
DRAFT

diveMove: dive analysis in R

Sebastián P. Luque∗

Contents

1 Introduction 1

2 Starting up 2

3 Reading Input Files 2

4 Extraction and Display of Information from TDR and TDRspeed Objects 3

5 ZOC and Wet/Dry period detection 4

6 Access to Elements from TDRcalibrate Objects 5

7 Speed Calibration 7

8 TDR dive and postdive statistics 8

9 Miscellaneous functions 10

10 Acknowledgements 11

1 Introduction

Dive analysis usually involves handling of large amounts of data, as new instruments
allow for frequent sampling of variables over long periods of time. The aim of this
package is to make this process more efficient for summarizing and extracting infor-
mation gathered by time-depth recorders (TDRs, hereafter). The principal motivation
for developing diveMove was to provide more flexibility during the various stages of

∗Contact: spluque@gmail.com. Comments for improvement are very welcome!

1

DRAFT

3 Reading Input Files

Table 1. Sample TDR file structure.

date time depth light temperature speed

16/02/2004 14:30:00 12 200 8.4 1.44
16/02/2004 14:30:05 15 180 8.0 1.75
16/02/2004 14:30:10 19 170 7.6 1.99

.

analysis than that offered by popular commercial software. This is achieved by making
the results from intermediate calculations easily accessible, allowing the user to make
his/her own summaries beyond the default choices the package provides. The following
sections of this vignette illustrate a typical work flow during analysis of TDR data,
using the sealMK8 data available in diveMove as an example.

2 Starting up

As with other packages in R, to use the package we load it with the funtion library:

> library(diveMove)

This makes the objects in the package available in the current R session. A short
overview of the most important functions can be seen by running the examples in the
package’s help page:

> example(diveMove)

3 Reading Input Files

Input files must be simple, comma-delimited text files1. The order of columns is not
significant, as the column numbers indicating the variables of interest can be supplied
as arguments. Table 1 shows the file structure that readTDR assumes by default, which
is a standard structure of files from common TDR models.

Depending on the TDR model, speed may be omitted. Currently, light, temperature
and any other variables beyond column 6 are ignored.

To read the file into R , use the function readTDR:

> sealX <- readTDR(system.file(file.path("data",

+ "sealMK8.csv"), package = "diveMove"))

1The extension does not matter, but conventionally these files have a .csv extension

2

DRAFT

4 Extraction and Display of Information from TDR and TDRspeed
Objects

Read the help page for readTDR using ?readTDR following common R help facilities.
Thus, data could have been subsampled at a larger interval than that in the original
file, so that the time interval between readings is 10 s:

> sealX <- readTDR(system.file(file.path("data",

+ "sealMK8.csv"), package = "diveMove"), subsamp = 10)

But since the original 5 s interval (which is the default value for subsamp) is what will
be used for the subsequent sections, it is recreated it here:

> sealX <- readTDR(system.file(file.path("data",

+ "sealMK8.csv"), package = "diveMove"))

The format in which date and time should be interpreted can be controlled with the
argument dtformat . If the data are already available in the R session, e.g. as a data

frame, then the function createTDR can be used to convert it to a form that facilitates
further analyses.

Both of these functions store the data in an object of class TDR or TDRspeed , which
hold information on the source file and sampling interval, in addition to the variables
described above. Which of these objects is created is determined by the name of the
input file. All files should contain the letter sequence “mk” followed by a number, as
these correspond to the names of common TDR models. If the number following this
sequence is 8, then a TDRspeed object is created, otherwise the function returns a TDR
object.

4 Extraction and Display of Information from TDR and
TDRspeed Objects

For convenience, extractor methods are available to access the different slots from ob-
jects of these classes. The standard show method will display the usual overview infor-
mation on the object:

> sealX

Time-Depth Recorder data -- Class TDRspeed object

Source File : sealMK8.csv

Sampling Interval (s) : 5

Number of Samples : 34199

Sampling Begins : 2002-01-05 11:32:00

Sampling Ends : 2002-01-07 11:01:50

Total Duration (d) : 1.979

3

DRAFT

5 ZOC and Wet/Dry period detection

Other extractor methods are named after the component they extract: getTime, get-
Depth, getSpeed , and getDtime, where the latter extracts the sampling interval. The
plot method brings up a plot of the data covering the entire record, although a tcltk

widget provides controls for zooming and panning to any particular time window. Aler-
natively, the underlying function plotDive provides the same functionality, but takes
separate time and depth arguments, rather than a TDR object.

At any time, TDR objects can be coerced to a simple data frame, which can later be
exported or manipulated any other way:

> sealX.df <- as.data.frame(sealX)

> head(sealX.df)

time depth speed

1 2002-01-05 11:32:00 NA NA

2 2002-01-05 11:32:05 NA NA

3 2002-01-05 11:32:10 NA NA

4 2002-01-05 11:32:15 NA NA

5 2002-01-05 11:32:20 NA NA

6 2002-01-05 11:32:25 NA NA

5 Zero-Offset Depth Correction and Summary of
Wet/Dry Periods

One the first steps of dive analysis involves correcting depth for shifts in the pressure
transducer, so that surface readings correspond to the value zero. Although some
complex algorithms exist for detecting where these shifts occur in the record, the shifts
remain difficult to detect and dives are often missed, which a visual examination of the
data would have exposed. The trade off is that visually zero-adjusting depth is tedious,
but the advantages of this approach far outweigh this cost, as much insight is gained
by visually exploring the data. Not to mention the fact that obvious problems in the
records are more effectively dealt with in this manner.

That personal rant aside, zero offset correction (ZOC) is done in diveMove using the
function zoc. However, a more efficient method of doing this is by using the calibrat-
eDepth function, which takes a TDR object (or inheriting from it) to perform three
basic tasks. The first is to ZOC the data, using the tcltk package to be able to do it
interactively:

> dcalib <- calibrateDepth(sealX)

This command brings up a plot with tcltk controls allowing to pan and zoom in or
out of the data, as well as adjustment of the depth scale. Thus, an appropriate time

4

DRAFT

6 Access to Elements from TDRcalibrate Objects

window with a unique surface depth value can be displayed. It is important to make
the display such that the depth scale is small enough to allow the resolution of the
surface value with the mouse. Clicking on the ZOC button waits for two clicks:

1. the coordinates of the first click define the starting time for the window to be
ZOC’ed, and the depth corresponding to the surface,

2. the second click defines the end time for the window (only the x coordinate has
any meaning).

This procedure can be repeated as many times as needed. If there is any overlap
between time windows, then the last one prevails. However, if the offset is known a
priori, there is no need to go through all this procedure, and the value can be provided
as the argument offset to calibrateDepth.

Once depth has been ZOC’ed, calibrateDepth will identify dry and wet periods in the
record. Wet periods are those where a depth reading is available, dry periods are those
without a depth reading. Records often have abherrant missing depth that should not
be considered dry periods, as they are often of very short duration. Likewise, there may
be periods of wet activity that are too short to be compared with other wet periods.
This can be controlled by setting the arguments landerr and seaerr .

Finally, calibrateDepth identifies all dives in the record, according to a minimum
depth criteria given as its divethres argument. The result (value) of this function is
an object of class TDRcalibrate, where all the information obtained during the tasks
described above are stored. Again, an appropriate show method is available to display
a short overview of such objects:

> dcalib

Depth calibration -- Class TDRcalibrate object

Source file : sealMK8.csv

Number of dry phases : 4

Number of aquatic phases : 3

Number of dives detected : 317

Dry threshold used (s) : 70

Aquatic theshold used (s) : 3610

Dive threshold used (s) : 4

Speed calibration coefficients : a = 0 ; b = 1

6 Access to Elements from TDRcalibrate Objects

Extractor methods are also available to access the information stored in TDRcalibrate
objects. These include: getTDR, getGAct , getDAct , getDPhaseLab, and getSpeedCoefs .

5

DRAFT

6 Access to Elements from TDRcalibrate Objects

These are all generic functions2 that access the (depth) calibrated TDR object, details
from wet/dry periods, dives, dive phases, and speed calibration coefficients (see Sec-
tion 7), respectively. Below is a short explanation of these methods.

getTDR This method simply takes the TDRcalibrate object as its single argument and
extracts the TDR object3:

> getTDR(dcalib)

Time-Depth Recorder data -- Class TDRspeed object

Source File : sealMK8.csv

Sampling Interval (s) : 5

Number of Samples : 34199

Sampling Begins : 2002-01-05 11:32:00

Sampling Ends : 2002-01-07 11:01:50

Total Duration (d) : 1.979

getGAct There are two methods for this generic, allowing access to a list with details
about all wet/dry periods found. One of these extracts the entire list (output
omitted for brevity):

> getGAct(dcalib)

The other provides access to particular elements of the list , by their name. For
example, if we are interested in extracting only the vector that tells us to which
period number every row in the record belongs to, we would issue the command:

> getGAct(dcalib, "phase.id")

Other elements that can be extracted are named“trip.act”,“trip.beg”, and“trip.end”,
and can be extracted in a similar fashion. These elements correspond to the ac-
tivity performed for each reading (see ?detPhase for a description of the labels
for each activity), the beginning and ending time for each period, respectively.

getDAct This generic also has two methods; one to extract an entire data frame with
details about all dive and postdive periods found (output omitted):

> getDAct(dcalib)

The other method provides access to the columns of this data frame, which are
named “dive.id”, “dive.activity”, and “postdive.id”. Thus, providing any one of
these strings to getDAct, as a second argument will extract the corresponding
column.

2A few of them with more than one method
3In fact, a TDRspeed object in this example

6

DRAFT

7 Speed Calibration

getDPhaseLab This generic function extracts a factor identifying each row of the record
to a particular dive phase (see ?detDive for a description of the labels of the
factor identifying each dive phase). Two methods are available; one to extract
the entire factor, and the other to select particular dive(s), by its (their) number,
respectively (output omitted):

> getDPhaseLab(dcalib)

> getDPhaseLab(dcalib, 20)

> dphases <- getDPhaseLab(dcalib, c(100:300))

The latter method is useful for visually inspecting the assignment of points to
particular dive phases. Before doing that though, this is a good time to introduce
another generic function that allows the subsetting of the original TDR object to
a single a dive or group of dives’ data:

> subSealX <- extractDive(dcalib, diveNo = c(100:300))

> subSealX

Time-Depth Recorder data -- Class TDRspeed object

Source File : sealMK8.csv

Sampling Interval (s) : 5

Number of Samples : 2410

Sampling Begins : 2002-01-06 00:45:15

Sampling Ends : 2002-01-07 03:27:10

Total Duration (d) : 1.112

As can be seen, the function takes a TDRcalibrate object and a vector indicating
the dive numbers to extract, and returns a TDR object containing the subsetted
data. Once a subset of data has been selected, it is possible to plot them and pass
the factor labelling dive phases as the argument phaseCol to the plot method4:

> plot(subSealX, phaseCol = dphases)

7 Speed Calibration

Calibration of speed readings is done using the principles described in Blackwell (1999)
and Hindell et al. (1999). The function calibrateSpeed performs this operation5, and
allows the selection of the particular subset of the data that should be used for the
calibration:

4The function that the method uses is actually plotDive, so all the possible arguments can be studied
by reading the help page for plotDive

5CAUTION: This implementation is experimental, and may give unexpected results.

7

DRAFT

8 TDR dive and postdive statistics

> vcalib <- calibrateSpeed(dcalib, calType = "pooled")

> vcalib

Depth calibration -- Class TDRcalibrate object

Source file : sealMK8.csv

Number of dry phases : 4

Number of aquatic phases : 3

Number of dives detected : 317

Dry threshold used (s) : 70

Aquatic theshold used (s) : 3610

Dive threshold used (s) : 4

Speed calibration coefficients : a = 0.4 ; b = 0.64

A side effect of such a call is the production of a plot displaying the quantile regression
fit for the three phases (Figure 1). This can be displayed on the current device, or
sent to a postscript file, using postscript=TRUE in the call, for a higher quality
representation.

The default (calType=”pooled”) is to use data from the descent and ascent phases of
all dives, but possible values also include “descent”, “ascent”, and “none”. Because the
function produces three plots of speed vs. rate of depth change, the latter is useful in
cases where speed does not need any calibration, but inspection of the plots is desired.
Finer control is possible by the use of arguments type, which controls whether descent
or ascent readings that are shared with the bottom phase of the dive should be included
or not, and bad , which controls minimum speeds and rates of depth change through
which the calibration line should be drawn. Finally, a maximum depth threshold can
be supplied as the argument z, so that only data from dives where maximum depth was
greater than this value are included in the construction of the calibration line.

If the calibration coefficients from the implicit quantile regression are known a priori,
then these can be supplied to the function via its coefs argument. In this case, no plots
are created.

8 TDR dive and postdive statistics

Once data have been calibrated and the record broken up at “trip” and “dive” scales,
obtaining dive statistics is a trivial call to function diveStats:

> dives <- diveStats(vcalib)

> head(dives, 3)

8

DRAFT

8 TDR dive and postdive statistics

1 2 3 4

1

2

3

4

sealMK8 −− descent

rate of depth change (m/s)

sp
ee

d
(m

/s
)

y == 0.428 ++ 0.469x

0.5 1.5 2.5

0.5

1.0

1.5

2.0

2.5

3.0

sealMK8 −− ascent

rate of depth change (m/s)

sp
ee

d
(m

/s
)

y == 0.307 ++ 0.999x

1 2 3 4

1

2

3

4

sealMK8 −− pooled

rate of depth change (m/s)

sp
ee

d
(m

/s
)

y == 0.402 ++ 0.637x

0 1 2 3 4 5

0.0

0.5

1.0

1.5

x

de
ns

ity

descent vert. v
ascent vert. v
pooled vert. v
descent TDR v
ascent TDR v
pooled TDR v

Figure 1. Example speed calibration lines, dividing dives into descent, ascent, or pool-
ing both phases from a TDR record.

9

DRAFT

9 Miscellaneous functions

begdesc enddesc

1 2002-01-05 12:20:10 2002-01-05 12:20:15

2 2002-01-05 21:19:40 2002-01-05 21:20:20

3 2002-01-05 21:22:10 2002-01-05 21:23:15

begasc desctim botttim asctim descdist

1 2002-01-05 12:20:20 7.5 5 7.5 6

2 2002-01-05 21:20:40 42.5 20 47.5 26

3 2002-01-05 21:23:50 67.5 35 72.5 63

bottdist ascdist desc.tdist desc.mean.speed desc.angle

1 0 6 22.44 4.488 15.51

2 3 29 100.07 2.502 15.06

3 8 67 107.84 1.659 35.75

bott.tdist bott.mean.speed asc.tdist asc.mean.speed

1 15.22 3.043 18.04 3.609

2 53.96 2.698 71.78 1.595

3 56.11 1.603 98.09 1.401

asc.angle divetim maxdep postdive.dur postdive.tdist

1 19.42 20 6 32345 50445.70

2 23.83 110 29 35 16.85

3 43.08 175 67 75 58.18

postdive.mean.speed

1 1.5652

2 0.4815

3 0.7758

The function takes a single argument: an object of class TDRcalibrate, and returns a
data frame with one row per dive in the record, with a suite of basic dive statistics in
each column. Please consult ?diveStats for an explanation of each of the variables
estimated, although the names of the output data frame should be self explanatory.
These variables are thus available for calculating any other derived values, by extracting
them using the standard R subscripting facilities.

9 Miscellaneous functions

Other functions are included for handling location data, and these are readLocs, aust-
Filter, and distSpeed. These are useful for reading, filtering, and summarizing travel
information. For extensive animal movement analyses, refer to package timeTrack

available at http://staff.acecrc.org.au/~mdsumner/Rutas/.

10

http://staff.acecrc.org.au/~mdsumner/Rutas/

DRAFT

References

10 Acknowledgements

Invaluable input and help during development of this package has been offered by
John P.Y. Arnould, and regular contributors to R-help.

References

Blackwell, S. (1999). A method for calibrating swim-speed recorders. Marine Mammal
Science, 15(3):894–905.

Hindell, M., McConnell, B., Fedak, M., Slip, D., Burton, H., Reijnders, P., and McMa-
hon, C. (1999). Environmental and physiological determinants of successful foraging
by naive southern elephant seal pups during their first trip to sea. Canadian Journal
of Zoology, 77:1807–1821.

11

DRAFT
diveMove
October 3, 2006

R topics documented:
austFilter . 1
calibrateDepth . 3
detDive . 4
detPhase . 5
distSpeed . 7
diveMove-internal . 8
diveMove-package . 9
diveStats . 10
readLocs . 12
readTDR . 13
rqPlot . 14
sealMK8 . 15
doSpeedCalib . 16
TDRcalibrate-class . 17
TDR-class . 19
zoc . 21

Index 23

austFilter Filter satellite locations

Description

Apply a three stage algorithm to eliminate erroneous locations, based on the procedure outlined in
Austin et al. (2003).

Usage

austFilter(time, lon, lat, id=gl(1, 1, length(time)),
speedthres, distthres, window=5)

grpSpeedFilter(x, speedthres, window=5)
rmsDistFilter(x, speedthres, window=5, distthres)

1

DRAFT

2 austFilter

Arguments

time POSIXct object with dates and times for each point.

lon numeric vectors of longitudes, in decimal degrees.

lat numeric vector of latitudes, in decimal degrees.

id a factor grouping points in different categories (e.g. individuals).

speedthres speed threshold (m/s) above which filter tests should fail any given point.

distthres distance threshold above which the last filter test should fail any given point.

window integer indicating the size of the moving window over which tests should be
carried out.

x 3-column matrix with column 1: POSIXct vector; column 2: numeric longi-
tude vector; column 3: numeric latitude vector.

Details

These functions implement the location filtering procedure outlined in Austin et al. (2003). grpSpeedFilter
and rmsDistFilter can be used to perform only the first stage or the second and third stages
of the algorithm on their own, respectively. Alternatively, the three filters can be run sequentially
using austFilter.

The first stage of the filter is an iterative process which tests every point, except the first and last
two, for travel velocity relative to the preceeding/following two points. If all these four speeds are
greater than the specified threshold, the point is marked as failing the first stage. In this case, the
next point is tested, removing the failing point from the set of test points.

The second stage runs McConnell et al. (1992) algorithm, which tests all the points that passed the
first stage, in the same manner as above. The root mean square of all four speeds is calculated, and
if it is greater than the specified threshold, the point is marked as failing the second stage.

The third stage is run simultaneously with the second stage, but if the mean distance of all four pairs
of points is greater than the specified threshold, then the point is marked as failing the third stage.

Value

A matrix with three columns of logical vectors with values TRUE for points that failed each stage.
Results from each filter are presented independently of the others; i.e. points marked as failing one
filter are not necessarily marked as failing the next one.

Warning

This function applies McConnell et al.’s filter as described in Austin et al. (2003), but other authors
may have used the filter differently. Austin et al. (2003) have apparently applied the filter in a
vectorized manner. It is not clear from the original paper whether the filter is applied iteratively or
in a vectorized fashion, so authors may be using it inconsistently.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉 and Andy Liaw.

DRAFT

calibrateDepth 3

References

McConnell BJ, Chambers C, Fedak MA. 1992. Foraging ecology of southern elephant seals in
relation to bathymetry and productivity of the Southern Ocean. Antarctic Science 4:393-398.

Austin D, McMillan JI, Bowen D. 2003. A three-stage algorithm for filtering erroneous Argos
satellite locations. Marine Mammal Science 19: 371-383.

See Also

distSpeed

calibrateDepth Calibrate and build a "TDRcalibrate" object

Description

These functions create a "TDRcalibrate" object which is necessary to obtain dive summary statistics.

Usage

calibrateDepth(x, landerr=70, seaerr=3610, divethres=4, offset)
calibrateSpeed(x, type="all", calType="pooled", bad=c(0, 0),
z=0, filename=slot(getTDR(x), "file"), coefs, ...)

Arguments

x an object of class TDR for calibrateDepth, and an object of class TDRcalibrate-
class for calibrateSpeed.

landerr, seaerr
arguments to detPhase.

divethres argument to detDive.
offset argument to zoc.
type, calType, bad, z, filename

further arguments for .getSpeedCalib and doSpeedCalib.
coefs known speed calibration coefficients from quantile regression as a vector of

length 2 (intercept, slope). If provided, these coefficients are used for calibrating
speed, ignoring all other arguments, except x.

... argument passed to doSpeedCalib.

Details

These functions are really wrappers around functions that are usually called in sequence, so they
provided an abbreviated method for running them together during analyses. See the functions in the
‘See Also’ section for more details.

calibrateDepth performs zero-offset correction of depth, wet/dry phase detection, and detec-
tion of dives, as well as proper labelling of the latter.

calibrateSpeed calibrates speed readings.

DRAFT

4 detDive

Value

An object of class TDRcalibrate-class

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

detPhase, detDive, doSpeedCalib, zoc, for the underlying functions.

detDive Detect dives from depth readings

Description

Identify dives in TDR records based on a dive threshold.

Usage

detDive(zdepth, act, divethres=4, ...)
labDive(act, string, interval)
labDivePhase(x, diveID)

Arguments

zdepth vector of zero-offset corrected depths.

act factor as long as depth coding activity, with levels specified as in detPhase.

divethres threshold depth below which an underwater phase should be considered a dive.

string a character belonging to a level of act to search for and label sequentially.
interval, ...

the sampling interval in seconds.

x a class ‘TDR’ object

diveID numeric vector indexing each dive (non-dives should be 0)

Details

emph{detDive} detects a dive whenever the zero-offset corrected depth in an underwater phase
is below the supplied dive threshold. The adjustment is done only for phases of at-sea activity,
completely ignoring phases with other activity.

emph{labDive} assigns a unique number to each dive along a vector of depths, and equally
numbering the subsequent postdive interval.

emph{labDivePhase} labels each row identifying it with a portion of the dive.

DRAFT

detPhase 5

Value

A data frame with the following elements for detDive

dive.id numeric vector numbering each dive in the record.
dive.activity

factor with levels ‘L’, ‘W’, ‘U’, ‘D’, and ‘Z’, see detPhase. All levels may be
represented.

postdive.id numeric vector numbering each postdive interval with the same value as the
preceding dive.

labDive returns a matrix with as many rows as its first two arguments with two columns: dive.id,
and postdive.id, each one sequentially numbering each dive and postdive period.

labDivePhase returns a factor with levels “D”, “DB”, “B”, “BA”, “A”, “DA”, and “X”, breaking
the input into descent, descent/bottom, bottom, bottom/ascent, ascent, and non-dive, respectively.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

detPhase, zoc

detPhase Detect phases of activity from depth readings

Description

Functions to identify sections of a TDR record displaying one of three possible activities: on-land,
at-sea, and at-sea leisure.

Usage

detPhase(time, depth, landerr, seaerr, ...)
getAct(time, act, interval)

Arguments

time POSIXct object with date and time for all depths.
depth numeric vector with depth readings.
landerr land error threshold in seconds. On-land phases shorter than this threshold will

be considered as at-sea.
seaerr at-sea leisure threshold in seconds. At-sea phases shorter than this threshold will

be considered as at-sea leisure.
act A numeric vector indicating the activity for every element of time.
interval, ...

sampling interval in seconds.

DRAFT

6 detPhase

Details

detPhase first creates a factor with value ‘L’ (on-land) for rows with NAs for depth and value
‘W’ (at-sea) otherwise. It subsequently calculates the duration of each of these phases of activity.
If the duration of an on-land phase (‘L’) is less than landerr, then the values in the factor for that
phase are changed to ‘W’ (at-sea). The duration of phases is then recalculated, and if the duration
of a phase of at-sea activity is less than seaerr, then the corresponding value for the factor is
changed to ‘Z’ (at-sea leisure). The durations of all phases are recalculated a third time to provide
final phase durations.

getAct takes a factor indicating different activity phases, their associated time, and the sampling
interval to return a factor uniquely identifying each phase of activity, i.e. labelling them. In addition,
it returns the duration of each phase, and their beginning and end times.

Value

A list with components; the first 4 are returned by detPhase and the rest by getAct:

phase.id numeric vector identifying each activity phase, starting from 1 for every input
record.

trip.act factor with levels ‘L’ indicating land, ‘W’ indicating at-sea, ‘U’ for underwater
(above dive criterion), ‘D’ for diving, ‘Z’ for at-sea leisure animal activities.
Only ‘L’, ‘W’, and ‘Z’ are actually represented.

trip.beg a POSIXct object as long as the number of unique activity phases identified,
indicating the start times for each activity phase.

trip.end a POSIXct object as long as the number of unique activity phases identified,
indicating the end times for each activity phase.

time.br a factor dividing the factor act in phases.

time.peract duration of each phase defined by time.br.

beg.time POSIXct object; beginning time for each phase.

end.time POSIXct object; ending time for each phase.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉 and Andy Liaw.

See Also

detDive

DRAFT

distSpeed 7

distSpeed Calculate distance and speed between locations

Description

Calculate distance, time difference, and speed between pairs of points defined by latitude and lon-
gitude, given the time at which all points were measured.

Usage

distSpeed(pt1, pt2, speed=TRUE)
track(txy, id=gl(1, nrow(txy)), subset)

Arguments

pt1 a matrix or data frame with three columns; the first a POSIXct object with
dates and times for all points, the second and third numeric vectors of longitude
and latitude for all points, respectively, in decimal degrees.

pt2 a matrix with the same structure as pt1.

speed logical; should speed between points be calculated?

txy a data frame with a POSIXct object in its first column, lon and lat in second
and third column, respectively.

id a factor dividing the data in txy into distinct groups.

subset a logical expression indicating the rows to be analyzed, in terms of elements of
txy.

Details

pt1 and pt2 may contain any number of rows. track is essentially a wrapper for distSpeed,
taking a data frame, assumed to be ordered chronologically, and calculations are done between all
successive rows.

Value

For distSpeed, a matrix with three columns: distance (km), time difference (h), and speed (m/s).
For track, a data frame with an id column and the same columns as in distSpeed.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

DRAFT

8 diveMove-internal

diveMove-internal Internal diveMove Functions

Description

Functions used for very particular tasks within larger functions in diveMove

Usage

.cutDive(x)

.descAsc(x, phase, type=c("all", "strict"), interval, z=0)

.diveIndices(diveID, diveNo)

.getInterval(time)

.getSpeedCalib(time, zdepth, speed, dives, phase, ...)

.getSpeedStats(x, vdist)

Arguments

x a single dive’s data; for .cutDive: a 2-col matrix with subscript in original
TDR object and non NA depths. For .descAsc: a 4-col matrix with dive id,
time, depth, and speed. For .getSpeedStats: a 3-col matrix with time, depth, and
speed.

time POSIXct object representing time.

dtformat A string to interpret date and time (see strptime.

phase factor labelling each row for its phase in dive.

type string indicating whether all points belonging to descent/ascent should be in-
cluded (“all”), or points shared with bottom phase should be excluded (“srict”).

interval sampling interval in seconds.

z minimum depth differences to use.

zdepth zero-offset corrected depth m.

speed speed in m/s. For doSpeedCalib: uncalibrated speeds; ignored if calType is
“none”.

dives 3-col data.frame with dive id (numeric), activity (factor), and postdive id
(numeric).

... arguments to pass to .descAsc (type, interval, and z).

vdist vertical distance travelled during ascent or descent.

diveID Numeric vector of all dive and non dive IDs.

diveNo Numeric vector of unique dive IDs to index in diveID.

DRAFT

diveMove-package 9

Details

These functions are not meant to be called directly by the user, as he/she could not care less (right?).
This may change in the future.

.getSpeedCalib extracts the rates of descent and ascent with associated mean speed during descent
and ascent phases, respectively and returns a list that is later manipulated by doSpeedCalib to cali-
brate speed. The speed used for each rate of depth change corresponds to the speed read for the last
point, assuming that each speed reading is the average speed for the last measurement interval.

Value

.getSpeedCalib: A list with two elements (named “descent” and “ascent”). Each element is a 2-
column matrix with rate of depth change in the first column, and speed in the second, corresponding
to the descent phase of each dive.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

diveMove-package Time depth recorder analysis

Description

This package is a collection of functions for visualizing, and analyzing depth and speed data from
time-depth recorders TDRs. These can be used to zero-offset correct depth, calibrate speed, and
divide the record into different phases, or time budget. Functions are provided for calculating
summary dive statistics for the whole record, or at smaller scales within dives.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

A vignette with a guide to this package is available by doing ’vignette("diveMove")’. TDR-class,
calibrateDepth, calibrateSpeed, attendance, stampDive.

Examples

read in data and create a TDR object
(sealX <- readTDR(system.file(file.path("data", "sealMK8.csv"),

package="diveMove")))
Not run: plot(sealX)

detect periods of activity, and calibrate depth, creating
a 'TDRcalibrate' object
Not run: dcalib <- calibrateDepth(sealX)
(dcalib <- calibrateDepth(sealX, offset=3)) # zero-offset correct at 3 m

DRAFT

10 diveStats

plot dive number 100
Not run: plot(extractDive(dcalib, 100))
plot dives all dives, showing dive phases
ddseq <- seq(max(getDAct(dcalib, "dive.id")))
dd <- extractDive(dcalib, ddseq)
Not run: plot(dd, phaseCol=getDPhaseLab(dcalib, ddseq))

calibrate speed
(vcalib <- calibrateSpeed(dcalib))

Obtain dive statistics for all dives detected
dives <- diveStats(vcalib)
head(dives)

Attendance table
att <- attendance(vcalib, FALSE) # taking trivial aquatic activities into account
att <- attendance(vcalib, TRUE) # ignoring them
Add trip stamps to each dive
stamps <- stampDive(vcalib)
sumtab <- data.frame(stamps, dives)
head(sumtab)

diveStats Per-dive statistics

Description

Calculate dive statistics in TDR records.

Usage

diveStats(x)
getDive(x, interval, speed=FALSE)
stampDive(x, ignoreZ=TRUE)

Arguments

x a TDRcalibrate-class object for diveStats and stampDive. a data
frame containing a single dive’s data.

interval sampling interval for interpreting x.
speed logical; should speed statistics be calculated?
ignoreZ logical indicating whether trips should be numbered considering all aquatic ac-

tivities (“W” and “Z”) or ignoring “Z” activities.

Details

diveStats calculates various dive statistics based on time and depth for an entire TDR record.
getDive obtains these statistics from a single dive, and stampDive stamps each dive with asso-
ciated trip information.

DRAFT

diveStats 11

Value

A data.frame with one row per dive detected (durations are in s, and linear variables in m):

begdesc A POSIXct object, specifying the start time of each dive.

enddesc A POSIXct object, as begdesc indicating descent’s end time.

begasc A POSIXct object, as begdesc indicating the time ascent began.

desctim descent duration of each dive.

botttim bottom duration of each dive.

asctim ascent duration of each dive.

descdist numeric vector with descent depth.

bottdist numeric vector with the sum of absolute depth differences while at the bottom
of each dive; measure of amount of “wiggling” while at bottom.

ascdist numeric vector with ascent depth.

desc.tdist numeric vector with descent total distance, estimated from speed.
desc.mean.speed

numeric vector with descent mean speed.

desc.angle numeric vector with descent angle.

bott.tdist numeric vector with bottom total distance, estimated from speed.
bott.mean.speed

numeric vector with bottom mean speed.

asc.tdist numeric vector with ascent total distance, estimated from speed.
asc.mean.speed

numeric vector with ascent mean speed.

asc.angle numeric vector with ascent angle.

divetim dive duration.

maxdep numeric vector with maximum depth.

postdive.dur postdive duration.
postdive.tdist

numeric vector with postdive total distance, estimated from speed.
postdive.mean.speed

numeric vector with postdive mean speed.

The number of columns depends on the value of speed.

stampDive returns a data.frame with trip number, trip type, and start and end times for each dive.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

detPhase, zoc, TDRcalibrate-class

DRAFT

12 readLocs

readLocs Read comma-delimited file with location data

Description

Read a comma delimited (*.csv) file with (at least) time, latitude, longitude readings.

Usage

readLocs(file, loc.idCol, idCol, dateCol, timeCol=NULL,
dtformat="%m/%d/%Y %H:%M:%S", tz="GMT",
classCol, lonCol, latCol, alt.lonCol=NULL, alt.latCol=NULL)

Arguments

file A string indicating the name of the file to read. Provide the entire path if the file
is not on the current directory.

loc.idCol Column number containing location ID.

idCol Column number containing an identifier for locations belonging to different
groups.

dateCol Column number containing dates, and, optionally, times.

timeCol Column number containing times.

dtformat A string, specifying the format in which the date and time columns, when pasted
together, should be interpreted (see strptime) in file.

tz A string indicating the time zone for the date and time readings.

lonCol Column number containing longitude readings.

latCol Column number containing latitude readings.

classCol Column number containing the ARGOS rating for each location.

alt.lonCol Column number containing alternative longitude readings.

alt.latCol Column number containing alternative latitude readings.

Details

The file must have a header row identifying each field, and all rows must be complete (i.e. have the
same number of fields). Field names need not follow any convention.

Value

A data frame.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

DRAFT

readTDR 13

readTDR Read comma-delimited file with TDR data

Description

Read a comma delimited (*.csv) file containing time-depth recorder (TDR) data from various TDR
models. Models supported are MK5, MK7, and MK8 Wildlife Computers instruments. Return a
TDR or TDRspeed object. buildTDR creates an object of one of these classes from other objects
in the session.

Usage

readTDR(file, dateCol=1, timeCol=2, depthCol=3, speedCol=6,
subsamp=5, dtformat="%d/%m/%Y %H:%M:%S", tz="GMT")

createTDR(time, depth, speed, dtime, file)

Arguments

file A string indicating the path to the file to read.

dateCol Column number containing dates, and optionally, times.

timeCol Column number with times.

depthCol Column number containing depth readings.

speedCol Column number containing speed readings.

subsamp Subsample rows in file with subsamp interval, in s.

dtformat A string, specifying the format in which the date and time columns, when pasted
together, should be interpreted (see strptime).

tz A string indicating the time zone assumed for the date and time readings.

time a POSIXct object with date and time readings for locations.

depth numeric vector with depth readings.

speed optional numeric vector with speed readings.

dtime sampling interval used in seconds.

Details

The file name must contain the adjacent letter “mk” somewhere to be able to identify the TDR
model. If the number following these letters is an 8, then a column for speed readings is expected,
in addition to depth.

The file must have a header row identifying each field, and all rows must be complete (i.e. have the
same number of fields). Field names need not follow any convention. However, depth and speed
should preferably be given in m, and m · s−1 for further analyses.

Value

An object of class ‘TDR’ or ‘TDRspeed’.

DRAFT

14 rqPlot

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

Examples

readTDR(system.file(file.path("data", "sealMK8.csv"),
package="diveMove"))

rqPlot Plot of quantile regression for speed calibrations

Description

Plot of quantile regression for assessing quality of speed calibrations

Usage

rqPlot(rdepth, speed, rqFit, main="qtRegression",
xlab="rate of depth change (m/s)",
ylab="speed (m/s)",
colramp=colorRampPalette(c("white", "darkblue")))

Arguments

speed speed in m/s.
rdepth numeric vector with rate of depth change.
rqFit object of class “rq” representing a quantile regression fit of rate of depth change

on mean speed.
main string; title prefix to include in ouput plot.
xlab, ylab axis labels.
colramp function taking an integer n as an argument and returning n colors.

Details

The dashed line in the plot represents a reference indicating a one to one relationship between speed
and rate of depth change. The other line represent the quantile regression fit.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

doSpeedCalib, diveStats

Examples

DRAFT

sealMK8 15

sealMK8 Sample TDR data from a fur seal

Description

This data set is meant to show the organization a TDR *.csv file must have in order to be used as
input for readTDR.

Format

A comma separated value (csv) file with 69560 TDR readings with the following columns:

date date

time time

depth depth in m

light light level

temperature temperature in C

speed speed in m/s

Details

The data is a subset of an entire TDR record, so it is not meant to make any inferences from this
particular individual/deployment.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

Source

Sebastian P. Luque, Christophe Guinet, John P.Y. Arnould

See Also

readTDR

DRAFT

16 doSpeedCalib

doSpeedCalib Calibration of TDR speed

Description

Calibrate speed readings from a TDR, based on the principles outlined in Blackwell et al. (1999).

Usage

doSpeedCalib(rates, speed, calType="pooled", bad=c(0, 0), filename,
postscript=FALSE, ...)

Arguments

rates two-element list corresponding to descent and ascent phases of dives, respec-
tively. Each element should be a 3-column matrix with dive id, rate of depth
change, and mean speed.

speed numeric vector with uncalibrated speeds.
calType string specifying the type of calibration to perform. It should be one of “de-

scent”, “ascent”, or “pooled”.
bad vector of length 2 indicating values for rate of depth change and mean speed,

respectively, below which data should be excluded to build the calibration curve.
filename string indicating name of file to use as base name for the output postscript file.
postscript logical; whether output plot to eps.
... arguments passed to rqPlot; currently, xlab, ylab, and colramp.

Details

Provide calibrated speeds in a TDR record, using the quantile regression of speed on rate of depth
change, based on principles outlined in Blackwell et al. (1999). Choice of calibrating against
pooled, or descentr ascent phases.

The function takes the rates of depth change and speed, for each phase of the dive separately or
combined (based on the value of calType). It subsequently fits a quantile regression through the
second percentile of the distribution of speed conditional on rate of depth change. The calibrated
speed is sc = su−a

b , where sc is the calibrated speed, su is the uncalibrated speed, and a and b are
the intercept and slope of the quantile regression, respectively.

Value

If calType is not “none”, a list of two elements:

coefficients numeric vector of length two with the intercept and the slope of the quantile
regression defining the calibration curve.

corrSpeed numeric vector as long as speed with the calibrated speeds.

A plot (possibly via postscript, depending on the value of postscript argument) of the calibra-
tion lines for all possible cases: “descent”, “ascent”, and “pooled”, is created as a side effect.

DRAFT

TDRcalibrate-class 17

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

References

Blackwell, S. (1999) A method for calibrating swim-speed recorders. Marine Mammal Science
15(3): 894-905.

See Also

TDRcalibrate-class, rqPlot

TDRcalibrate-class Class "TDRcalibrate" for dive analysis

Description

This class holds information produced at various stages of dive analysis. Methods are provided for
extracting data from each slot.

Usage

S4 method for signature 'TDRcalibrate, missing':
plot(x, diveNo=seq(unique(getDAct(x, "dive.id"))),

labels="phase.id", surface=FALSE, ...)

Arguments

x "TDRcalibrate" object.

diveNo numeric vector with dive numbers to plot.

labels one of “phase.id” or “dive.phase”, specifying whether to label observations based
on the gross phase ID of the "TDR" object, or based on each dive phase, respec-
tively.

surface logical indicating whether to plot surface readings.

... further arguments to plotDive.

Details

This is perhaps the most important class in diveMove, as it holds all the information necessary for
calculating requested summaries for a TDR.

The tdr slot contains the time, zero-offset corrected depth, and possibly calibrated or uncalibrated
speed. See readTDR and the accessor function getTDR for this slot. Convenient access to each
vector in this slot is available through getTime, getDepth, and getSpeed.

The slot gross.activity holds, as a list, a vector (named phase.id) numbering each major activity
phase found in the record, a factor (named trip.act) labelling each row as being on-land, at-sea,

DRAFT

18 TDRcalibrate-class

or leisure at-sea activity. These two elements are as long as there are rows in tdr. This slot also
contains two more vectors: one with the beginning time of each phase, and another with the ending
time; both represented as POSIXct objects. See detPhase.

The slot dive.activity contains a data.frame, again with as many rows as those in tdr, con-
sisting of three vectors named: dive.id, which is an integer vector, sequentially numbering each
dive (rows that are not part of a dive are labelled 0), dive.activity is a factor which completes that
in trip.act above, further identifying rows in the record belonging to a dive. The third vector
in dive.activity is an integer vector sequentially numbering each postdive interval (all rows
that belong to a dive are labelled 0). See detDive, and getDAct to access all or any one of these
vectors.

dive.phases is a slot corresponding to a factor that labels each row in the record as belonging
to a particular phase of a dive. See labDivePhase, and getDPhaseLab to access this slot.

land.threshold, sea.threshold, dive.threshold, and speed.calib.coefs are
each a single number representing parameters used for detecting phases, and calibrating the TDR.
Except for the latter, these are mostly for internal use, and hence do not have an accessor function.
See getSpeedCoef for accessing speed.calib.coefs.

The plot method for this class creates an interactive plot of the "TDR" object, labelling the iden-
tified observations with a chosen factor from the corresponding "TDRcalibrate" object. The
argument surface allows for the inclusion/exclusion of identified surface readings.

Objects from the Class

Objects can be created by calls of the form new("TDRcalibrate", ...). The objects of this
class contain information necessary to divide the record into sections (e.g. land/water), dive/surface,
and different sections within dives. They also contain the parameters used to calibrate speed and
criteria to divide the record into phases.

Slots

tdr: Object of class "TDR", with concurrent time, depth, and possibly speed (if "TDRspeed").
See Details.

gross.activity: Object of class "list", must be the same as value returned by detPhase.

dive.activity: Object of class "data.frame", must be the same as value returned by
detDive.

dive.phases: Object of class "factor", must be the same as value returned by labDivePhase.

land.threshold: Object of class "numeric" the temporal criteria used for detecting periods
on land that should be considered as at-sea.

sea.threshold: Object of class "numeric" the temporal criteria used for detecting periods
at-sea that should not be considered as foraging time.

dive.threshold: Object of class "numeric" the criteria used for defining a dive.

speed.calib.coefs: Object of class "numeric" the intercept and slope derived from the
speed calibration procedure.

DRAFT

TDR-class 19

Methods

attendance signature(obj = "TDRcalibrate", ignoreZ = "logical"): gener-
ates an attendance table for the TDR record; the duration of each dry and wet phase.

getDAct signature(x = "TDRcalibrate", y = "missing"): extracts vectors iden-
tifying all readings to a particular dive or postdive number, or a factor identifying all readings
to a particular activity.

getDAct signature(x = "TDRcalibrate", y = "character"): as the method for
missing y, but selects a particular vector to extract.

getDPhaseLab signature(x = "TDRcalibrate", diveNo = "missing"): extracts
a factor identifying all readings to a particular dive phase.

getDPhaseLab signature(x = "TDRcalibrate", diveNo = "numeric"): as the
method for missing y, but selects data from a particular dive number to extract.

extractDive signature(obj = "TDRcalibrate", diveNo = "numeric", id = "missing"):
extract particular dives.

getGAct signature(x = "TDRcalibrate", y = "missing"): extracts elements that
divide the data into major wet and dry activities.

getGAct signature(x = "TDRcalibrate", y = "character"): as the method for
missing y, but extracts particular elements.

show signature(object = "TDRcalibrate"): prints informative summary of the data.

getTDR signature(x = "TDRcalibrate"): extracts the TDR object.

getSpeedCoef signature(x = "TDRcalibrate"): extracts the speed calibration coeffi-
cients.

plot signature(x = "TDRcalibrate", y = "missing"): plot the TDR object, la-
belling identified sections of it (see Usage and Details).

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

TDR-class for links to other classes in the package

TDR-class Classes "TDR" and "TDRspeed" for representing TDR information

Description

These classes store information gathered by time-depth recorders.

Usage

S4 method for signature 'TDR, numeric, numeric':
extractDive(obj, diveNo, id)

DRAFT

20 TDR-class

Arguments

obj "TDR" object.

diveNo numeric vector or scalar with dive numbers to extract.

id numeric vector of dive numbers from where diveNo should be chosen.

Details

Since the data to store in objects of these clases usually come from a file, the easiest way to construct
such objects is with the function readTDR to retrieve all the necessary information. The methods
listed above can thus be used to access all slots.

Objects from the Class

Objects can be created by calls of the form new("TDR", ...) and new("TDRspeed",
...).

TDR objects contain concurrent time and depth readings, as well as a string indicating the file the
data originates from, and a number indicating the sampling interval for these data. TDRspeed
extends TDR objects containing additional concurrent speed readings.

Slots

In class TDR:

file: Object of class "character", string indicating the file where the data comes from.

dtime: Object of class "numeric", sampling interval in seconds.

time: Object of class "POSIXct", time stamp for every reading.

depth: Object of class "numeric", depth (m) readings.

Class TDRspeed adds:

speed: Object of class "numeric" speed (m/s) readings.

Methods

as.data.frame signature(x="TDR"): Coerce object to data.frame.

as.data.frame signature(x="TDRspeed"): Coerce object to data.frame.

coerce signature(from="TDR", to="data.frame"): Coerce object to data.frame.

coerce signature(from="TDRspeed", to="data.frame"): Coerce object to data.frame.

getDepth signature(x = "TDR"): depth slot accessor.

getDtime signature(x = "TDR"): sampling interval accessor.

extractDive signature(obj = "TDR", diveNo = "numeric", id = "numeric"):
extract particular dives.

getFileName signature(x="TDR"): source file name accessor.

plot signature(x = "TDR", y = "missing"): interactive graphical display of the data,
with zooming and panning capabilities.

DRAFT

zoc 21

plot signature(x = "TDRspeed", y = "missing"): As the TDR method, but also
plots the speed slot.

show signature(object = "TDR"): print an informative summary of the data.

getTime signature(x = "TDR"): time slot accessor.

getSpeed signature(x = "TDRspeed"): speed accessor for TDRspeed objects.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

readTDR, TDRcalibrate-class.

zoc Interactive zero-offset correction of TDR data

Description

Correct zero-offset in TDR records, with the aid of a graphical user interface (GUI), allowing for
dynamic selection of offset and multiple time windows to perform the adjustment.

Usage

zoc(time, depth, offset)
plotDive(time, depth, speed=NULL, xlim=NULL, phaseCol=NULL)

Arguments

time POSIXct object with date and time.

depth numeric vector with depth in m.

offset known amount of meters for zero-offset correcting depth throughout the entire
TDR record.

speed numeric vector with speed in m/s.

xlim vector of length 2, with lower and upper limits of time to be plotted.

phaseCol factor dividing rows into sections.

Details

These functions are used primarily to correct, visually, drifts in the pressure transducer of TDR
records. zoc calls plotDive, which plots depth and, optionally, speed vs. time with the possibil-
ity zooming in and out on time, changing maximum depths displayed, and panning through time.
The option to zero-offset correct sections of the record gathers x and y coordinates for two points,
obtained by clicking on the plot region. The first point clicked indicates the offset and beginning
time of section to correct, and the second one indicates the ending time of the section to correct.

DRAFT

22 zoc

Multiple sections of the record can be corrected in this manner, by panning through the time and
repeating the procedure. In case there’s overlap between zero offset corrected windows, the last one
prevails.

Once the whole record has been zero-offset corrected, remaining points with depth values lower
than zero, are turned into zeroes, as these are assumed to be values at the surface.

Value

zoc returns a numeric vector, as long as depth of zero-offset corrected depths.

plotDive returns a list with as many components as sections of the record that were zero-offset
corrected, each consisting of two further lists with the same components as those returned by
locator.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉, with many ideas from CRAN package sfsmisc.

See Also

detDive

DRAFT
Index

∗Topic arith
diveStats, 10
rqPlot, 14

∗Topic classes
TDR-class, 19
TDRcalibrate-class, 17

∗Topic datasets
sealMK8, 15

∗Topic hplot
rqPlot, 14

∗Topic internal
diveMove-internal, 8

∗Topic iplot
zoc, 21

∗Topic iteration
austFilter, 1

∗Topic manip
austFilter, 1
calibrateDepth, 3
detDive, 4
detPhase, 5
distSpeed, 7
doSpeedCalib, 16
readLocs, 12
readTDR, 13
rqPlot, 14

∗Topic math
calibrateDepth, 3
distSpeed, 7
diveStats, 10
doSpeedCalib, 16

∗Topic package
diveMove-package, 9

.cutDive (diveMove-internal), 8

.descAsc (diveMove-internal), 8

.diveIndices (diveMove-internal),
8

.getInterval (diveMove-internal),
8

.getSpeedCalib, 3

.getSpeedCalib
(diveMove-internal), 8

.getSpeedStats
(diveMove-internal), 8

as.data.frame,TDR-method
(TDR-class), 19

attendance, 9
attendance (TDRcalibrate-class),

17
attendance,TDRcalibrate,logical-method

(TDRcalibrate-class), 17
austFilter, 1

calibrateDepth, 3, 9
calibrateSpeed, 9
calibrateSpeed (calibrateDepth), 3
coerce,TDR,data.frame-method

(TDR-class), 19
createTDR (readTDR), 13

data.frame, 11
detDive, 3, 4, 4, 6, 18, 22
detPhase, 3, 4, 5, 5, 11, 18
distSpeed, 2, 7
diveMove (diveMove-package), 9
diveMove-internal, 8
diveMove-package, 9
diveStats, 10, 14
doSpeedCalib, 3, 4, 14, 16

extractDive (TDRcalibrate-class),
17

extractDive,TDR,numeric,numeric-method
(TDR-class), 19

extractDive,TDRcalibrate,numeric,missing-method
(TDRcalibrate-class), 17

getAct (detPhase), 5
getDAct, 18

23

DRAFT

24 INDEX

getDAct (TDRcalibrate-class), 17
getDAct,TDRcalibrate,character-method

(TDRcalibrate-class), 17
getDAct,TDRcalibrate,missing-method

(TDRcalibrate-class), 17
getDepth, 17
getDepth (TDR-class), 19
getDepth,TDR-method (TDR-class),

19
getDive (diveStats), 10
getDPhaseLab, 18
getDPhaseLab

(TDRcalibrate-class), 17
getDPhaseLab,TDRcalibrate,missing-method

(TDRcalibrate-class), 17
getDPhaseLab,TDRcalibrate,numeric-method

(TDRcalibrate-class), 17
getDtime (TDR-class), 19
getDtime,TDR-method (TDR-class),

19
getFileName (TDR-class), 19
getFileName,TDR-method

(TDR-class), 19
getGAct (TDRcalibrate-class), 17
getGAct,TDRcalibrate,character-method

(TDRcalibrate-class), 17
getGAct,TDRcalibrate,missing-method

(TDRcalibrate-class), 17
getSpeed, 17
getSpeed (TDR-class), 19
getSpeed,TDRspeed-method

(TDR-class), 19
getSpeedCoef, 18
getSpeedCoef

(TDRcalibrate-class), 17
getSpeedCoef,TDRcalibrate-method

(TDRcalibrate-class), 17
getTDR, 17
getTDR (TDRcalibrate-class), 17
getTDR,TDRcalibrate-method

(TDRcalibrate-class), 17
getTime, 17
getTime (TDR-class), 19
getTime,TDR-method (TDR-class), 19
grpSpeedFilter (austFilter), 1

labDive (detDive), 4
labDivePhase, 18
labDivePhase (detDive), 4

locator, 22

matrix, 16

plot,TDR,missing-method
(TDR-class), 19

plot,TDRcalibrate,missing-method
(TDRcalibrate-class), 17

plot,TDRspeed,missing-method
(TDR-class), 19

plotDive, 17
plotDive (zoc), 21
postscript, 16

readLocs, 12
readTDR, 13, 15, 17, 21
rmsDistFilter (austFilter), 1
rqPlot, 14, 17

sealMK8, 15
show,TDR-method (TDR-class), 19
show,TDRcalibrate-method

(TDRcalibrate-class), 17
stampDive, 9
stampDive (diveStats), 10
strptime, 8, 12, 13

TDR, 17, 18, 20
TDR-class, 9, 19
TDR-class, 19
TDRcalibrate, 17, 18
TDRcalibrate-class, 3, 10, 11, 17, 21
TDRcalibrate-class, 17
TDRspeed-class (TDR-class), 19
track (distSpeed), 7

zoc, 3–5, 11, 21

	Introduction
	Starting up
	Reading Input Files
	Extraction and Display of Information from TDR and TDRspeed Objects
	ZOC and Wet/Dry period detection
	Access to Elements from TDRcalibrate Objects
	Speed Calibration
	TDR dive and postdive statistics
	Miscellaneous functions
	Acknowledgements

