
4.1 Wh at th e U N F D o e s

The “ U niversal N u m eric Fing erp rint” (U N F) solves the data interp retation p roblem s ju st described,

and does so in a way that is eff ortless to im p lem ent and check.

A U N F is created by rou nding data valu es (or tru ncating string s) to a known nu m ber of dig its

(characters), rep resenting those valu es in standard form (as 3 2 bit U nicode-form atted string s), and

ap p lying a fi ng erp rinting m ethod (su ch as cryp tog rap hic hashing fu nction) to this rep resentation.

U N Fś are com p u ted from data valu es p rovided by the statistical p ackag e, so they directly refl ect

the internal rep resentation of the data - the data as the statistical p ackag e interp rets it.

Thu s, A U N F diff ers from an ordinary fi le checksu m in several im p ortant ways:

1 . A U N F is d etects su bsta n tively sign ifi ca n t m isin terp reta tio n o f th e d a ta by th e sta tistica l

so ftw a re. If the statistical software m isreads the fi le, the resu lting U N F will not m atch the

orig inal, bu t the fi le checksu m s m ay m atch.

2 . A U N F is fo rm a t in d epen d en t. The U N F for the data will be the sam e reg ardless of whether

the data is saved as a R binary form at, S AS form atted fi le, S tata form atted fi le, etc., bu t fi le

checksu m s will diff er.

3 . A U N F is ro bu st to su bsta n tively u n im po rta n t ro u n d in g erro r. A U N F will also be the sam e

if the data diff ers in non-sig nifi cant dig its, a fi le checksu m not.

4 . A U N F is stro n gly ta m per resista n t. Any accidental or intentional chang es to the data valu es

will chang e the resu lting U N F. M ost fi le checksu m s and descrip tive statistics detect only

certain typ es of chang es.

4.2 H ow a U N F Wo rk s

The m ethod is g eneralizable to any dig ital object. In the abstract, it works as follows: an ap p rox i-

m ation alg orithm is u sed to com p u te the ap p rox im ated sem antic content of the dig ital object. This

ap p rox im ated content is then p u t into a norm alized form . A hash fu nction is u sed to com p u te a

u niq u e fi ng erp rint for the resu lting norm alized, ap p rox im ated object, and the hash is stored. W hen

the object is reloaded into the sam e or another ap p lication, this p rocess is rep eated, and the valu e

g enerated at load tim e is com p ared to the stored valu e.

The fi rst p art of what is needed is a norm alization fu nction f () that m ap s each seq u ence of

nu m bers (or m ore com m only, blocks of bits) to a sing le valu e:

f {i0, i1, ..., in} → c (2)

To verify the data, we wou ld need to com p u te f once when initially creating the m atrix . Then

recom p u te it a fter the data has been read into ou r statistics p ackag e. For robu st verifi cation, we

shou ld choose f () su ch that sm all chang es to the seq u ence are likely to yield diff erent valu es in f ().

1 9

Normalization of objects alone, while it can be used as a basis of establishing identity across

formats in limited cases, is inapplicable when reformatting of the object changes the precision,

accuracy, or level of detail of an object in trivial ways. This is a well known issue is video and

audio formats, in reformatting complex text documents, and surprisingly occurs commonly even in

reformatting purely numerical databases.

Thus, a type-specific approximation is used, such as decimation, spatial or frequency down-

sampling, and or numerical cutoff filtering, in addition, substitution, or combination to truncation

and rounding as described. (For examples of decimation, downsampling and cutoff algorithms see:

IE E E [197 9], Renze & O liver [1996].)

Any type-specific approximation function A(), may be employed. This approximation process,

A(), accepts as input a digital object, O, of specified type, and an approximation-level parameter,

k. A() should satisfy two these conditions:

1. . For some measure of semantic distance, d, if k > k ′ then d(O,A(O, k)) <= d(O,A(O, k′)).

2. if k >= k′ then A(A(O, k), k′) = A(O, k′)

The UNF module for R currently implements versions one through four of the UNF algorithm,

which are designed for numeric data. Version 4 is recommended, and the first version to be widely

used. This precedes as follows:

1.

2. E ach element in the numeric vector is rounded to k significant digits , using the IE E E 7 5 4

‘round toward zero’ rounding mode. 4 The default value of k is 7 , the maximum expressible

in single-precision floating point calculations.

3. E ach element is then converted to a character string. Unless the element is missing or not

a finite value, it is represented in exponential notation, in which non-informational zeros are

omitted. This notation comprises:

(a) A sign character.

(b) A single leading period.

(c) A decimal point.

(d) Up to k-1 digits following the decimal, comprised of the remaining k-1 digits of the

number, omitting trailing zeros.

4Rounding towa rd zero ensures p rop erty 2 h olds, b ut c a n p roduce m ore rounding error th a n rounding towa rd

nea rest. T h e m a x im um log rela tiv e error (L RE) for th e form er is (digits-1) wh ile th e m a x im um L RE for th e la tter is

digits. H ence, you m ay wish to use one m ore signifi c a nt digit wh en com p uting U N F ’s th a n wh en rep orting rounding

signifi c a nt digits for p resenta tion or stora ge.

20

(e) A lower case ’e’

(f) A sign character.

(g) The digits of the exponent, omitting trailing zeros.

(For example, the number pi, at five digits, is represented as ”-3.1415e+ ” and the number 300

is represented as the string ”+ 3.e+ 2”)

4. If the element is missing it is represented as a string of three null characters. If the element

is a IEEE 754 non-finite floating point special value, it is represented as the signed lower-case

IEEE minimal printable equivalents (i.e., + inf,-inf, + nan).

5. C haracter strings representing non-missing values are terminated with a P OSIX end-of-line

character.

6. Each character string is encoded in the UTF32B E Unicode bit encoding. [see Unicode 2003]

bit encoding.

7. The vector of character strings is combined into a single sequence, with each character string

separated by a P OSIX end-of-line characters and a null byte. A hash is computed on the

resulting sequence. Version 4 uses SH A256 [NIST 2002] as the hashing algorithm. (Versions

one through three use a 64-bit checksum, a 64-bit C RC , and MD 5, respectively, as the hashing

algorithm.)

8 . The resulting hash is then base64 encode [see J osefson 2003] for printing.

C haracter values are treated in an identical way, except that they are truncated to k characters

rather than rounded to k digits, and that the default k for characters is 128 .

UNF’s can be combined to fingerprint higher-level data objects. For example, the UNF’s for

multiple variables can be combined to form a UNF for the entire data frame, and UNF’s for a set

of data frames can be combined to form a single UNF representing an entire research study. The

summary() function performs such combinations automatically, using the following algorithm:

1. C alculate the UNF for each lower level data object.

2. Sort the base-64 representation of UNF’s in P OSIX locale sort order.

3. Apply the UNF algorithm to the resulting vector of character strings using k at least as large

as the length of the underlying character string.

This requires only that you use a consistent version and level of precision across the individual

UNF’s being combined.

21

Figure 1: Stages of UNF G eneration

���������	
������

��	
�

�������������	
��

������������
�
�

�����	������

��	
�����������

��������������

 !"#$����	���	�

�	
���

���%�����&

��	��'�"
���	%	
��

�	��
����	�����

"
���	%	
��

"�	��
���

"���
��

�����'�"
���	%	
��

�	��
����	�����

22

4.3 Usin g UNF’s

Here we describe usage of UNF library in R.

The ’unf’ function returns a UNF object which can be converted using ’as.character’ to a

signature string. For example:

> library(UNF)

> v = 1:100/10 + 0.0111

> print(unf(v, ndigits = 7))

[1] "UNF:4:7,128:6kK46s059g5dswiRGBM7yVvo3gwyBVvuBzioK/df72o="

This representation is self-identifying – it identifies the string as a fingerprint (’UNF’) , the

version of the algorithm (4), and the number of significant digits uses for numeric and character

values. (The number of significant digits can be omitted if the default for that version of the

algorithm is used.) The segment following the final colon is the actual fingerprint in base64 encoded

format (the equal signs are part of the encoding, and represent padding to a 24-bit boundary).

To compare two UNF’s, or sets of UNF’s, one usually wants to compare only the base64 portion.

Use ’unf2base64’ for this, which will extract the base64 portion for comparizon. 5

> vr = signifz(v, digits = 2)

> unf2base64(unf(v))

[1] "6kK46s059g5dswiRGBM7yVvo3gwyBVvuBzioK/df72o="

> unf2base64(unf(v)) == unf2base64(unf(vr))

[1] FALSE

> unf2base64(unf(v, digits = 2)) == unf2base64(unf(vr))

[1] TRUE

Use ’summary’ to produce a single UNF from set of vectors, by computing a new UNF across

the sorted base64 strings.

> data(longley)

> mf10 <- unf(longley)

> print(mf10)

5Note that in the example below, we supply a function signifz() to compute significant digits using ‘round

towards zero mode’ , since the R function signif() does not use this rounding mode.

23

[1] "UNF:4:6,128:8jZLmPa5mIIVxfM6ymFuafh6oGh8pPFu0vkHlDA6xto="

[2] "UNF:4:6,128:2xyGCHarwYSklOdTCDEgji76jv0waNmhMUB0IBm7R9s="

[3] "UNF:4:6,128:kncfvYKelMyyeAGDAN2A4SbnCO8wbRlbFLUZ0TyWN/8="

[4] "UNF:4:6,128:Bhuo94R5otkKNuJzxl+Ee1RxTWIC4al8ajv33aiwLz8="

[5] "UNF:4:6,128:9PnzHkZCJeNk4YZBRHdZ/N+oHXnPWyWyPokZf5ad5UI="

[6] "UNF:4:6,128:UBJuBYYt+QOXjTBU5V+tSV2euyfthhR/qmDBM18IzCY="

[7] "UNF:4:6,128:vTjA4Xagiwfhz4HDhx0tGLJYBdK9judYZK5eXdRRNcQ="

> summary(mf10)

[1] "UNF:4:6,128:7zq5Q8/mP7z3m2E+mwoOJndVM8flQmmbuHvvqDK910E="

UNF libraries are also available for standalone use, for use in C++, and for use with other

packages, such as Stata.

5 O th e r Tools for A c c u ra te a n d R e lia b le S ta tistic a l C om p u tin g

In addition to the perturbation tests and universal numeric fingerprints described above, the Ac-

curacy module provides a number of other tools for more accurate statistical computing. Among

these is a set of functions to collect true random numbers, and a generalized cholesky method that

can be used to extract information out of non-invertible Hessians.

5.1 Tru e R and om Nu m bers

‘Random’ numbers aren’t. The numbers provided by routines such as runif() are not genuinely

random. Instead, they are pseudo-random number generators (PRNGs), deterministic processes

that create a sequence of numbers. Pseudo-random number generators start with a single “seed”

value (specified by the user or left at defaults) and generate a repeating sequence with a certain

fixed length, or period p. This sequence is statistically similar, in limited respects, to random draws

from a uniform distribution.

The earliest PRNGs, still in use in some places, and used in early versions of R, is the L inear

Congruential Generator (L CG), which is defined as:

L C G(a ,m, s , c) ≡

x0 = s ,

xn = (a xn−1 + c) mod m. (3)

(All parameters are integers, and in practice x is usually divided by m to yield numbers between

zero and one.)

24

