

 – 44 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 44

modeR mode for the value associated with this button, where valid modes are:
numeric, integer, complex, logical, character

stickyoption for placing the widget in available space; valid choices are:
N, NE, E, SE, S, SW, W, NW

padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = radio"
grid 1 4
 radio name=junk value=0 text="None"
 radio name=junk value=1 text="Option A"
 radio name=junk value=2 text="Option B"
 radio name=junk value=3 text="Option C"

Slide

Description

A slide bar that sets the value of a variable. This widget only accepts integer values.

Usage
type=slide name from=0 to=100 value=NA showvalue=FALSE

orientation="horizontal" function="" action="slide"
sticky="" padx=0 pady=0

Arguments

namename of the numeric R variable corresponding to this slide bar (required)
fromminimum value of the variable (must be an integer)
to.........................maximum value of the variable (must be an integer)
value..................initial slide value, where the default is the specified from value
showvalueif TRUE, display the current slide value above the slide bar
orientation ...direction for orienting the slide bar: horizontal or vertical
functionR function to call when the slide value is changed
actionvalue for PBS.win$action when moving the slide bar
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

 – 45 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 45

Example
window title="Widget = slide"
slide name=junk from=1 to=1000 value=225 showvalue=T

SlidePlus

Description

An extended slide bar that also displays a minimum, maximum, and current value. This
widget accepts real numbers.

Usage
type=slideplus name from=0 to=1 by=0.01 value=NA function=""

enter=FALSE action="slideplus" sticky="" padx=0 pady=0

Arguments

namename of the numeric R variable corresponding to this slide bar (required)
fromminimum value of the variable
to.........................maximum value of the variable
by.........................minimum amount for changing the variable’s value
value..................initial slide value, where the default is the specified from value
functionR function to call when the slide value is changed
enter..................if TRUE and the slide value is changed via the entry box, call the function

only after the <Enter> key is pressed
actionvalue for PBS.win$action when changing the slide value, either by

moving the slide bar or changing the value in the entry box
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Note

To facilitate retrieving and setting the minimum and maximum values, two additional
variables are created by suffixing ".max" and ".min" to the given name.

Example
window title="Widget = slideplus"
slideplus name=junk from=0 to=1 by=0.01 value=0.75

 – 46 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 46

Text

Description

An information text box that can display messages, results, or whatever the user desires. The
displayed information can be either fixed or editable.

Usage
type=text name height=8 width=30 bg="white" mode="character"

font="" value="" borderwidth=1 relief="sunken" edit=TRUE

Arguments

namename of the R variable containing the text (required)
heighttext box height
width..................text box width
editif TRUE, the user can edit the value stored in name
bg.........................background colour specified in hexadecimal format; e.g.,

rgb(255,209,143,maxColorValue=255) yields "#FFD18F"
modeR mode for the value associated with this widget, where valid modes are:

numeric, integer, complex, logical, character
fontfont for text - specify family (Times, Helvetica, or Courier), size (as point

size), and style (bold, italic, underline, overstrike), in any order
value..................default value to display in the text
borderwidth ...width of the border around the text box
relieftype of border around the text, where valid styles are:

raised, sunken, flat, ridge, groove, solid

Example
window title="Widget = text"
text name=mytext height=2 width=55 bg="#FFD18F" \

font="times 11" borderwidth=1 relief="sunken" edit=TRUE \
value="You can edit the text here and change the value of
\"mytext\""

 – 47 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 47

Vector

Description

An aligned set of entry fields for all components of a vector. If the mode is logical, the vector
appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=vector names length=0 labels="" values="" font=""

vertical=FALSE function="" enter=TRUE action="vector"
mode="numeric" width=6 sticky="" padx=0 pady=0

Arguments

names..................either one name (for a whole vector) or a vector of names for individual
variables used to store the values in R (required)

lengthrequired only if a single name is given for a vector of length greater than 1
labelseither one label of a vector of length labels used to label the vector in

the display
valuesdefault values (either one value for all vector components or a vector of

length values)
fontfont for vector labels - specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in any order
verticalif TRUE , display the vector as a vertical column with labels on the left;

otherwise display it as a horizontal row with labels above
functionR function to call when any entry in the vector is changed
enter..................if TRUE, call the function only after the <Enter> key is pressed
actionvalue for PBS.win$action when changing any component of this

vector
modeR mode for the vector, where valid modes are:

numeric, integer, complex, logical, character
width..................character width to reserve for the each entry in the vector
stickyoption for placing the widget in available space; valid choices are:

N, NE, E, SE, S, SW, W, NW
padxspace used to pad the widget on the left and right
padyspace used to pad the widget on the top and bottom

Example
window title="Widget = vector"
vector length=4 names="a b g d" labels="alpha beta gamma

delta" values="100 0.05 1 5" font="times italic" width=6
vector length=5 mode=logical names=chosen labels=choose

values="F T F T T"

 – 48 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 48

Window

Description

Create a new window. Windows are used as a palette upon which widgets are placed. Each
open window has a unique name. The function closeWin closes all windows unless a
specific name (or vector of names) is provided by the user. Also, if createWin opens a
window with a name already in use, the older window is closed before the new window is
opened.

Usage
type=window name="window" title="" vertical=TRUE

Arguments

nameunique name identifying an open window
title..................text to display in the window’s title line
verticalif TRUE, arrange widgets vertically, top to bottom, within the window

Example
window title="Widget = window (upon which all other widgets

are placed)"

Appendix C. PBS Modelling functions and data

 This appendix lists the functions currently made available by PBS Modelling, along with
a list of their dependencies on hidden “dot” functions. For more information about the hidden
functions, see the file PBSMfunctions.txt in the R library directory for PBSmodelling.

 – 49 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 49

C.1. Objects in PBS Modelling

CCA.qbr.hl Dataset: sampled counts of quillback rockfish (Sebastes maliger)
addArrows Add arrows to a plot using relative (0:1) coordinates
addLabel Add a label to a plot using relative (0:1) coordinates
addLegend Add a legend to a plot using relative (0:1) coordinates
calcFib Calculate Fibonacci numbers by several methods
calcGM Calculate the geometric mean, allowing for zeros
clearAll Remove all R objects from the global environment
clearWinVal Remove all current widget variables
closeWin Close GUI window(s)
compareLists Compare two non-recursive lists
compileDescription Convert and save a window description as a list
createVector Create a GUI with a vector widget
createWin Create a GUI window
drawBars Draw a linear barplot on the current plot
expandGraph Expand the plot area by adjusting margins
exportPBShistory Export a saved history
findPat Search a character vector to find multiple patterns
genMatrix Generate test matrices for plotBubbles
getWinVal Retreive widget values for use in R code
importPBShistory Import a history list from a file
initPBShistory Create structures of a new history widget
openFile Open a file with the associated program
pad0 Pad numbers with leading zeroes
parseWinFile Convert a window description file into a list
pause Pause between graphics displays or other calculations
pickCol Display an interactive colour selection palette
plotBubbles Construct a bubble plot from a matrix
plotCsum Plot cumulative sum of data
promptOpenFile Display an “Open File” dialog
promptSaveFile Display a “Save File” dialog
readList Read a list from a file in PBS Modelling format
resetGraph Reset par values for a plot
runExamples Run GUI examples included with PBS Modelling
setWinVal Update widget values
show0 Convert numbers into text with specified decimal places
showArgs Display expected widget arguments
testCol Display colour palette
testLty Display line types
testLwd Display line widths
testPch Display plotting symbols
testWidgets Display sample GUIs and their source code
unpackList Unpack list elements into variables
view Display first n rows of an object
writeList Write a list to a file in PBS Modelling format

 – 50 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 50

C.2. Function dependencies

 This appendix documents function dependencies within PBS Modelling. All functions
appear as underlined entries in alphabetic order. If a function depends on others, the list of
dependencies appears below the underlined name. Following a standard in UNIX and R,
functions whose name begins with a period (dot functions) are considered hidden from the user.
PBS Modelling enforces this standard through the NAMESPACE protocol discussed above in
section A.3.

.addslashes

.autoConvertMode

.buildgrid
.createTkFont
.createWidget

.catError

.convertMatrixListToDataFrame
.getMatrixListSize
.setMatrixElement

.convertMatrixListToMatrix
.getMatrixListSize
.setMatrixElement

.convertMode
.convertMode

.convertPararmStrToList
.catError
.trimWhiteSpace

.convertPararmStrToVector
.catError
.trimWhiteSpace

.convertVecToArray
.getArrayPts
.mapArrayToVec

.createTkFont
.convertPararmStrToVector

.createWidget
.createWidget.button
.createWidget.check
.createWidget.data
.createWidget.entry

.createWidget.grid

.createWidget.history

.createWidget.label

.createWidget.matrix

.createWidget.null

.createWidget.radio

.createWidget.slide

.createWidget.slideplus

.createWidget.text

.createWidget.vector

.createWidget.button
.createTkFont
.extractData

.createWidget.check
.createTkFont
.extractData

.createWidget.data
.createWidget.grid
.stopWidget

.createWidget.entry
.createWidget.grid
.extractData

.createWidget.grid
.buildgrid

.createWidget.history
.createWidget.grid
initPBShistory

.createWidget.label
.createTkFont

.createWidget.matrix
.createWidget.grid
.stopWidget

 – 51 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 51

.createWidget.null

.createWidget.radio
.createTkFont
.extractData

.createWidget.slide
.extractData

.createWidget.slideplus
.extractData

.createWidget.text
.createTkFont

.createWidget.vector
.createWidget.grid
.stopWidget

.extractData
.getPBS.win

.extractFuns

.extractVar
.convertMatrixListToDataFrame
.convertMatrixListToMatrix
.matrixHelp
.PBSdimnameHelper

.fibC

.fibCall

.fibClosedForm

.fibR

.getArrayPts

.getMatrixListSize
.getMatrixListSize

.getParamFromStr
.catError
.convertPararmStrToList
.isReallyNull
.searchCollection
.stripSlashes
.stripSlashesVec

.trimWhiteSpace

.getParamOrder

.getPBS.win
.extractVar

.getReadListParamOrder

.hash
.isReallyNull

.inCollection

.initPBSoptions

.isReallyNull

.mapArrayToVec

.matrixHelp
.matrixHelp

.parsegrid
.parsegrid

.parsemenu
.parsemenu

.PBSdimnameHelper

.readList.P
.catError
.readList.P.convertData
.stripComments
.trimWhiteSpace

.readList.P.convertData
.autoConvertMode
.catError
.convertMode
.convertPararmStrToVector
.convertVecToArray
.getParamFromStr
.getReadListParamOrder

.searchCollection

.setMatrixElement
.setMatrixElement

 – 52 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 52

.setWinValHelper

.getPBS.win

.setWinValHelper

.stopWidget

.stripComments
.stripComments
.trimWhiteSpace

.stripSlashes
.catError

.stripSlashesVec
.catError

.trimWhiteSpace

.updatePBShistory
setWinVal

.validateWindowDescList
.getParamOrder
.validateWindowDescWidgets

.validateWindowDescWidgets
.getParamOrder

.writeList.P
.addslashes

addArrows

addLabel

addLegend

addPBShistory
.updatePBShistory
getWinVal

backPBShistory
.updatePBShistory
setWinVal

calcFib
.fibC
.fibCall
.fibClosedForm
.fibR

calcGM

clearAll

clearPBShistory
.updatePBShistory
rmPBShistory

clearWinVal

closeWin
.isReallyNull

compareLists
.isReallyNull

compileDescription
parseWinFile
writeList

createVector
createWin

createWin
.createWidget
.getPBS.win
.hash
.isReallyNull
.validateWindowDescList
parseWinFile

drawBars

expandGraph

exportPBShistory
promptSaveFile
writeList

findPat

forwPBShistory
.updatePBShistory
setWinVal

genMatrix

getWinVal
.getPBS.win
.isReallyNull

 – 53 –

PBS Modelling v. 0.60 Report draft 56, August 29, 2006 Page 53

importPBShistory
.updatePBShistory
promptOpenFile
readList

initPBShistory

jumpPBShistory
.updatePBShistory
getWinVal
setWinVal

openFile
.initPBSoptions
.isReallyNull
openFile

pad0

parseWinFile
.getParamFromStr
.parsegrid
.parsemenu
.stripComments
.trimWhiteSpace

pause

pickCol

plotBubbles

plotCsum
addLabel
resetGraph

promptOpenFile
.trimWhiteSpace

promptSaveFile
promptOpenFile

readList
.readList.P

resetGraph

rmPBShistory
.updatePBShistory
setWinVal

runExamples
closeWin
createWin
getWinVal
setWinVal

setWinVal
.isReallyNull
.setWinValHelper

show0

showArgs
.getParamOrder

testCol

testLty

testLwd
resetGraph

testPch
resetGraph

testWidgets
closeWin
createWin
getWinVal
setWinVal

unpackList

view

writeList
.writeList.P

– 54 –

addArrows Add Arrows to a Plot Using Relative (0:1) Coordinates

Description

Calls arrows function using relative (0:1) coordinates.

Usage

addArrows(x1, y1, x2, y2, ...)

Arguments

x1 x-coordinate at base of arrow

y1 y-coordinate at base of arrow

x2 x-coordinate at tip of arrow

y2 y-coordinate at tip of arrow

... additional paramaters for arrows

Details

Lines will be drawn from (x1[i],y1[i]) to (x2[i],y2[i])

See Also

addLabel

addLegend

Examples

tt=seq(from=-5,to=5,by=0.01)
plot(sin(tt), cos(tt)*(1-sin(tt)), type="l")
addArrows(0.2,0.5,0.8,0.5)
addArrows(0.8,0.95,0.95,0.55, col="#FF0066")

– 55 –

addLabel Add Label to a Plot Using Relative (0:1) Coordinates

Description

Places a label in a plot using relative (0:1) coordinates

Usage

addLabel(x, y, txt, ...)

Arguments

x x-axis coordinate in the range (0,1); can step outside

y y-axis coordinate in the range (0,1); can step outside

txt desired label at (x,y)

... additional arguments passed to text function

See Also

addArrows

addLegend

Examples

resetGraph()
addLabel(0.75,seq(from=0.9,to=0.1,by=-0.10),c('a','b','c'), col="#0033AA")

addLegend Add Legend to a Plot Using Relative (0:1) Coordinates

Description

Places a legend in a plot using relative (0:1) coordinates.

Usage

addLegend(x, y, ...)

– 56 –

Arguments

x x-axis coordinate in the range (0,1); can step outside

y y-axis coordinate in the range (0,1); can step outside

... arguments used by legend, such as “lines”, “text”, or “rectangle”

See Also

addArrows

addLabel

calcFib Several Methods to Calculate Fibonacci Numbers

Description

Computes Fibonacci numbers using four different methods: 1) iteratively using R code,
2) via the closed function in R code, 3) iteratively in C using the .C function, and 4)
iteratively in C using the .Call function.

Usage

calcFib(n, len=1, method="C")

Arguments

n nth fibonacci number to calculate

len A vector of length len showing previous fibonacci numbers

method Select method to use: C, Call, R, closed

Value

Vector of the last len Fibonacci numbers calculated.

– 57 –

calcGM Calculate the Geometric Mean

Description

Calculate the geometric mean of a numeric vector, possibly excluding zeros and/or adding
an offset to compensate for zero values.

Usage

calcGM(x, offset = 0, exzero = TRUE)

Arguments

x vector of numbers

offset value to add to all components, including zeroes

exzero if T, exclude zeroes (but still add the offset)

Value

geometric mean of the modified vector x + offset

Note

NA values are automatically removed from x

Examples

calcGM(c(0,1,100))
calcGM(c(0,1,100),offset=0.01,exzero=FALSE)

CCA.qbr.hl Dataset of Sampled Counts of Quillback Rockfish (Sebastes maliger)

Description

Count of sampled fish-at-age for quillback rockfish (Sebastes maliger) in Johnstone Strait,
British Columbia, from 1984 to 2004.

Usage

data(CCA.qbr.hl)

– 58 –

Format

A matrix with 70 rows (ages) and 14 columns (years). Attributes “syrs” and “cyrs” specify
years of survey and commercial data, respectively.

[,c(3:5,9,13,14)] Counts-at-age from research survey samples
[,c(1,2,6:8,10:12)] Counts-at-age from commercial fishery samples

All elements represent sampled counts-at-age in year. Zero-value entries indicate no ob-
servations.

Details

Handline surveys for rockfish have been conducted in Johnstone Strait (British Columbia)
and adjacent waterways (126◦37’W to 126◦53’W, 50◦32’N to 50◦39’N) since 1986. Ya-
manaka and Richards (1993) describe surveys conducted in 1986, 1987, 1988, and 1992.
In 2001, the Rockfish Selective Fishery Study (Berry 2001) targeted quillback rockfish
Sebastes maliger for experiments on improving survival after capture by hook and line
gear. The resulting data subsequently have been incorporated into the survey data series.
The most recent survey in 2004 essentially repeated the 1992 survey design. Fish sam-
ples from surveys have been supplemented by commercial handline fishery samples taken
from a larger region (126◦35’W to 127◦39’W, 50◦32’N to 50◦59’N) in the years 1984-1985,
1989-1991, 1993, 1996, and 2000 (Schnute and Haigh 2006).

Note

Years 1994, 1997-1999, and 2002-2003 do not have data.

Source

Fisheries and Oceans Canada - GFBio database:
http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

References

Berry, M.D. 2001. Area 12 (Inside) Rockfish Selective Fishery Study. Science Council of
British Columbia, Project Number FS00- 05.

Schnute, J.T., and Haigh, R. 2006. Compositional analysis of catch curve data with an
application to Sebastes maliger. ICES Journal of Marine Science (in revision).

Yamanaka, K.L. and Richards, L.J. 1993. 1992 Research catch and effort data on nearshore
reef-fishes in British Columbia Statistical Area 12. Canadian Manuscript Report of Fish-
eries and Aquatic Sciences 2184, 77 pp.

Examples

Plot age proportions (blue bubbles = survey data, red = commercial)
data("CCA.qbr.hl", package="PBSmodelling")

– 59 –

z <- CCA.qbr.hl; cyr <- attributes(z)$cyrs;
z <- apply(z,2,function(x){x/sum(x)}); z[,cyr] <- -z[,cyr];
x <- as.numeric(dimnames(z)[[2]]); xlim <- range(x) + c(-.5,.5);
y <- as.numeric(dimnames(z)[[1]]); ylim <- range(y) + c(-1,1);
plotBubbles(z,xval=x,yval=y,powr=.5,size=0.15,lwd=1,clrs=c("blue","red"),

xlim=xlim,ylim=ylim,xlab="Year",ylab="Age",cex.lab=1.5)

clearAll Remove All R Objects

Description

Generic function to clear .RData in R

Usage

clearAll()

clearWinVal Remove All Widget Variables

Description

Removes all global variables that share a name in common with any widget variable name
as defined in PBS.win$vars. Use this with caution.

Usage

clearWinVal()

See Also

getWinVal

– 60 –

closeWin Close GUI windows

Description

The closeWin function closes (destroys) one or more windows made with createWin.

Usage

closeWin(name=names(.PBS.tclHash))

Arguments

name a vector of window names to close, as defined in the window description
file’s WINDOW widget.

See Also

createWin

compareLists Compares two non-recursive lists

Description

Displays any differences between two non-recursive lists.

Usage

compareLists(a,b,verbose=FALSE)

Arguments

a list a

b list b

verbose be verbose

– 61 –

compileDescription

Converts and Saves a Window Description Into a List

Description

compileDescription converts a Window Description File into an equivalent Window De-
scription List. The list is complete - meaning all default values have been added to the
list.

Usage

compileDescription(descFile, outFile)

Arguments

descFile filename of markup file.

outFile filename indicating where to save outputed R source code.

Details

The Window Description File is converted into a list, which is then converted into R code
and saved to the outfile.

See Also

parseWinFile

createWin

createVector Create a GUI with a Vector Widget

Description

createVector creates a basic window containing a vector and a submit button. This provides
a quick way to create a window without the need for a window description file.

Usage

createVector(vec, vectorLabels=NULL, func="", windowname="vectorwindow")

– 62 –

Arguments

vec a vector of strings representing widget variables. If it is named, the names
are used as the variable names, and the values are used as the default value
of the widget

vectorLabels

option vector of strings to be used as labels above each widget.

func string value of function name to be called when new data is entered or
when ”GO” is pressed.

windowname window name required if multiple vector windows are created.

See Also

createWin

Examples

#user defined function which is called on new data
drawLiss <- function()
{
getWinVal(scope="L")

tt <- 2*pi*(0:k)/k;

x <- sin(2*pi*m*tt);
y <- sin(2*pi*(n*tt+phi));

plot(x,y,type="p");

invisible(NULL);
}

#create the vector window
createVector(c(m=2, n=3, phi=0, k=1000),

vectorLabels=c("x cycles","y cycles", "y phase", "points"),
func="drawLiss"
)

createWin Create a GUI Window

Description

The createWin function takes a window markup file, and creates a window based on the
markup file.

– 63 –

Usage

createWin(fname, astext=FALSE)

Arguments

fname filename of markup file or list returned from parseWinFile.

astext if true, fname is intrupted as a vector of strings. with each element repre-
senting a line of the source of a window description file

Details

The markup file contains a single widget per line. Widgets can span multiple lines by
including a backslash (’\’) as the last character of the line, which then ignores the newline.

For more details about widget types, and the markup file see the pdf located in the
installation directory.

It is possible to use a Window Description List produced by compileDescription rather
than a filename for the fname argument.

Another alternative is to set astext=TRUE and pass in a vector of characters for fname.
This vector of characters represents the file contents. Each element of the vector is equiv-
alent to a new line in the window description file.

Value

PBS.win contains window information such as: present values, present variable names,
present variable values, and triggered action values. This information is encapsulated in a
list which is set as the global PBS.win variable, which is also returned.

PBS.win

vars Current widget values

funs Functions required by Window

names Variable names: names(PBS.win$vars)

action Action that triggered a function call

See Also

parseWinFile

getWinVal

setWinVal

closeWin

compileDescription

createVector

initPBShistory for an example of using astext=TRUE

– 64 –

Examples

#see file testWidgets\LissWin.txt in PBSmodelling package directory
#
window title="Lissajous Curve"
grid 1 2
label text=Pars: font=bold
vector length=4 names="m n phi k" \
labels="'x cycles' 'y cycles' 'y phase' points" \
values="2 3 0 1000" vertical=T
grid 1 2
label text=History: font=bold
history
grid 1 2
grid 2 1
radio name=ptype text=lines value="l" mode=character
radio name=ptype text=points value="p" mode=character
button text=Plot func=drawLiss font=bold
#

Calculate and draw the Lissajous figure
drawLiss <- function()
{
getWinVal(scope="L");
ti <- 2*pi*(0:k)/k;
x <- sin(2*pi*m*ti);
y <- sin(2*pi*(n*ti+phi));

plot(x,y,type=ptype);
invisible(NULL);

}
Not run:
require(PBSmodelling);
createWin(system.file("testWidgets/LissWin.txt",package="PBSmodelling"))
End(Not run)

drawBars Draw a Linear Barplot on the Current Plot

Description

Draws a linear barplot on the current graph.

Usage

drawBars(x, y, width, base = 0, ...)

– 65 –

Arguments

x x-coordinates

y y-coordinates

width bar width, computed if missing

base y-value of the base of each bar

... further graphical parameters (see ’par’) may also be supplied as arguments

Examples

plot(0:10,0:10,type="n")
drawBars(x=1:9,y=9:1,col="deepskyblue4",lwd=3)

expandGraph Expand Plot Area by Adjusting Margins

Description

Tries to maximize the area of multiple plots by minimizing margins.

Usage

expandGraph(mar=c(4,3,1.2,0.5), mgp=c(1.6,.5,0),...)

Arguments

mar numerical vector of the form ’c(bottom, left, top, right)’ specifying the
margins of the plot

mgp numerical vector of the form ’c(axis title, axis labels, axis line)’ specifying
the margins for axis title, axis labels, and axis line

... Additional graphical parameters to be passed to par()

See Also

resetGraph

par

– 66 –

Examples

resetGraph()
expandGraph(mfrow=c(2,1))

tt=seq(from=-10, to=10, by=0.05)

plot(tt,sin(tt), xlab="this is the x label", ylab="this is the y label",
main="main title", sub="sometimes there is a \"sub\" title")

plot(cos(tt),sin(tt*2), xlab="cos(t)", ylab="sin(2 t)", main="main title",
sub="sometimes there is a \"sub\" title")

exportPBShistory Export Saved History

Description

Exports the current history List.

Usage

exportPBShistory(hisname="", fname="")

Arguments

hisname Name of the history list to export. If it is set to "", the value from
PBS.win$action[1] will be used instead.

fname Where to save the history to. If it is set to "", a save file window will be
displayed.

See Also

importPBShistory

initPBShistory

promptSaveFile

– 67 –

findPat Search a Vector With Multiple Patterns

Description

Searches all patterns in pat from vec, and returns the matched elements in vec.

Usage

findPat(pat, vec)

Arguments

pat character vector of patterns to match in vec

vec character vector where matches are sought

Value

A character vector of all matched strings.

Examples

#find all strings with a vowel, or that start with a number
findPat(c("[aeoiy]", "^[0-9]"), c("hello", "WRLD", "11b"))

genMatrix Generate Test Matrices for plotBubbles

Description

Generates a test matrix of random numbers (mean = mu and standard deviation = sigma),
primarily for plotBubbles.

Usage

genMatrix(m,n,mu=0,sigma=1)

Arguments

m number of rows

n number of columns

mu mean of normal distribution

sigma standard deviation of normal distribution

– 68 –

Value

An m by n matrix with normally distributed random values.

See Also

plotBubbles

Examples

plotBubbles(genMatrix(20,6))

getWinVal Retreive Widget Values

Description

An optional scope argument allows the function to create local or global variables based
on the list that is returned.

Usage

getWinVal(v=NULL, scope="", asvector=FALSE, windowname="")

Arguments

v vector of variable names to be retrieved. If NULL, it is set to every widget.

scope If "", do not set any variables. If "L" create variables local to the parent
frame that called the function. If "G" create global variables.

asvector return a vector instead of a list. WARNING: if a widget variable is a true
vector or matrix, this will not work.

windowname Which window to select values from. If "" is given, it will use the most
recently active window determined from PBS.win$windowname.

Value

A list (or vector) with named components, based on the variable name as the key, and the
value of the associated widget as the value.

See Also

parseWinFile

setWinVal

clearWinVal

– 69 –

importPBShistory Import a history list from a file

Description

Imports a history list from a file, and places it as the history list identified by hisname.

Usage

importPBShistory(hisname="", fname="")

Arguments

hisname The imported list is placed into the history list identified by hisname. If it
is set to "", the value from PBS.win$action[1] will be used instead.

fname Which file to import. If it is set to "", an open file window will be displayed.

See Also

exportPBShistory

initPBShistory

promptOpenFile

initPBShistory Customized History Widget Functions

Description

The functions: initPBShistory, rmPBShistory, addPBShistory, forwPBShistory, backPB-
Shistory, jumpPBShistory are made available to those who would like to use history, with-
out using the history widget. In other words, these functions allow users to create a custom
history widget.

Usage

initPBShistory(hisname, indexname=NULL, sizename=NULL, overwrite=TRUE)

rmPBShistory(hisname="", index="")

addPBShistory(hisname="")

forwPBShistory(hisname="")

backPBShistory(hisname="")

jumpPBShistory(hisname="", index="")

clearPBShistory(hisname="")

– 70 –

Arguments

hisname The name of the history ”list” to manipulate. If it is omitted, the function
will use the value of PBS.win$actions[1] as the history name. This allows
functions to be called directly from the window description file. With the
exception of initPBShistory which must be called before createWin().

indexname The name of the index entry widget in the window description file. If it is
NULL, then the current index feature will be disabled.

sizename The name of the current size entry widget. If it is NULL, then the current
size feature will be disabled.

index Index to the history item. if it is left as "", then value will be extracted
from the widget identified by indexname

overwrite If set to true, history (matching hisname) will be cleared. Otherwise, the
two will be merged.

Details

PBS Modelling includes a pre-built history widget designed to collect interesting choices
of GUI variables so that they can be redisplayed later, rather like a slide show.

Normally, a user would invoke a history widget simply by including a reference to it in the
description file. However, PBS Modelling includes some support functions for customized
applications.

To create a customized history, each button must be described separately in the window
description file rather than making reference to the history widget.

The history ”List” must be initialized before any other functions may be called. The use
of a unique history name (hisname) is used to associate a unique history session with the
supporting functions.

The indexname and sizename arguments correspond to the given names of entry widgets
in the window description file which will be used to display the current index, and total size
of the list. the indexname entry widget can also be used by jumpPBShistory to retrieve
an index to jump to.

See Also

importPBShistory

exportPBShistory

Examples

#Example of creating a custom history widget that saves values
#whenever the "plot" button is pressed, and updates the plot when
#back or next is pushed. A custom history is needed to achieve this
#functionality since the normal history widget does not update plots
require(PBSmodelling)

– 71 –

#create a window Description to be used with createWin using astext=TRUE
#PS: watch out for escaping special characters which
must be done twice (first for R, then PBSmodelling)

winDesc <- '

window title="Custom History"
vector names="a b k" labels="a b points" font="bold" values="1 1 1000" function=myPlot
grid 1 3
button function=myHistoryBack text="<- Back"
button function=myPlot text="Plot"
button function=myHistoryForw text="Next ->"

grid 2 2
label "Index"
entry name="myHistoryIndex" width=5
label "Size"
entry name="myHistorySize" width=5

'

#convert text into vector with each line represented as a new element
winDesc <- strsplit(winDesc, "\n")[[1]]

#custome functions required to update plots after restoring history values
myHistoryBack <- function() {
backPBShistory("myHistory")
myPlot(saveVal=FALSE) #show the plot with saved values

}
myHistoryForw <- function() {
forwPBShistory("myHistory")
myPlot(saveVal=FALSE) #show the plot with saved values

}

myPlot <- function(saveVal=TRUE) {

#save all data whenever plot is called (directly)
if (saveVal)
addPBShistory("myHistory")

getWinVal(scope="L")
tt <- 2*pi*(0:k)/k;
x <- (1+sin(a*tt)); y <- cos(tt)*(1+sin(b*tt));
plot(x, y)

}

initPBShistory("myHistory", "myHistoryIndex", "myHistorySize")
createWin(winDesc, astext=TRUE)

– 72 –

openFile Open Files With Associated Program

Description

openFile attempts to open a file, based off the command set in the PBS.options$openfile
list. If PBS.options$openfile[[extension]] is set openFile will replace all occurrences
of "%f" with the absolute path of the filename, and then execute the command. Otherwise,
if no command is set, shell.exec() will be used.

Usage

openFile(fname)

Arguments

fname filename to be opened.

Examples

Not run:
#setup firefox to open .html files
PBS.options$openfile$html='"c:/Program Files/Mozilla Firefox/firefox.exe" %f'
openFile("foo.html")
End(Not run)

pad0 Pads Numbers with leading zeroes

Description

Takes numbers, converts them to integers then text, and pads them with leading zeroes.

Usage

pad0(x, n, f = 0)

Arguments

x Vector of numbers

n Length of padded integer

f Factor of 10 to expand x by

Value

A character vector representing x with leading zeros.

– 73 –

parseWinFile Convert Window Description File into a List

Description

Parses a Window Markup file into the list format expected by createWin()

Usage

parseWinFile(fname, astext=FALSE)

Arguments

fname file name of window markup file.

astext if true, fname is interpreted as a vector of strings. with each element
representing a line of the source of a window description file

Value

A list representing a parsed window description file that can be directly passed to cre-
ateWin.

Note

All widgets are encapsulated into a 1 column by N row grid.

See Also

createWin

compileDescription

Examples

Not run:
x<-parseWinFile(system.file("examples/LissFigWin.txt",package="PBSmodelling"))
createWin(x)
End(Not run)

– 74 –

pause Pause

Description

Pause, typically between graphics displays

Usage

pause(s = "Press <Enter> to continue")

Arguments

s prompt text

PBSmodelling PBS Modelling

Description

PBS Modelling provides software to facilitate the design, testing, and operation of com-
puter models. It focuses particularly on tools that make it easy to construct and edit a
customized graphical user interface (GUI). Although it depends heavily on the R interface
to the Tcl/Tk package, a user does not need to know Tcl/Tk.

The package contains examples that illustrate models built with other R packages, in-
cluding PBS Mapping, odesolve, and BRugs. It also serves as a convenient prototype for
building new R packages, along with instructions and batch files to facilitate that process.

The root library directory of PBSmodelling includes a complete user guide PBSmodelling-
UG.pdf. To use this package effectively, please consult the guide.

PBS Modelling comes packaged with several examples which can be accessed with the
runExamples() function.

– 75 –

pickCol Display Interactive Colour Selection Palette

Description

Display an interactive colour chooser. If returnValue is true, then the equivalent hex colour
value is returned, otherwise if returnValue is faluse, an intermediate GUI is used to display
the hex value and no value is returned to R.

Usage

pickCol(returnValue=TRUE)

Arguments

returnValue If true only display the colour chooser and return the hex value. Otherwise
use an intermediate GUI to display the hex value

Value

A hexidecimal colour value.

See Also

testCol

plotBubbles Construct a Bubble Plot from a Matrix

Description

Constructs a bubble plot for a matrix z.

Usage

plotBubbles(z, xval = FALSE, yval = FALSE, rpro = FALSE,

cpro = FALSE, rres = FALSE, cres = FALSE, powr = 1,

clrs = c("black", "red"), size = 0.2, lwd = 2, debug = FALSE, ...)

– 76 –

Arguments

z input matrix

xval x-values for the columns of z. if xval=TRUE, first row contains x-values
for the columns

yval y-values for the rows of z. if yval=TRUE, first column contains y-values
for the rows

rpro if rpro=TRUE, convert rows to proportions

cpro if cpro=TRUE, convert columns to proportions

rres if rres=TRUE, use row residuals (subtract row means)

cres if cres=TRUE, use column residuals (subtract column means)

powr power transform. radii proportional to zpowr. powr=0.5 gives bubble areas
proportional to z

clrs colours used for positive and negative values

size size (inches) of the largest bubble

lwd line width for drawing circles

debug display debug information if true

... additional arguments for symbols function

See Also

genMatrix

Examples

plotBubbles(genMatrix(20,6))

plotCsum Plots Cumulative Frequency of Data

Description

Plots cumulative frequency of data

Usage

plotCsum(x, add = FALSE, ylim = c(0, 1), xlab = "Measure",

ylab = "Cumulative Proportion", ...)

– 77 –

Arguments

x vector of values

add if TRUE, add cumulative frequency curve to current plot

ylim limits for y-axis

xlab label for x-axis

ylab label for y-axis

... additional arguments for plot.

Examples

x <- rgamma(n=1000,shape=2)
plotCsum(x)

promptOpenFile Display Open File Dialog

Description

Displays the default open file prompt provided by the Operating System.

Usage

promptOpenFile(initialfile="", filetype=list(c("*", "All Files")), open=TRUE)

Arguments

initialfile file name of text file containing the list.

filetype a list of character vectors indicating what filetypes to look for. Each vector
is of length one or two, and specifies the file extension, or "*" (for all file-
types). The second element is an optional name for the file type describing
the file type.

open If True display Open file prompt, if False display Save File prompt.

Value

The filename and path of file selected by user.

See Also

promptSaveFile

– 78 –

Examples

Not run:

#open a filename, and return it line by line in a vector
scan(promptOpenFile(),what=character(),sep="\n")

#illustrates how to set filetype.
promptOpenFile("intial_file.txt", filetype=list(c(".txt", "text files"),

c(".r", "R files"), c("*", "All Files")))
End(Not run)

promptSaveFile Display Save File Dialog

Description

Displays the default save file prompt provided by the Operating System.

Usage

promptSaveFile(initialfile="", filetype=list(c("*", "All Files")), save=TRUE)

Arguments

initialfile file name of text file containing the list.

filetype a list of character vectors indicating what filetypes to look for. Each vector
is of length one or two, and specifies the file extension, or "*" (for all file-
types). The second element is an optional name for the file type describing
the file type.

save If True display Save file prompt, if False display Open File prompt.

Value

The filename and path of file selected by user.

See Also

promptOpenFile

Examples

Not run:

#illustrates how to set filetype.
promptSaveFile("intial_file.txt", filetype=list(c(".txt", "text files"),

c(".r", "R files"), c("*", "All Files")))
End(Not run)

– 79 –

readList Read a List From a File

Description

Reads in a list which was saved to a file by writeList. It can support a native R list, or
PBSmodelling P format. It is detected automatically.

For information about "P" format, see writeList.

Usage

readList(fname)

Arguments

fname file name of text file containing the list.

See Also

writeList

unpackList

resetGraph Reset plot par Values

Description

Reset the plot par() to default values to ensure the plot takes up the whole canvas.

Usage

resetGraph()

See Also

resetGraph

– 80 –

runExamples Display PBS Modelling Examples

Description

Displays an interactive demo GUI to display PBS Modelling examples.

The example source files can be found in the PBSmodelling/examples directory located in
the R library.

Usage

runExamples()

Details

Some examples make use of external packages which must be installed in order to work
correctly.

LinReg, MarkRec, and CCA Require the Brugs package.

FishRes requires the odesolve package.

FishTows requires the PBSmapping package.

setWinVal Update Widget Values

Description

setWinVal updates a widget with a new value. The vars argument expects a list or vector
with named elements. Every element name corresponds to the widget name which will be
updated with the supplied element value.

The vector and matrix widgets can be updated in several ways. If more than one name is
given for the names argument then each element is treated as if it simply an entry widget.
If however, a single name is given, and the value returned by getWinVal is a vector or
matrix, the whole widget can be updated by passing an appropriately sized vector or
widget. Alternatively each element can be updated by appending the index in square
braces to the end of the name.

Usage

setWinVal(vars, windowname)

– 81 –

Arguments

vars a list or vector with named components.

windowname Which window to select values from. If "" is given, it will use the most
recently active window determined from PBS.win$windowname.

Details

The data widget can also be updated in the same fashion as the matrix; however, when
updating a single element, a ”d” must be added after the brackets. This is due to the
internal coding of PBS Modeling. Example: "foo[1,1]d"

See Also

getWinVal

createWin

Examples

winDesc <- c(
"vector length=3 name=vec",
"matrix nrow=2 ncol=2 name=mat",
"slideplus name=foo"
);

createWin(winDesc, astext=TRUE)
setWinVal(list(vec=1:3, "mat[1,1]"=123, foo.max=1.5, foo.min=0.25, foo=0.7))

show0 Convert Numbers Into Text With Specified Decimal Places

Description

Return character representation of number with specified decimal places.

Usage

show0(x, n, add2int = FALSE)

Arguments

x Number as scalar or vector

n Number of decimal places to show, include zeroes

add2int If TRUE, add zeroes on the end of integers

– 82 –

Examples

frame()

#do not show decimals on integers
addLabel(0.25,0.75,show0(15.2,4))
addLabel(0.25,0.7,show0(15.1,4))
addLabel(0.25,0.65,show0(15,4))

#show decimals on integers
addLabel(0.25,0.55,show0(15.2,4,TRUE))
addLabel(0.25,0.5,show0(15.1,4,TRUE))
addLabel(0.25,0.45,show0(15,4,TRUE))

showArgs Display Expected Widget Arguments

Description

Displays the order and default values of widget arguments. The list can be shortened by
specifying a single widget name. Otherwise all widgets are displayed.

Usage

showArgs(widget="")

Arguments

widget Only displays information about this one widget

testCol Display Colour Palette

Description

Provides a testing bed for displaying colours on a graph. Colours can be specified in any
of 3 different ways: 1) by a color name, 2) by a hexidecimal color code created by rgb()

or 3) by an index into the color palette.

Usage

testCol(cnam=colors()[1:20])

– 83 –

Arguments

cnam vector of colour names to display

See Also

pickCol

Examples

testCol(c("sky","fire","sea","wood"))

testCol(c("plum","tomato","olive","peach","honeydew"))

testCol(rainbow(63))

#display all colours set in the colour palette
testCol(1:length(palette()))

#they can even be mixed
testCol(c("#9e7ad3", "purple", 6))

testLty Display Line Types

Description

Displays line types available

Usage

testLty(newframe = TRUE)

Arguments

newframe if true, create a new blank frame, otherwise overlay current frame

– 84 –

testLwd Display Line Widths

Description

User can specify particular ranges for lwd. Colours can also be specified and are internally
repeated as necessary.

Usage

testLwd(lwd=1:20, col=c("black","blue"), newframe=TRUE)

Arguments

lwd line widths to test

col colours to test

newframe if true, create a new blank frame, otherwise overlay current frame

Examples

testLwd(3:15,col=c("salmon","aquamarine","gold"))

testPch Display Plotting Symbols

Description

Allows the user to specify particular ranges (increasing continuous integer) for pch.

Usage

testPch(pch=1:100, ncol=10, grid=TRUE, newframe=TRUE, bs=FALSE)

Arguments

pch symboles to view

ncol number of columns (can only be 2, 5, or 10). Most sensibly this is set to
10.

grid if T, grid is plotted for visual aid

newframe if T,reset the graph, otherwise overlay on top of the current graph

bs if T, shows backslash characters used in text statements. (e.g. 30\272C =
30◦C)

– 85 –

Examples

testPch(123:255)
testPch(1:25,ncol=5)
testPch(41:277,bs=TRUE)

testWidgets Displays Sample GUIs and Source Code

Description

Displays an interactive demo GUI to provide several sample GUIs along with window
description source code. It is possible to modify the sample source code in the provided
text box which can then be recreated with the button below.

The window description source files can be found in the PBSmodelling/testWidgets direc-
tory located in the R library.

Usage

testWidgets()

Details

The following are the widgets and default values supported by PBS Modelling. See Ap-
pendix B for a detailed description.

button text="Calculate" font="" width=0 function="" action="button"

sticky="" padx=0 pady=0

check name checked=FALSE text="" font="" function="" action="check"

sticky="" padx=0 pady=0

data nrow ncol names modes="numeric" rowlabels="" collabels=""

rownames="X" colnames="Y" font="" values="" byrow=TRUE function=""

enter=TRUE action="data" width=6 sticky="" padx=0 pady=0

entry name value="" width=20 label="" font="" function="" enter=TRUE

action="entry" mode="numeric" sticky="" padx=0 pady=0

grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont="" sidefont=""

byrow=TRUE borderwidth=1 relief="flat" sticky="" padx=0 pady=0

history name="default" archive=TRUE sticky="" padx=0 pady=0

label text="" font="" sticky="" padx=0 pady=0

– 86 –

matrix nrow ncol names rowlabels="" collabels="" rownames="" colnames=""

font="" values="" byrow=TRUE function="" enter=TRUE action="matrix"

mode="numeric" width=6 sticky="" padx=0 pady=0

menu nitems=1 label font=""

menuitem label font="" function action="menuitem"

null padx=0 pady=0

radio name value text="" font="" function="" action="radio"

mode="numeric" sticky="" padx=0 pady=0

slide name from=0 to=100 value=NA showvalue=FALSE orientation="horizontal"

function="" action="slide" sticky="" padx=0 pady=0

slideplus name from=0 to=1 by=0.01 value=NA function="" enter=FALSE

action="slideplus" sticky="" padx=0 pady=0

text name height=8 width=30 edit=FALSE bg="white" mode="character"

font="" value="" borderwidth=1 relief="sunken" edit=TRUE padx=0 pady=0

vector names length=0 labels="" values="" font="" vertical=FALSE

function="" enter=TRUE action="vector" mode="numeric" width=6 sticky=""

padx=0 pady=0 window name="window" title="" vertical=TRUE

See Also

createWin, showArgs

unpackList Unpack List Elements Into Variables

Description

Function to make local or global variables (depending on the scope) from the named
components of a list.

Usage

unpackList(x, scope="L")

– 87 –

Arguments

x list to unpack.

scope If ”L” create variables local to the parent frame that called the function. If
”G” create global variables.

Value

A character vector of unpacked variable names.

See Also

readList

Examples

x<-list(a=21,b=23)
unpackList(x)
print(a)

view Display First n Rows of an Object

Description

Views first n rows of a data.frame or matrix or first n elements of a vector or list. All other
objects are simply reflected.

Usage

view(obj, n = 5)

Arguments

obj Object to view

n First n elements of the obj to view

– 88 –

writeList Write a List to a File

Description

Writes an ASCII text representation in either “D” format, or “P” format. The “D” format
makes use of dput and dget and produces an R representation of the list. The “P” format
attempts to represents a simple list in an easy to read format.

Usage

writeList(x, fname, format="D", comments="")

Arguments

fname file name of text file containing the list

x list to write out

format format of file to create. “P” or “D”

comments vector of character strings to be used as initial comments in the file

Details

The “D” format is equivalent to using dput and dget, which supports all R objects.

The “P” format only supports named lists of vectors, matrices, and data-frames. Nested
lists are not supported. In the simplest form, the “P” format consists of a named list
element prefixed with a dollar sign ($) on a single line with data on the following line(s).
All following data will be until a new variable name is found (denoted by $), or the end of
a file is reached.

If multiple lines of data are used, then the data is treated as a matrix, and all rows must
have the same amount of values (separated by whitespace).

It is possible to specify more advanced options by including a line with two dollar signs ($$)
that follows on the next immediate line after the variable name declaration. These options
allow names for vectors, and colnames, as well as data.frames objects. For complete details
see the PBS modelling PDF.

Note

“P” format only supports a list of vectors, or matrices, but cannot support sub-lists. How-
ever “D” format supports all R objects

See Also

readList

dput

