
1 Using data perturbations for sensitivity analysis

An easy-to-use exploratory test for numerical and measurement error stability for a given model

is to introduce small random perturbations to the data, on the order of the measurement error

of the instruments used to collect it, and recalculate the estimate. When the estimates produced

using this technique vary greatly, the model estimation is necessarily unstable. And although the

converse is not necessarily true, where a model is already known to be statistically appropriate,

this type of sensitivity analysis will give the researcher greater confidence that the their results are

robust to numerical and measurement error.

We have developed a package in R that makes perturbation-based sensitivity analysis simple to

apply and to interpret. For most models this running a sensitivity analysis involves only two steps.

1. Specify the data, model, and model options for the unperturbed model, and optionally, the

error functions for the perturbation.

2. Use summary() or plot(summary()) to see the sensitivity of the parameter estimates to

perturbations.

Perturb works automatically almost with any R model, such as lm, glm, and nls, that accepts

data as an argument to supply data and that returns estimated coefficients through coef().

The example below shows how to conduct a sensitivity analysis of the classic analysis by Longley

(1964) using sensitivity() and default noise functions.
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> plongley = sensitivity(longley, lm, Employed ~ .)

> print(summary(plongley), digits = 4)

[1] "Sensitivity of coefficients over 50 perturbations:"

Mean Perturbed beta (Original Beta) (Original Stderr) 2.5%

(Intercept) -3.161e+03 -3.482e+03 8.904e+02 -4.475e+03

GNP.deflator 1.980e-02 1.506e-02 8.491e-02 -1.408e-01

GNP -3.085e-02 -3.582e-02 3.349e-02 -8.325e-02

Unemployed -1.932e-02 -2.020e-02 4.884e-03 -2.776e-02

Armed.Forces -9.838e-03 -1.033e-02 2.143e-03 -1.329e-02

Population -2.500e-02 -5.110e-02 2.261e-01 -3.280e-01

Year 1.662e+00 1.829e+00 4.555e-01 5.450e-01

97.5% [Out of Bounds]

(Intercept) -9.775e+02 *

GNP.deflator 1.566e-01

GNP 3.804e-02 *

Unemployed -8.603e-03 *

Armed.Forces -6.549e-03

Population 3.009e-01

Year 2.327e+00 *

The sensitivity results can also be expressed in plot format:

> plot(summary(plongley))
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This is a rare example of a model that is very sensitive to noise. Even so, note that the small

amounts of noise applied tremendously alter some of the estimated coefficients, but not others. In

most practical cases, however, the substantive implications of your model will remain the same

across the sensitivity analysis – in which case, you can publish them with greater confidence.

If error functions are not specified, a default set of error function will be selected based on

measurement types of the variable: continuous, ordered, or unordered. Continuous variables, by

default are subject to a small amount of mean-zero component-wise uniformly distributed noise,

which is typical of instrumentation-driven measurement error. Ordered factors are assigned a

small probability of having observations reclassified to the neighboring classification, and unordered

factors have a small probability of being reassigned to another legal value.

Alternatively, one can specify the error functions to use yourself, or use one of many supplied

by accuracy. The accuracy package comes with a wide range of noise functions for continuous

distributions, and random reclassification of factors. 1

Your choice of error functions should be chosen to reflect measurement error model for the

specific data you are using. In numerical analysis, uniform noise is often used since this is what

would be expected from simple rounding error. Normal random noise is commonly used in statistics,

under the assumption that measurement error is the sum of multiple independent error processes.

In addition, when normal perturbations are used, the result can be interpreted, for many models, as

equivalent to the results of running a slightly perturbed model on unperturbed data. In some cases,

like discrete or ratio variables, other forms of noise are necessary to preserve the structure of the

problem. (see for example, Altman, Gill, McDonald 2005). The magnitude of the noise is also under

the control of the researcher. Most use a magnitude equivalent to the researchers estimate of the

underlying measurement error in the data. Noise is usually adjusted to the size of each component,

since this better preserves the structure of the problem, however in some cases the underlying

measurement error model may imply norm-wise scaling of the noise. For more information on noise

distributions and measurement error models see , e.g., Belsley 1991, Chaitin-Chatelin & Traviesas-

Caasan (2004b), Caroll et. al (1995), Cheng & Van Ness (1999), Fuller (1987).

If multiple plausible measurement error models can be hypothesized, we recommend that sen-

sitivity be run multiple times with different noise specifications, However, in our experience with

social science analyses, the choice of error model does not tend to effect, in practice, the substantive

conclusions from the sensitivity analysis.
1The perturb package for collinearity diagnosis by Hendrickx, et. al (2004) (which was developed for R after the

accuracy package) provides additional methods for randomly reclassifying factors that via its reclassify() function.

This function can be used in conjunction with accuracy. Hendrickx, et. al also provide a number of collinearity

diagnostics, including one based on data perturbations.
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Some researchers omit perturbations to outcome variables, since, in terms of statistical theory,

mean-zero measurement error on outcome variables (as opposed to explanatory variables) contribute

only to increased variance in estimates, not bias. While this attitude is well-justified in the context of

statistical theory, it is not similarly justified in the computational realm. If the estimation of a model

is computationally unstable, errors in the outcome variable may have large and unpredictable biases

on the model estimate. Hence, the conservative default in our package is to subject all variables to

perturbation, although options are available to completely control the form and magnitude of all

perturbations.
Consider this example, which shows a sensitivity analysis of the anorexia analysis described in

Venables and Ripley (2002). In this case, we leave the dependent variable unperturbed, by assigning

it the identity error function.

> data(anorexia, package = "MASS")

> panorexia = sensitivity(anorexia, glm, Postwt ~ Prewt + Treat +

+ offset(Prewt), family = gaussian, ptb.R = 100, ptb.ran.gen = c(PTBi,

+ PTBus, PTBus), ptb.s = c(1, 0.005, 0.005))

> print(summary(panorexia), digits = 4)

[1] "Sensitivity of coefficients over 100 perturbations:"

Mean Perturbed beta (Original Beta) (Original Stderr) 2.5%

(Intercept) 49.7361 49.7711 13.3910 49.0704

Prewt -0.5651 -0.5655 0.1612 -0.5736

TreatCont -4.0943 -4.0971 1.8935 -4.1683

TreatFT 4.5608 4.5631 2.1333 4.4788

97.5% [Out of Bounds]

(Intercept) 50.4577

Prewt -0.5571

TreatCont -4.0227

TreatFT 4.6457

Finally, if a model in R does not take a data argument or does not return coefficients through

the coef method, it is usually only a matter of a few minutes to write a small wrapper that calls the

original model with appropriate data, and that provides a coef method for retrieving the results.

(Alternatively, you might to choose to run such models in Zelig, as described in the next section.)

For example, the mle function for maximum-likelihood estimation does not have an explicit

data option. Instead, it normally receives data implicitly through the log-likelihood function,
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ll, passed into it. To adapt it for use in sensitivity we simply construct a another function

that accepts data and a log-likelihood function separately, constructs a temporary log-likelihood

function with the data passed in the environment, and then calls mle with the temporary function:

> mleD <- function(data, lld, ...) {

+ f = formals(lld)

+ f[1] = NULL

+ ll <- function() {

+ cl = as.list(match.call())

+ cl[1] = NULL

+ cl$data = as.name("data")

+ do.call(lld, cl)

+ }

+ formals(ll) = f

+ mle(ll, ...)

+ }

Finally, construct the log-likelihood function to accept data. As in this example, which is based

on the documented example in the Stats4 package:

> library(stats4)

> dat = as.data.frame(cbind(0:10, c(26, 17, 13, 12, 20, 5, 9, 8,

+ 5, 4, 8)))

> llD <- function(data, ymax = 15, xhalf = 6) -sum(stats::dpois(data[[2]],

+ lambda = ymax/(1 + data[[1]]/xhalf), log = TRUE))

> print(summary(sensitivity(dat, mleD, llD)), digits = 4)

[1] "Sensitivity of coefficients over 50 perturbations:"

Mean Perturbed beta (Original Beta) min 2.5% 97.5% max

ymax 25.057 24.993 23.311 24.566 25.192 29.989

xhalf 3.053 3.057 2.355 2.908 3.339 3.391

1.1 Sensitivity analysis using Zelig

Zelig (Imai, et. al 2005) is an easy-to-use R package that can estimate and help interpret the

results of a large range of statistical models. Zelig provides a uniform interface to these models the

5



Accuracy package utilizes to enable sensitivity analyses. In addition, Accuracy can also be used to

perform sensitivity analyses of the robust alternatives, simulated predicted values, expected values,

first differences, and risk ratios that Zelig produces for all the models it supports. 2 So, using these

packages together is an easy way to analyze the sensitivity of predicted values to measurememnt

error.

To illustrate, we replicate Longley’s analysis (above), using zelig() (instead of lm()) to run

the OLS model, and the convenience function sensitivityZelig() to run the sensitivity analysis:

> if (require("Zelig", quietly = T, warn.conflicts = F)) {

+ zelig.out = zelig(Employed ~ GNP.deflator + GNP + Unemployed +

+ Armed.Forces + Population + Year, "ls", longley)

+ perturb.zelig.out = sensitivityZelig(zelig.out)

+ }

##

## Zelig (Version 2.6-5, built: 2006-09-14)

## Please refer to http://gking.harvard.edu/zelig for full documentation

## or help.zelig() for help with commands and models supported by Zelig.

##

Just as above, summary() and plot(summary()) can be used summarize the sensitivity of the

model coefficients. In addition, we can use the Zelig methods setx and sim to simulate various

quantities of interest. And when summary() and plot() are used, they will display a sensitivity

analysis of the predicted values.

For example, this code generates predictions of the distribution of the explanatory variable,

‘Employed’, around the point where ‘Year’ equals 1955, and the other variables are at their means,

and creates a profile plot of the predicted distribution of the explanatory variable:
2Zelig also integrates nonparametric matching methods as an optional preprocessing step. Thus Accuracy sup-

ports sensitivity analysis of models subject to such pre-processing as well.
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> if (require("Zelig", quietly = T, warn.conflicts = F)) {

+ setx.out = setx(perturb.zelig.out, Year = 1955)

+ sim.perturb.zelig.out = psim(perturb.zelig.out, setx.out)

+ print(summary(sim.perturb.zelig.out))

+ }

**** 50 COMBINED perturbation simulations

Model: ls

Number of simulations: 1000

Values of X

(Intercept) GNP.deflator GNP Unemployed Armed.Forces Population Year

1947 1 101.7 387.7 319.3 260.7 117.4 1954

Expected Values: E(Y|X)

mean sd 2.5% 97.5%

1947 65.31 0.1066 65.1 65.52

> if (require("Zelig", quietly = T, warn.conflicts = F)) {

+ plot(sim.perturb.zelig.out)

+ }

**** 50 COMBINED perturbation simulations

64.8 65.0 65.2 65.4 65.6 65.8 66.0

0
2
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1.2 True random numbers through entropy collection

‘Random’ numbers aren’t. The numbers provided by routines such as runif() are not genuinely

random. Instead, they are pseudo-random number generators (PRNGs), deterministic processes

that create a sequence of numbers. Pseudo-random number generators start with a single “seed”

value (specified by the user or left at defaults) and generate a repeating sequence with a certain

fixed length, or period p. This sequence is statistically similar, in limited respects, to random draws

from a uniform distribution.

The earliest PRNGs, still in use in some places, and used in early versions of R, is the Linear

Congruential Generator (LCG), which is defined as:

LCG(a,m, s, c) ≡

x0 = s,

xn = (axn−1 + c) mod m. (1)

(All parameters are integers, and in practice x is usually divided by m to yield numbers between

zero and one.)

This function generates a sequence of numbers between [0,m − 1] which appears to be, using

some tests, uniformly distributed in that range. Other PNRG’s are more complex, but share with

the LCG the fundamental properties of determinism and periodicity. See (Gentle 1998) for an

extensive treatment of modern PRNG’s and theory.

R provides several high quality PRNG’s natively, and packages such as gsl, rstream and rpsrng

which can be used to generate quasi-random number streams, and concurrent PRNG streams.

Regardless of the particular PRNG algorithm used, however, a PRNG cannot perfectly mimic a

random sequence. And, in fact, there is no complete theory to describe the domains for which

PRNG and true random sequences can be considered interchangeable. In addition, the theory on

which PRNG’s are based assumes that the seed itself is truly random.

The runifT() routine is different from other random number generators in R. It delivers true

random numbers based on entropy collected from external physical sources of randomness.

Two sources of randomness are currently supported. On Unix and Linux system, the kernel

gathers environmental noise from device drivers and other sources into a system entropy pool. This

pool can be accessed through the ’/dev/random’ pseudo-device. Alternatively, the “Hotbits” web

server, run by FourmiLab provides random bytes based on radioactive decay.

Using either source, these routines will retrieve random bits in chunks, and keep them in a local

pool. This pool will be used as necessary to satisfy calls to runifT() and resetSeed(), and will be
8



automatically refreshed from the external sources when empty. If external sources are unavailable,

the pool is refreshed using standard PRNG’s.

Entropy collection is relatively slow compared to PRNGS. So, these routines are most efficient

for generating either small numbers of very-high-quality random numbers (e.g. for cryptography)

or for seeding (and regularly reseeding) PRNG’s. The function resetSeed() sets the seed for

the standard PRNGś using true random bits. The runifS() automates this process further, by

reseeding runif() with random values, periodically to improve the random properties of the resulting

sequence:
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> birthday <- function(x, n = 2^20) {

+ spacings = diff(trunc((x * .Machine$integer.max)%%n))

+ tab = table(spacings)

+ tab = tab[which(tab > 1)]

+ chisq.test(sample(tab, 200, replace = T))

+ }

> resetSeed()

[1] 403 584 1574998105 1219947389 -1566968000 1543238499

[7] 722591962 -106145169 61533776 269383546 -1076082683 1509917898

[13] 1929015882 6029814 -1940921092 -1823930354 -284967753 -92294906

[19] 1753354895 288841967 397707115 418962571 -1377845613 159710425

[25] 78527353 1526152204 1102030396 -856366293 -1608516536 148224661

[31] -142880580 -1940300624 -2035255238 -2088248949 1614781958 1592901478

[37] -753384749 -842292477 -1982288853 453315873 -146107097 -1563745977

[43] 216733805 2125886982 -1613077458 941899663 -1635470548 -591888092

[49] 1495883126 362769538 -1157753558 -46582993 -350422784 -550460842

[55] -1948571063 1063286780 -849293658 -1134245693 221496003 215878923

[61] 1481709318 -81253551 1428957324 441450185 -18174038 177553064

[67] -1394732657 537544543 -1791815365 -336097914 150741404 -356175613

[73] -943219926 1598086236 1142986852 532838288 1191068178 1506303617

[79] -1281160451 -1113560099 -1605339792 -1801021010 35441161 -85907336

[85] -1184411372 173327820 -237258153 -126864993 -738696850 -521367444

[91] -857926835 715979243 1684022803 -92482450 -1323963066 -1620432166

[97] 1505404320 905299656 1236667019 -1527142101 -51902649 -900374510

[103] -1351382442 1911120299 -1158877286 -1682933709 -1844987521 -1462300595

[109] 1821042603 1917347437 -1025697776 -1126981563 -816649679 1388896103

[115] -163797899 -1024311138 714012216 1988735214 -1962202141 -314366228

[121] 1853755933 734550662 468978162 1360638867 1340154156 -1517180018

[127] -219706084 1232453484 -1014755624 -1921966827 56415100 -513985431

[133] 1429711951 894327137 1284276335 1488097975 2081816316 1054455238

[139] -60526153 1219430142 951064286 295439926 -882976041 1491808111

[145] -1260911258 839854079 1312219335 -921022918 -632976316 1347867161

[151] -26200941 -62497004 -2012183187 30690156 229428689 673278853

[157] 1496340151 -91065035 -1440696328 -2142016029 294451281 131842294

[163] 1294366024 920200829 -812719529 -678431019 -1834522914 -1779244587

[169] 1667544415 34887439 -124615868 -1553017181 -656543585 -1767023029

[175] -389039721 -1143272944 -1086390367 -1881216125 1170453917 -1954458320

[181] 469395155 -313071219 -408809500 -1717211979 -1638963979 -506618189

[187] 708937969 694821581 1559904240 -967943822 1876016358 -453396153

[193] -1453452094 -1448244322 1115132288 446500774 -1417114223 -878114573

[199] 1564115610 -2090646954 -1518092515 -1754083102 1352981785 -2000558384

[205] -804836443 1037375648 -840112033 1071514302 1019969974 -411499631

[211] 1310435768 -829099562 1369647 683176804 -1277938537 -2131704919

[217] 218668338 -2129598524 -261332033 1423286550 883843242 -560573674

[223] -1537443790 1919031786 787887596 1992923683 1687021416 1641339470

[229] 2020300077 481652473 -647986182 954272720 1098094719 1602131727

[235] -11203663 -1626644032 1469963266 1437589583 -1301189616 -1324041405

[241] 743491949 2025241669 -1348041030 -1334122073 1649323012 855144119

[247] 349397455 869549872 1597189278 -704395266 996170591 1579906313

[253] 1014665757 -784474883 -1438332677 704969912 -115980188 785819506

[259] -1376976046 2064557789 -202660681 -1345826778 1043707134 -2002597513

[265] -2052355470 -2040230255 937302523 442447841 176113282 -141882582

[271] -1220668886 -1378761472 1731146642 860675695 -1639234448 1325309045

[277] -2056548180 114285281 -530980722 -1752437139 -1546924179 583781366

[283] 1325210967 -815364436 -1523049720 -434011719 2034915034 700055424

[289] 1906450816 156453988 744011064 1713087600 87046245 439449519

[295] -1457114703 353694359 1008475561 362607533 -1041049810 196046977

[301] -1239274060 -957038615 1953221263 1816374785 1853491592 439601560

[307] 1517303407 -1770247601 1601205930 2129018900 -1863033349 1220337058

[313] -1083853138 1747589457 -1486333064 -1422486156 -817284897 1790852174

[319] 516023299 2046832892 -1632213073 1936494990 202567558 2039984561

[325] 1304472216 231431511 -230343737 2055205297 -521357354 -837264035

[331] -1708626407 -1706399513 -1560613199 -966293589 -554707106 1014161498

[337] 1206881458 -936138678 642441744 -1962305449 -1779146567 1718248136

[343] -866114850 -1959270789 -366618822 -1690339601 1987298150 1968819070

[349] 1696346336 1166053869 360567803 584086144 -1574739221 -602227538

[355] -1006083044 -254250009 478821195 -1920605832 75185146 477595950

[361] -135232417 -535824824 -2030423416 663549621 661681697 -156469130

[367] 2043500424 -609442819 364512393 -796556411 -494382845 -917395763

[373] -268119940 1613224292 -1315740947 -1554768189 -870920342 1014879160

[379] -168380878 2002976922 -1653884540 -1344086679 -5163296 -1284658548

[385] 1034737159 -1372803662 1388421221 1031089763 413354670 1687016832

[391] 1373642655 334253289 451128433 -1559763930 -1093159304 -174370408

[397] -79588726 -1844003171 1147099951 -1527831315 -775827851 -1100460659

[403] 298794012 -1189246184 -273354932 1361832703 1090952196 1126495003

[409] -1318597789 -1708459097 -857347268 1800742714 -858667967 529624980

[415] 424303345 -328856714 800715756 -153940422 1738953990 639989490

[421] -1722838333 1736018665 -1284760002 1690444088 1526238297 -1944436786

[427] -1877837945 1413863277 1554501133 410319165 -1801476688 -19858931

[433] 130757936 -155563925 -771805463 1692863305 1334253701 -1338437222

[439] 1091458024 -1474217416 -1998916451 -276937648 2021775823 -894325636

[445] -1308055150 192037603 1776399291 703294281 1581528839 726453184

[451] 902868827 653009298 444297253 -38369607 1532363925 1921157194

[457] -819216280 1785364670 -1041533615 110244714 -346934293 -1544140511

[463] -552317564 1423044585 1903450578 -496030737 1937102416 75532627

[469] -285622063 -209779801 31612594 1939831267 -860457475 728570261

[475] -743941172 -539751055 1794029052 -374886254 -86250806 381151169

[481] -1172030728 -82951077 -1719930205 169412214 -1621206304 -655196551

[487] -1983850125 -633364427 586860094 -463379074 29428606 1280887581

[493] -837413840 1677145840 2116868299 -932661473 -949702881 784196602

[499] -756560421 805377636 1053174946 1815874404 2010949854 398251728

[505] 688423037 -1737633372 -302073272 1560320845 -1704584652 178219542

[511] 829463803 1210431435 2070662675 915155015 303720638 1435733734

[517] -388345592 1353575827 -320419757 161293244 -1910441474 -494992580

[523] -6494573 -665424473 -947895069 -403265129 1691746335 1762678513

[529] 381031895 312113042 -809885002 1098570418 -714106526 732134234

[535] -552751720 -1335461905 -18729132 -1062452383 -1035607472 1773249128

[541] -114679337 32694918 -1819848512 -1638371124 -851405969 338406804

[547] 191517111 -903968101 1818658233 1384522368 242192372 1170974999

[553] -282049381 -285111593 1680966089 1433575560 62099560 -1979134419

[559] -1813671646 -1099804199 1968376185 -322468730 -2021867174 1696952924

[565] 217416873 -62360199 1315596411 1478555728 1615349461 233828969

[571] 1892278333 1876618409 659522640 1894344462 -1721449677 1448559390

[577] 1596104589 1618879138 -2022368880 -281369941 904674948 2113952466

[583] 582767550 934361097 2040208307 -1473589684 -273486834 1940459748

[589] -1352028329 639791459 -2059932841 1294784440 -825289823 -1287926453

[595] 1108900564 -842835587 2050618938 123950446 317301060 -808016031

[601] -1941654155 514608497 -598863819 1969108099 -1857606683 2045212288

[607] 1827035988 2075783272 778702882 892768188 1177920702 -1695716767

[613] -2069849766 1107114024 -953217546 465453518 -772239468 2012470515

[619] 1116749711 1510543479 927617099 70857435 -964308413 -385081183

[625] 461904750 -1280859172

> y = runif(1e+06)

> birthday(y)

Chi-squared test for given probabilities

data: sample(tab, 200, replace = T)

X-squared = 20.75, df = 199, p-value = 1

> y = runifS(1e+06)

> birthday(y)

Chi-squared test for given probabilities

data: sample(tab, 200, replace = T)

X-squared = 32.07, df = 199, p-value = 1
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1.3 Tests for global optimality

The estimation of many statistical models rests on finding the global optimum to a user-specified

non-linear function. R provides a number of tools for such estimations, including nlm(), nls(),

mle(), optim() and constrOptim().

All of these functions rely on local search algorithms, and the results they return may depend

on the starting point of the search. Maximum likelihood functions, non-linear-regression models,

and the like, are not guaranteed to be globally convex in general. And even where convexity is

guaranteed by statistical theory, inaccuracies in statistical computation can sometimes induce false

local optima (discontinuities that may cause local search algorithms to converge, or at least stop).

A poor or unlucky choice of starting values may cause a search algorithm to converge at a local

optimum, which may be far from the real global optimum of the function. Inferences based on the

values of the parameter at the local optimum will be incorrect.

Knowing when a function has reached its true maximum is something of an art. While the

plausibility of the solution in substantive terms is often used as a check, relying solely on the

expected answer as a diagnostic might bias researchers toward Type I errors. Diagnostic tests are

therefore useful to provide evidence that computed solution is the true solution.

A number of strategies related to the choice of starting values have been formalized as tests or

global optimality. In this package we implement two. The ‘Starr’ test and the ‘Dehaan’ test. 3 4

The intuition behind the Starr test statistic is to run the optimization from different starting

points to observe ’basins of attraction’, and then to estimate the number of unobserved basins of

attraction from the number of observed basins of attraction. The greater the number of observed

basins of attraction, the lower the probability that a global optimum has been located. This idea

has been attributed to Turing (1948), and the test statistics was developed by Starr (1979):

V2 =
S

r
+

2D

r (r − 1)
. (2)

Here V2 is the probability a convergence point has not been observed, and r is the number of

randomly chosen starting points. S is the number of convergence points that were produced from

one (or a Single) starting value and D is the number of convergence points that were produced

from two (or Double) different starting values.
3In addition to these tests, the R user may also wish to investigate the bhat package, which can generate diagnostic

profile likelihood plots.
4If this indicats that the optimum has not been reached, the user may consider using heuristics designed for non-

smooth optimization problems, such as the simulated annealing option for optim(), or the optimizers provided by

the gafit, genalg, rgenoud modules.
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Finch, Mendell, and Thode (1989) demonstrate the value of the statistic by analyzing a one

parameter equation on a [0, 1] interval for r = 100. While the proposed statistic given by the

above equation is compelling, their example is similar to an exhaustive grid search on the [0, 1]

interval. (Starr’s result is further generalizable for triples and higher order observed clumping of

starting values into their basins of attraction, but Finch, Mendell, and Thode assert that counting

the number of singles and doubles is usually sufficient.)

The statistic may be infeasible to compute for an unbounded parameter space with high dimen-

sionality. However, the intuition behind the statistic can still be soundly applied in these cases. If

multiple local optima are identified over the course of a search for good starting values, a researcher

should not simply stop once an apparent best fit has been found, especially if there are a number

of local optima which have basins of attraction that were identified only once or twice. Our imple-

mentation of the Staff test provides a ready-to-use-interface that can be easily incorporated into a

search of the parameter space for good optimization starting values.

For computationally intensive problems, another test, by Veall (1990), drawing upon a result

presented by de Haan (1981), may be more practical. The de Haan/Veall test relies on sampling the

optimization function itself rather than identifying basins of attraction. A confidence interval for

the value of the likelihood function’s global optimum is generated from the points sampled from the

likelihood surface. This procedure is much faster than the Starr test because the likelihood function

is calculated only once for each trial. As with starting value searches, researchers are advised to

increase the bounds of the search area and the number of trials if the function to be evaluated has

a high degree of dimensionality or a high number of local optimum have been identified.

Veall suggests that by using a random search and applying extreme asymptotic theory, a confi-

dence interval for the candidate solution can be formulated. The method, according to Veall (1990:

1460) is to randomly choose a large number, n, of values for the parameter vector using a uniform

density over the entire parameter space. Call the largest value of the evaluated likelihood function

L1 and the second largest value L2. The 1− p confidence interval for the candidate solution, L
′
, is

[L1, L
p] where:

Lp = L1 +
L1 − L2

p−1/α − 1
(3)

and α = k/2, where k is some function that depends on n such that k(n)→ 0, as k(n), n→∞ (a

likely candidate is k =
√

n).

As Veall (1990: 1461) notes, the bounds on the search of the parameter space must be large

enough to capture the global maximum and n must be large enough to apply asymptotic theory.

In Monte Carlo simulations, Veall suggests that 500 trials are sufficient for rejecting that a local
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optimum is not the a priori identified global optimum.
Examples of applying both the dehaan and starr tests are below:

> data("BOD")

> stval = expand.grid(A = seq(10, 100, 10), lrc = seq(0.5, 0.8,

+ 0.1))

> llfun <- function(A, lrc) -sum((BOD$demand - A * (1 - exp(-exp(lrc) *

+ BOD$Time)))^2)

> lls = NULL

> for (i in 1:nrow(stval)) {

+ lls = rbind(lls, llfun(stval[i, 1], stval[i, 2]))

+ }

> fm1 <- nls(demand ~ A * (1 - exp(-exp(lrc) * Time)), data = BOD,

+ start = c(A = 20, lrc = log(0.35)))

> ss = -sum(resid(fm1)^2)

> dehaan(lls, ss)

[1] TRUE

> llb = NULL

> for (i in 1:nrow(stval)) {

+ llb = rbind(llb, coef(nls(demand ~ A * (1 - exp(-exp(lrc) *

+ Time)), data = BOD, start = c(A = stval[i, 1], lrc = stval[i,

+ 2]))))

+ }

> starr(llb)

[1] 0

1.4 A generalized Cholesky method

The generalized inverse is a commonly used technique in statistical analysis, but the generalized

Cholesky has not before been used for statistical purposes, to our knowledge. When the inverse

of the negative Hessian does not exist, we suggest two separate procedures to choose from. One

is to create a pseudo-variance matrix and use it, in place of the inverse, in an importance resam-

pling scheme. In brief, applying a generalized inverse (when necessary, to avoid singularity) and
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generalized Cholesky decomposition (when necessary, to guarantee positive definiteness) together

often produce a pseudo-variance matrix for the mode that is a reasonable summary of the curvature

of the posterior distribution. This method is developed and analyzed in detail in (Gill and King,

2004), here we provide a brief sketch.

The Gill/Murray Cholesky factorization of a singular matrix C, adds a diagonal matrix E

such that the standard Cholesky procedure is defined. Unfortunately it often increments C by an

amount much larger than necessary providing a pseudo-Cholesky result that is further away from

the intended result. Schnabel and Eskow (1990) improve on the C+E procedure of Gill and Murray

by applying the Gerschgorin Circle Theorem to reduce the infinity norm of the E matrix. The

strategy is to calculate delta values that reduce the overall difference between the singular matrix

and the incremented matrix. This improves the Gill/Murray approach of incrementing diagonal

values of a singular matrix sufficiently that Cholesky steps can be performed.
This technique is complex to describe but simple to use:

> S <- matrix(c(2, 0, 2.5, 0, 2, 0, 2.5, 0, 3), ncol = 3)

> sechol(S)

[,1] [,2] [,3]

[1,] 1.414 0.000 1.767767

[2,] 0.000 1.414 0.000000

[3,] 0.000 0.000 0.004262

attr(,"delta")

[1] 1.817e-05

> t(T)

[,1]

[1,] TRUE
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