
Examples for gWidgets

John Verzani, gWidgetsRGtk@gmail.com

September 29, 2006

Abstract:

Examples for using the gWidgets package are presented. Th gWidgets API is
intended to be a cross platform means to interact with a graphics toolkit. Currently,
the only available toolkit is the GTK toolkit via the gWidgetsRGtk2 package which
uses the RGtk2 package. Although not nearly as powerful as any individual toolkit,
the gWidgets API is suitable for many tasks or as a rapid prototyping tool for
more complicated applications. Hopefully the examples contained herein illustrate
that quite a few things can be done fairly easily, and complicated things pieced
together in a straightforward manner. To see an application built using gWidgets,
install the pmg GUI (http://www.math.csi,cuny.edu/pmg).

Contents

1 Background 2

2 Hello world 3

3 Making a confirmation dialog 6

4 Methods 8

5 Adding a GUI to some common tasks 8
5.1 file.choose() . 8
5.2 browseEnv() . 9

6 A gWidgetsDensity demo 10

1

gWidgets

7 Composing email 12

8 Drag and drop 16
8.1 DND with plots . 17
8.2 DND from the data frame editor . 18

9 Notebooks 20

10 The tree widget 21

11 Popup menus 23

12 Making widgets from an R function 24
12.1 Using ggenericwidget() . 24
12.2 An alternative to ggenericwidget() 25

1 Background

The gWidgetsRGtk2 package implements the gWidgets API for the GTK toolkit.
The GTK toolkit is interfaced using the RGtk2 package of Michael Lawrence, in turn
derived from Duncan Temple Lang’s RGtk package. The excellent RGtk2 package
opens up the full power of the GTK2 toolkit, only a fraction of which is available
though gWidgetsRGtk2. The gWidgets API is intended to be a cross-toolkit API
for working with GUI objects. It is based on the iwidgets API of Simon Urbanek,
with improvement by Philippe Grosjean, Michael Lawrence, Simon Urbanek and
John Verzani.

The gWidgets API is still in the formative stages and likely will change as more
people use it and offer suggestions for improvement.

We load the gWidgets package, using the gWidgetsRGtk2 toolkit, below. When
gWidgets is started, it will ask you to choose between toolkit implementations, if
more than one is available. If the option guiToolkit is set to a package name, less
the “gWidgets” then that package will be used. following

> options(guiToolkit = "RGtk2")

> require(gWidgets)

[1] TRUE

- page 2 -

gWidgets

Both the gWidgets and gWidgetsRGtk2 package use S4 methods and classes
and load much faster under the newer methods package accompanying R version
2.4.0 or greater.

This document supplements the man pages by providing more detailed examples.
The man pages contain more specific information. See the page gWidgets-package

for a listing of the available man pages.
This document is a vignette. As such, the code displayed is available within an

R session through the command edit(vignette("gWidgets")).

2 Hello world

We begin by showing how to make various widgets which display the ubiquitous
“Hello world” message. First though we define a function allowing us to comment
code within Sweave.

> Comment = function(...) invisible(...)

Now to illustrate (Figure 1 shows a few) some of the basic widgets. These first
widgets display text: a label, a button and a text area.

First a button:

> obj = gbutton("Hello world", container = gwindow())

Next a label:

> obj = glabel("Hello world", container = gwindow())

Now for single line of ediable text:

> obj = gedit("Hello world", container = gwindow())

Finally, a text buffer for multiple lines of text:

> obj = gtext("Hello world", container = gwindow())

The following widgets are used for selection of a value or values from a vector of
possible values.

First a radio group for selecting just one:

> obj = gradio(c("hello", "world"), container = gwindow())

Next, a drop list, or combo box, again for selecting just one, although in this case
an optin can be give for the user to edit the value.

- page 3 -

gWidgets

Figure 1: Four basic widgets: a button, a label, radio buttons, and a drop list.

> obj = gdroplist(c("hello", "world"), container = gwindow())

For longer lists, a table of values can be used.

> obj = gtable(c("hello", "world"), container = gwindow())

This widget is also used for displaying tabular data with multiple columns and rows.
This widget an argument allowing for multiple selections. Such selection can also be
achieved with a checkbox group:

> obj = gcheckboxgroup(c("hello", "world"), container = gwindow())

For selecting a numeric value, sliders and spinbuttons are commonly used:

- page 4 -

gWidgets

> obj = gslider(from = 0, to = 7734, by = 100, container = gwindow())

> obj = gspinbutton(from = 0, to = 7734, by = 100, container = gwindow())

Both these widgets are used to select a value from a prespecified sequence of numbers.
Common to all of the above is a specification of the “value” of the widget, and

the container to attach the widget to. In each case a top-level window constructed
by gwindow().

In this next example, we show how to combine widgets together using containers.
(Figure 2.)

> win = gwindow("Hello World, ad nauseum", visible = TRUE)

> group = ggroup(horizontal = FALSE, container = win)

> obj = gbutton("Hello...", container = group, handler = function(h,

+ ...) gmessage("world"))

> obj = glabel("Hello...", container = group, handler = function(h,

+ ...) gmessage("world"))

> obj = gdroplist(c("Hello", "world"), container = group)

> obj = gedit("Hello world", container = group)

> obj = gtext("Hello world", container = group, font.attr = list(style = "bold"))

As before, the constructors gbutton(), glabel(), gedit() and gtext() create
widgets of different types. The button looks like a button. A label is used to show
text which may perhaps be edited. A droplist allows a user to select one of several
items, or if desired to be able to add a value. The gedit() and gtext() constructors
both create widgets for inputting text, in the first case for single lines, and in the
second for multiple lines using a text buffer.

Figure 2: Hello world example

- page 5 -

gWidgets

These widgets are packed into containers (see ?ggroup or ?gwindow). The base
container is a window, created with the gwindow() function. A window can only
contain one widget, so we pack in a group container created with ggroup(). The
ggroup() container packs in widgets from left to right or top to bottom. Imagine
each widget as a block which is added to the container. In this case, we want the
subsequent widgets packed in top to bottom so we used the argument horizon-

tal=FALSE.
For the button and label widgets, a handler is set so that when the widget is

clicked a message dialog appears showing “world.” Handlers are used to respond
to mouse-driven events. In this case the event of a widget being clicked. See
?gWidgetsRGtk-handlers for details on handlers.

The message is an instance of a dialog. in the gWidgets API dialogs are usually
modal, meaning nothing can be done until they are dismissed. (This can be annoying
if a dialog appears under another window and can’t be seen!)

3 Making a confirmation dialog

Let’s see how we might use widgets to create our own confirmation dialog. We want
to have an icon, a label for the message, and buttons to confirm or dismiss the dialog.

The gimage() constructor allows images to be shown in a widget. In gWidget-
sRGtk there are several stock images, which can be listed with getStockIcons().
We will use “info” below.

First we define a function for making a dialog. This one uses nested group con-
tainers to organize the layout. Alternately the glayout() constructor could have
been used in some manner.

> confirmDialog = function(message, handler = NULL) {

+ window = gwindow("Confirm")

+ group = ggroup(container = window)

+ add(group, gimage("info", dirname = "stock", size = "dialog"))

+ Comment("A group for the message and buttons")

+ innner.group = ggroup(horizontal = FALSE, container = group)

+ add(innner.group, glabel(message), expand = TRUE)

+ Comment("A group to organize the buttons")

+ button.group = ggroup(container = innner.group)

+ Comment("Push buttons to right")

+ addSpring(button.group)

+ obj = gbutton("ok", handler = handler, container = button.group)

- page 6 -

gWidgets

+ obj = gbutton("cancel", handler = function(h, ...) dispose(window),

+ container = button.group)

+ return()

+ }

The key to making a useful confirmation dialog is attaching an action to the “ok”
button. This is done with the argument handler=. Below, this function prints a
message and then closes the dialog. To do this, the dispose() method is called on
the “ok” button widget, which is referenced inside the handler by h$obj below. In
gWidgets, handlers are passed information via the first argument, which is a list with
named elements. The $obj component refers to the widget the handler is assigned
to.

Trying it out produces a widget like that shown in Figure 3

Figure 3: Confirmation dialog

> confirmDialog("This space for rent", handler = function(h, ...) {

+ print("what to do... [Change accordingly]")

+ Comment("In this instance dispose finds its parent window and closes it")

+ dispose(h$obj)

+ })

NULL

- page 7 -

gWidgets

4 Methods

Widgets are interacted with by their methods. The main methods are svalue() and
svalue<-() for getting and setting a widgets primary value.

The following silly example illustrates how clicking one widget can be used to
update another widget.

> group = ggroup(container = gwindow("Two widgets"))

> widget1 = gbutton("Click me to update the counter", container = group,

+ handler = function(h, ...) {

+ oldVal = svalue(widget2)

+ svalue(widget2) <- as.numeric(oldVal) + 1

+ })

> widget2 = glabel(0, container = group)

The value stored in a label is just the text of the label. This is returned by svalue()

and after 1 is added to the value, replaced back into the label. As text labels are of
class “character,” the value is coerced to be numeric.

There are other methods (see ?gWidgetsRGtk-methods) that try to make in-
teracting with a widget as natural as possible. For instance, a radio button has a
selected value returned by svalue(), but also a vector of possible values. These may
be referenced using vector, [, notation.

5 Adding a GUI to some common tasks

A GUI can make some command line tasks easier to perform. Here are a few examples
that don’t involve much coding in gWidgets.

5.1 file.choose()

The file.choose() function is great for simplifying a user’s choice of a file from the
file system. A typical usage might be

source(file.choose())

to allow a user to source a file with a little help from a GUI. However, in many
UNIX environments, there is no GUI for file.choose(), only a more convenient
curses interface. With the gfile() dialog, we can offer some improvement.

We have to reverse our thinking though. The command source(file.choose())

acts like function composition – the output of file.choose() is sent to source().

- page 8 -

gWidgets

We instead give a handler to gfile() to process the selected file. Below is a function
written to give some flexibility to the process.

> fileChoose = function(action = "print", text = "Select a file...",

+ type = "open", ...) {

+ gfile(text = text, type = type, ..., action = action, handler = function(h,

+ ...) {

+ do.call(h$action, list(svalue(h$obj)))

+ })

+ }

Now various tasks can be done quite simply. To source() a file we have

> fileChoose(action="source")

Or to set the current working directory we have

> fileChoose(action="setwd", type="selectdir", text="Select a directory...")

5.2 browseEnv()

The browseEnv() function craetes a table in a web browser listing the current objects
in the global environement (by default) and details some properties of them. This
is an easy to use function, but suffers from the fact that it may have to open up a
browser for the user if none is already open. This may take a bit of time as browsers
are generally slow to load. We illustrate a means of using the gtable() constructor
to show in a table the objects in an environment.

The following function creates the data.frame we will display. Consult the code
of browseEnv() to see how to produce more details.

> lstObjects = function(envir = .GlobalEnv, pattern) {

+ objlist = ls(envir = envir, pattern = pattern)

+ objclass = sapply(objlist, function(objName) {

+ obj <- get(objName, envir = envir)

+ class(obj)[1]

+ })

+ data.frame(Name = I(objlist), Class = I(objclass))

+ }

Now to make a table to display the results. We leave some flexibility with the
arguments, although we won’t illustrate this.

- page 9 -

gWidgets

> browseEnv1 = function(envir = .GlobalEnv, pattern) {

+ listOfObjects = lstObjects(envir = envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv1"),

+)

+ }

Tables can have a double click handler (a single click is used for selection). To
illustrate, we add a handler which calls summary() (or some other function) on a
double-clicked item.

> browseEnv2 = function(envir = .GlobalEnv, pattern, action = "summary") {

+ listOfObjects = lstObjects(envir = envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv2"),

+ action = action, handler = function(h, ...) {

+ print(do.call(h$action, list(svalue(h$obj))))

+ })

+ }

As a final refinement, we add a droplist box to filter by the unique values of
“Class.” We leave as an excercise the display of icons based on the class of the
object.

> browseEnv3 = function(envir = .GlobalEnv, pattern, action = "summary") {

+ listOfObjects = lstObjects(envir = envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv3"),

+ filter.column = 2, action = action, handler = function(h,

+ ...) {

+ print(do.call(h$action, list(svalue(h$obj))))

+ })

+ }

The gvarbrowser() function constructs a widget very similar to this, only it uses
gtree() to allow further display of list-like objects.

6 A gWidgetsDensity demo

We illustrate how to make a widget to dynamically update a density plot. The idea
comes from the tkdensity demo that accompanies the tcltk package.

- page 10 -

gWidgets

We use the ggraphics() constructor to create a new plot device. For RGtk2,
this uses the cairoDevice package also developed by Michael Lawrence.

The demo consists of a widget to control a random sample, in this case from the
standard normal distribution or the exponential distribution with rate 1; a widget
to select the sample size; a widget to select the kernel; and a widget to adjust the
default bandwidth. We use radio buttons for the first two, a drop list for the third
and a slider for the latter.

Proceeding, first we define the two distributions and the possible kernels.

> availDists = c(Normal = "rnorm", Exponential = "rexp")

> availKernels = c("gaussian", "epanechnikov", "rectangular", "triangular",

+ "biweight", "cosine", "optcosine")

We then define the key function for drawing the graphic. This refers to widgets
yet to be defined.

> updatePlot = function(h, ...) {

+ x = do.call(availDists[svalue(distribution)], list(svalue(sampleSize)))

+ plot(density(x, adjust = svalue(bandwidthAdjust), kernel = svalue(kernel)),

+ main = "Density plot")

+ rug(x)

+ }

Now to define the widgets.

> distribution = gradio(names(availDists), horizontal = FALSE,

+ handler = updatePlot)

> kernel = gdroplist(availKernels, handler = updatePlot)

> bandwidthAdjust = gslider(from = 0, to = 2, by = 0.01, value = 1,

+ handler = updatePlot)

> sampleSize = gradio(c(50, 100, 200, 300), handler = updatePlot)

And now the layout. We use frames to set off the different arguments. A frame
is like a group, only it has an option for placing a text label somewhere along the
top, with a default using the left-hand side.

> window = gwindow("gWidgetsDensity", visible = FALSE)

> BigGroup = ggroup(cont = window)

> group = ggroup(horizontal = FALSE, container = BigGroup)

> tmp = gframe("Distribution", container = group)

- page 11 -

gWidgets

Figure 4: The gWidgetsDensity example in action.

> add(tmp, distribution)

> tmp = gframe("Sample size", container = group)

> add(tmp, sampleSize)

> tmp = gframe("Kernel", container = group)

> add(tmp, kernel)

> tmp = gframe("Bandwidth adjust", container = group)

> add(tmp, bandwidthAdjust, expand = TRUE)

> add(BigGroup, ggraphics())

There was a bug with the graphics device that has been fixed. A work around
was to wait to make the window visible until after the graphics device was added.
This involves the following.

> visible(window) <- TRUE

A realization of this widget was captured in Figure 4.

7 Composing email

We next give an example of how to write a widget for composing an email message.
Not that this is what R is intended for, but rather to show how a familiar widget
is produced by combining various pieces from gWidgets. This example is a little

- page 12 -

gWidgets

lengthy (especially with Sweave’s formatting), but hopefully straightforward due to
the familiarity with the result of the task.

For our stripped-down compose window we want the following: a menubar to
organize functions; a toolbar for a few common functions; a “To:” field which should
have some means to store previously used e-mails; a “From:” field that should be
editable, but not obviously so as often it isn’t edited; a “Subject:” field which also
updates the title of the window; and a text buffer for typing the message.

The following code will create a function called Rmail() (apologies to old-time
emacs users) which on many UNIX machines can send out e-mails using the sendmail
command.

First we define some variables:

> FROM = "gWidgetsRGtk <gWidgetsRGtk@gmail.com>"

> buddyList = c("My Friend <myfriend@gmail.com>", "My dog <mydog@gmail.com>")

Now for the main function. We define some helper functions inside the body, so
as not to worry about scoping issues.

> Rmail = function(draft = NULL, ...) {

+ Comment("Define main widgets, store in a list for ease of use")

+ widgets = list()

+ widgets$to = gdroplist(c(), editable = TRUE)

+ widgets$from = glabel(FROM, editable = TRUE)

+ widgets$subject = gedit()

+ widgets$text = gtext()

+ Comment("Handle drafts. Either a list or a filename to source")

+ Comment("The generic svalue() method makes setting values easy")

+ if (!is.null(draft)) {

+ if (is.character(draft))

+ source(draft)

+ if (is.list(draft))

+ sapply(c("to", "from", "subject", "text"), function(i) svalue(widgets[[i]]) <- draft[[i]])

+ }

+ Comment("Helper functions")

+ sendIt = function(...) {

+ tmp = tempfile()

+ cat("To:", svalue(widgets$to), "\n", file = tmp, append = TRUE)

+ cat("From:", svalue(widgets$from), "\n", file = tmp,

+ append = TRUE)

- page 13 -

gWidgets

+ cat("Subject:", svalue(widgets$subject), "\n", file = tmp,

+ append = TRUE)

+ cat("Date:", format(Sys.time(), "%d %b %Y %T %Z"), "\n",

+ file = tmp, append = TRUE)

+ cat("X-sender:", "R", file = tmp, append = TRUE)

+ cat("\n\n", file = tmp, append = TRUE)

+ cat(svalue(widgets$text), file = tmp, append = TRUE)

+ cat("\n", file = tmp, append = TRUE)

+ Comment("Use UNIX sendmail to send message")

+ system(paste("sendmail -t <", tmp))

+ Comment("Add To: to buddyList")

+ if (exists("buddyList"))

+ assign("buddyList", unique(c(buddyList, svalue(widgets$to))),

+ inherits = TRUE)

+ Comment("Close window, delete file")

+ unlink(tmp)

+ dispose(window)

+ }

+ Comment("Function to save a draft to the file draft.R")

+ saveDraft = function(...) {

+ draft = list()

+ sapply(c("to", "from", "subject", "text"), function(i) draft[[i]]) <- svalue(widgets[[i]])

+ dump("draft", "draft.R")

+ cat("Draft dumped to draft.R\n")

+ }

+ Comment("A simple dialog")

+ aboutMail = function(...) gmessage("Sends a message")

+ Comment("Make main window from top down")

+ window = gwindow("Compose mail")

+ group = ggroup(horizontal = FALSE, spacing = 0, container = window)

+ Comment("Remove border")

+ svalue(group) <- 0

+ Comment("Menubar is defined by a list")

+ menubarlist = list()

+ menubarlist$File$Save$handler = saveDraft

+ menubarlist$File$Send$handler = sendIt

+ menubarlist$File$Quit$handler = function(...) dispose(window)

+ menubarlist$File$Quit$icon = "quit"

- page 14 -

gWidgets

+ menubarlist$Help$About$handler = aboutMail

+ add(group, gmenu(menubarlist))

+ Comment("Toolbar is also defined by a list")

+ toolbarlist = list()

+ toolbarlist$Send$handler = sendIt

+ toolbarlist$Send$icon = "connect"

+ toolbarlist$Save$handler = saveDraft

+ toolbarlist$Save$icon = "save"

+ add(group, gtoolbar(toolbarlist))

+ Comment("Put headers in a glayout() container")

+ tbl = glayout(container = group)

+ Comment("To: field. Looks for buddyList")

+ tbl[1, 1] = glabel("To:")

+ tbl[1, 2] = widgets$to

+ if (exists("buddyList"))

+ widgets$to[] <- buddyList

+ Comment("From: field. Click to edit value")

+ tbl[2, 1] = glabel("From:")

+ tbl[2, 2] = widgets$from

+ Comment("Subject: field. Handler updates window title")

+ tbl[3, 1] = glabel("Subject:")

+ tbl[3, 2] = widgets$subject

+ addhandlerkeystroke(widgets$subject, handler = function(h,

+ ...) svalue(window) = paste("Compose mail:", svalue(h$obj),

+ collapse = ""))

+ Comment("Layout needs to be finalized")

+ visible(tbl) <- TRUE

+ Comment("Add text box for message, but first some space")

+ addSpace(group, 5)

+ add(group, widgets$text, expand = TRUE)

+ Comment("That's it.")

+ }

To compose an e-mail we call the function as follows. (The widget constructed
looks like Figure 5.)

> Rmail()

The Rmail() function uses a few tricks. A droplist is used to hold the “To:” field.
This is done so that a “buddy list” can be added if present. The [<- method for drop

- page 15 -

gWidgets

Figure 5: Widget for composing an e-mail message

lists make this straightforward. For widgets that have a collection of items to select
from, the vector and matrix methods are defined to make changing values familiar
to R users.

The “From:” field uses an editable label. Clicking in the label’s text allows its
value to be changed. Just hit ENTER when done.

The handler assigned to the “Subject:” field updates the window title every
keystroke. The title of the window is updated with the windows svalue<-() method.

The svalue() and svalue<-() methods are the work-horse methods of gWid-

gets. The are used to retrieve the selected value of a widget or set the selected value
of a widget. One advantage to have a single generic function do this is illustrated in
the handling of a draft:

sapply(c("to","from","subject","text"), function(i)

svalue(widgets[[i]]) <- draft[[i]])

As for the sendIt() function, this is just one way to send an e-mail message on
a UNIX machine. There are likely more than 100 different ways people could think
of doing this task, most better than this one.

8 Drag and drop

GTK supports drag and drop features, and gWidgets provides a simple mechanism
to add drag and drop to widgets. (Some widgets, such as text boxes, support drag
and drop without these.) The basic approach is to add a drop source to the widget

- page 16 -

gWidgets

you wish to drag from, and add a drop target to the widget you want to drag to.
You can also provide a handler to deal with motions over the drop target. See the
man page ?gWidgetsRGtk-dnd for more information.

We give two examples of drag and drop. One where variables from the variable
browser are dropped onto a graph widget. Another illustrating drag and drop from
the data frame editor to a widget.

8.1 DND with plots

This example shows the use of the plot device, the variable browser widget, and the
use of the drag and drop features of gWidgets (Figure 6).

> doPlot = function() {

+ Comment("Set up main group")

+ mainGroup = ggroup(container = gwindow("doPlot example"))

+ Comment("The variable browser widget")

+ gvarbrowser(container = mainGroup)

+ rightGroup = ggroup(horizontal = FALSE, container = mainGroup)

+ Comment("The graphics device")

+ ggraphics(container = rightGroup)

+ entry = gedit("drop item here to be plotted", container = rightGroup)

+ adddroptarget(entry, handler = function(h, ...) {

+ do.call("plot", list(svalue(h$dropdata), main = id(h$dropdata)))

+ })

+ }

> doPlot()

The basic structure of using gWidgets is present in this example. The key widgets
are the variable browser (gvarbrowser()), the plot device (ggraphics()), and the
text-entry widget (gedit()). These are put into differing containers. Finally, there
is an handler given to the result of the drag and drop. The do.call() line uses
the svalue() and id() methods on a character, which in this instance return the
variable with that name and the name.

To use this widget, one drags a variable to be plotted from the variable browser
over to the area below the plot window. The plot() method is called on the values
in the dropped variable.

- page 17 -

gWidgets

Figure 6: Dialog produced by doPlot() example

8.2 DND from the data frame editor

The gdf() constructor makes a widget for editing data frames. The columns of which
can be dropped onto a widget. This is done by dragging the column header. The
code below also adds a handler so that changes to the column propogate to changes
in the widget where the column is dropped. This has some issues, as the handler
needs to be removed if the widget is closed.

> Comment("Drag a column onto plot to have a boxplot drawn.")

> Comment("Changing the column values will redraw the graph.")

> makeDynamicWidget = function() {

+ win = gwindow("Draw a boxplot")

+ gd = ggraphics(container = win)

+ adddroptarget(gd, targetType = "object", handler = function(h,

+ ...) {

+ tag(gd, "data") <- h$dropdata

+ plotWidget(gd)

+ Comment("this makes the dynamic part:")

+ Comment("- we put a change handler of the column that we get the data from")

+ Comment("- we store the handler id, so that we can clean up the handler when this")

+ Comment(" window is closed")

+ Comment("The is.gdataframecolumn function checks if the drop value")

+ Comment(" comes from the data frame editor (gdf)")

+ if (is.gdataframecolumn(h$dropdata)) {

- page 18 -

gWidgets

+ view.col = h$dropdata

+ Comment("Put change handler on column to update plotting widget")

+ id = addhandlerchanged(view.col, handler = function(h,

+ ...) plotWidget(gd))

+ Comment("Save drop handler id so that it can be removed when")

+ Comment(" widget is closed")

+ dropHandlers = tag(gd, "dropHandlers")

+ dropHandlers[[length(dropHandlers) + 1]] = list(view.col = view.col,

+ id = id)

+ tag(gd, "dropHandlers") <- dropHandlers

+ }

+ })

+ Comment("Remove drop handlers if widget is unrealized.")

+ addhandlerunrealize(gd, handler = function(h, ...) {

+ dropHandlers = tag(gd, "dropHandlers")

+ if (length(dropHandlers) > 0) {

+ for (i in 1:length(dropHandlers)) {

+ removehandler(dropHandlers[[i]]$view.col, dropHandlers[[i]]$id)

+ }

+ }

+ })

+ }

Next, we make the function that produces or updates the graphic. The data is
stored in the tag-key ”data”. The use of id() and svalue() works for values which
are either variable names or columns.

> plotWidget = function(widget) {

+ data = tag(widget, "data")

+ theName = id(data)

+ values = svalue(data)

+ boxplot(values, xlab = theName, horizontal = TRUE, col = gray(0.75))

+ }

Now show the two widgets, the gdf() function constructs the data frame editor
widget.

> gdf(mtcars, container = TRUE)

guiWidget of type: gGridRGtk for toolkit: guiWidgetsToolkitRGtk2

> makeDynamicWidget()

- page 19 -

gWidgets

9 Notebooks

The notebook is a common metaphor with computer applications, as they can give
access to lots of information compactly on the screen. The gnotebook() constructor
produces a notebook widget. New pages are added via the add() method, the current
page is deleted through an icon, or via the dispose() method, and vector methods
are defined, such as names(), to make interacting with notebooks natural.

The following example shows how a notebook can be used to organize different
graphics devices. (See the ggraphicsnotebook() function for a similar widget.)

Our widget consists of a toolbar to add or delete plots and a notebook to hold
the different graphics devices. The basic widgets are defined by the following:

First we make window and group containers to hold our widgets.

> win = gwindow("Plot notebook", visible = FALSE)

> group = ggroup(horizontal = FALSE, container = win)

Next, a notebook instance with an initial plot device.

> nb = gnotebook()

> add(nb, ggraphics(), label = "plot")

The add() method is used to add new widgets, in this case a graphics device. The
label goes on the tab.

We first define and add a toolbar.

> tblist = list()

> tblist$Quit$handler = function(h, ...) dispose(win)

> tblist$Quit$icon = "quit"

> tblist$tmp1$separator = TRUE

> tblistNewhandler = function(h, ...) add(nb, ggraphics(), label = "plot")

> tblistNewicon = "new"

> tblist$Delete$handler = function(h, ...) dispose(nb)

> tblist$Delete$icon = "delete"

> add(group, gtoolbar(tblist))

The dispose() method is used both to close the window, and to close a tab on the
notebook (the currently selected one).

Finally we add the notebook and make the window visible.

> add(group, nb, expand = TRUE)

> visible(win) <- TRUE

- page 20 -

gWidgets

Figure 7: Notebook widget for holding multiple plot devices provided by ggraph-

ics()

That’s it (Figure 7). There is one thing that should be added. If you switch
tabs, the active device does not switch. This happens though if you click in the plot
area. To remedy this, you can think about the addhandlerchanged() method for
the notebook, or just use ggraphicsnotebook().

10 The tree widget

The gtree() constructor is used to present tree-like data. A familiar example of
such data is the directory structure of your computer. To describe a tree, gtree()
has the idea of a node which consists of a path back to a root node. This node can
have offspring which will be determined by a function (offspring()) which takes
the current path, and a passed in parameter as arguments. These offspring can either

- page 21 -

gWidgets

have subsequent offspring or not. This information must be known at the time of
displaying the current offspring, and is answered by a function (hasOffspring())
which takes as an argument the offspring. In our file-system analogy, offspring()
would list the files and directories in a given directory, and hasOffspring() would
be TRUE for a directory in this listing, and FALSE for a file. For decorations, a function
icon.FUN() can be given to decide what icon to draw for which listing.

The data presented for the offspring is a data frame, with one column determining
the path. This is typically the first column, but can be set with chosencol=.

To illustrate, we create a file system browser using gtree().
First to define the offspring() function we use the file.info() function. The

current working directory is used as the base node for the tree:

> offspring = function(path, user.data = NULL) {

+ if (length(path) > 0)

+ directory = paste(getwd(), "/", paste(path, sep = "/",

+ collapse = ""), sep = "", collapse = "")

+ else directory = getwd()

+ tmp = file.info(dir(path = directory))

+ files = data.frame(Name = rownames(tmp), isdir = tmp[, 2],

+ size = as.integer(tmp[, 1]))

+ return(files)

+ }

The offspring function is determined by the isdir column in the offspring data
frame.

> hasOffspring = function(children, user.data = NULL, ...) {

+ return(children$isdir)

+ }

Finally, an icon function can be given as follows, again using the isdir column.

> icon.FUN = function(children, user.data = NULL, ...) {

+ x = rep("file", length = nrow(children))

+ x[children$isdir] = "directory"

+ return(x)

+ }

The widget is then constructed as follows. See Figure 8 for an example.

- page 22 -

gWidgets

> gtree(offspring, hasOffspring, icon.FUN = icon.FUN, container = gwindow(getwd()))

guiWidget of type: gTreeRGtk for toolkit: guiWidgetsToolkitRGtk2

Figure 8: Illustration of a file browser using gtree() constructor.

The presence of the isdir column may bug some. It was convenient when defining
hasOffspring() and icon.FUN(), but by then had served its purpose. One way to
eliminate it, is to use the default for the hasOffspring= argument which is to look
for the second column of the data frame produced by offspring(). If this is logical,
it is used to define hasOffspring() and is then eliminated from the display. That
is, the following would produce the desired file browser:

> gtree(offspring, icon.FUN = icon.FUN, container = gwindow(getwd()))

guiWidget of type: gTreeRGtk for toolkit: guiWidgetsToolkitRGtk2

Finally, the handler= argument (or addhandlerdoubleclick) could have been
used to give an action to double clicking of an item in the tree.

11 Popup menus

A popup menu “pops” up a menu after a mouse click, typically a right mouse click.
Implemented here are the functions

add3rdmousepopupmenu() for adding a popup on a right click

- page 23 -

gWidgets

addpopupmenu() for adding a popup on any click

The menu is specified using the syntax for gmenu().

A simple example would be something like:

> group = ggroup(container = gwindow("Click on button to change"))

> glabel("Hello ", container = group)

guiWidget of type: gLabelRGtk for toolkit: guiWidgetsToolkitRGtk2

> world = gbutton("world", container = group)

> lst = list()

> lst$world$handler = function(h, ...) svalue(world) <- "world"

> lst$continent$handler = function(h, ...) svalue(world) <- "continent"

> lst$country$handler = function(h, ...) svalue(world) <- "country"

> lst$state$handler = function(h, ...) svalue(world) <- "state"

> addpopupmenu(world, lst)

Clicking on “world” with the mouse allows one to change the value in the label.

12 Making widgets from an R function

A common task envisioned for gWidgetsRGtk is to create GUIs that make col-
lecting the arguments to a function easier. Presented below are two ways to do so
without having to do any programming, provided you are content with the layout
and features provided.

One can make an ok GUI for a function without too much work using gWidget-
sRGtk. We illustrate two ways. First with the ggenericfunction() constructor
and then with a do-it yourself approach.

12.1 Using ggenericwidget()

The ggenericwidget() constructor maps a list into a widget. The list contains two
types of information: meta information about the widget, such as the name of the
function, a help page and information about the widgets. This is specified using a
list whose first component is the constructor, and subsequent components are fed to
the constructor.

To illustrate, a GUI for a one sample t-test is given. The list used by ggener-

icwidget() is defined below.

- page 24 -

gWidgets

> lst = list()

> lst$title = "t.test()"

> lst$help = "t.test"

> lst$variableTypes = "univariate"

> lst$action = list(beginning = "t.test(", ending = ")")

> lst$arguments$hypotheses$mu = list(type = "gedit", text = 0,

+ coerce.with = as.numeric)

> lst$arguments$hypotheses$alternative = list(type = "gradio",

+ items = c("'two.sided'", "'less'", "'greater'"))

This list is then given to the constructor.

> ggenericwidget(lst, container = gwindow("One sample t test"))

guiWidget of type: gGenericWidgetRGtk for toolkit: guiWidgetsToolkitRGtk2

Although this looks intimidating, due to the creation of the list, there is a function
autogenerategeneric() that reduces the work involved.

12.2 An alternative to ggenericwidget()

This next example shows a different (although ultimately similar) way to produce a
widget for a function. One of the points of this example is to illustrate the power
of having common method names for the different widgets. Of course, the following
can be improved. Two obvious places are the layout of the automagically generated
widget, and and the handling of the initial variable when a formula is expected.

> Comment("A constructor to automagically make a GUI for a function")

> gfunction = function(f, window = gwindow(title = fName), ...) {

+ Comment("Get the function and its name")

+ if (is.character(f)) {

+ fName = f

+ f = get(f)

+ }

+ else if (is.function(f)) {

+ fName = deparse(substitute(f))

+ }

+ Comment("Use formals() to define the widget")

+ lst = formals(f)

- page 25 -

gWidgets

+ Comment("Hack to figure out variable type")

+ type = NULL

+ if (names(lst)[1] == "x" && names(lst)[2] == "y") {

+ type = "bivariate"

+ }

+ else if (names(lst)[1] == "x") {

+ type = "univariate"

+ }

+ else if (names(lst)[1] == "formula") {

+ type = "model"

+ }

+ else {

+ type = NULL

+ }

+ Comment("Make widgets for arguments from formals")

+ widgets = sapply(lst, getWidget)

+ Comment("Add update handler to each widget when changed")

+ sapply(widgets, function(obj) {

+ try(addhandlerchanged(obj, function(h, ...) update()),

+ silent = TRUE)

+ })

+ Comment("Add drop target to each widget")

+ sapply(widgets, function(obj) try(adddroptarget(obj, handler = function(h,

+ ...) {

+ svalue(h$obj) <- h$dropdata

+ update()

+ }), silent = TRUE))

+ Comment("Put widgets into a layout container")

+ tbl = glayout()

+ for (i in 1:length(widgets)) {

+ tbl[i, 1] = glabel(names(lst)[i])

+ tbl[i, 2] = widgets[[i]]

+ }

+ Comment("Finalize the layout container")

+ visible(tbl) <- TRUE

+ Comment("Main group")

+ gp = ggroup(horizontal = TRUE, container = window)

+ Comment("Arrange widgets with an output area")

- page 26 -

gWidgets

+ add(gp, tbl)

+ gseparator(horizontal = FALSE, container = gp)

+ outputArea = gtext()

+ add(gp, outputArea, expand = TRUE)

+ Comment("In case this doesn't get exported")

+ svalue.default = function(obj, ...) obj

+ Comment("Function used to weed out 'NULL' values to widgets")

+ isNULL = function(x) ifelse(class(x) == "character" && length(x) ==

+ 1 && x == "NULL", TRUE, FALSE)

+ Comment("Function called when a widget is changed")

+ Comment("2nd and 3rd lines trim out non-entries")

+ update = function(...) {

+ outList = lapply(widgets, svalue)

+ outList = outList[!sapply(outList, is.empty)]

+ outList = outList[!sapply(outList, isNULL)]

+ outList[[1]] = svalue(outList[[1]])

+ if (type == "bivariate")

+ outList[[2]] = svalue(outList[[2]])

+ out = capture.output(do.call(fName, outList))

+ dispose(outputArea)

+ if (length(out) > 0)

+ add(outputArea, out)

+ }

+ }

The getWidget() function takes a value from formals() and maps it to an
appropriate widget. For arguments of type call the function recurses.

> getWidget = function(x) {

+ switch(class(x), numeric = gedit(x, coerce.with = as.numeric),

+ character = gdroplist(x, active = 1), logical = gdroplist(c(TRUE,

+ FALSE), active = 1 + (x == FALSE)), name = gedit(""),

+ "NULL" = gedit("NULL"), list = gListOfWidgets(x, name = ""),

+ call = getWidget(eval(x)), gedit())

+ }

This function defines a separate widget to handle the case where an argument
expects a list. It is written in the gWidgetsRGtk style including an svalue() method
below. The tag() method stores a value in the widget, similar to setting an attribute.
In this case, the list of widgets stored is consulted by the following svalue() method.

- page 27 -

gWidgets

> gListOfWidgets = function(lst, name = "", container = NULL, ...) {

+ gp = gframe(text = name, container = container, horizontal = FALSE,

+ ...)

+ obj = list(ref = gp)

+ class(obj) = c("gListOfWidgets", "gComponent", "gWidget")

+ widgetList = lapply(lst, getWidget)

+ tag(obj, "widgetList") <- widgetList

+ tbl = glayout(container = gp)

+ for (i in 1:length(widgetList)) {

+ tbl[i, 1] = glabel(names(widgetList)[i])

+ tbl[i, 2] = widgetList[[i]]

+ }

+ visible(tbl) <- TRUE

+ return(obj)

+ }

The methods below (svalue(), svalue<-() and addhandlerchanged()) map
the same method to each component of the list using sapply().

> svalue.gListOfWidgets = function(obj, ...) {

+ lst = lapply(tag(obj, "widgetList"), svalue)

+ return(lst)

+ }

> "svalue<-.gListOfWidgets" = function(obj, ..., value) {

+ if (!is.list(value))

+ return(obj)

+ widgetList = getdata(obj, "widgetList")

+ sapply(names(value), function(x) svalue(widgetList[[x]]) <- value[[x]])

+ return(obj)

+ }

> addhandlerchanged.gListOfWidgets = function(obj, handler = NULL,

+ action = NULL, ...) {

+ widgetList = getdata(obj, "widgetList")

+ sapply(widgetList, function(x) try(addhandlerchanged(x, handler,

+ action), silent = TRUE))

+ }

We can try this out on the default t.test() function. First we grab a local copy
from the namespace, then call our function. The widget with an initial value for x is
shown in Figure 9.

- page 28 -

gWidgets

> our.t.test = stats:::t.test.default

> gfunction(our.t.test)

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gDroplistRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gDroplistRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gDroplistRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

- page 29 -

gWidgets

Figure 9: Illustration of gfunction()

- page 30 -

